Supplemental material for: Rap-protein paralogs of *Bacillus thuringiensis*: a multifunctional and redundant regulatory repertoire for the control of collective functions.

Gabriela Gastélum, Mayra de la Torre, Jorge Rocha

Supplementary Figures.

Figure S1. Growth curves of Rap-overexpression strains. Preinoculums of the control strain, and strains carrying plasmids for Rap overexpression, were washed and used to inoculate 30 ml of fresh media to a starting OD₆₀₀ ≈0.03, in triplicate 125 ml flasks.
Cultures were incubated at 30 °C with shaking, following OD₆₀₀ for 24 h. Each data point represents average of three replicates ± SD.

Figure S2. Effect of the induction of Rap overexpression in viability and sporulation of Bt8741. A-B) Total and C-D) thermoresistant CFU counts were obtained from triplicate 72 h cultures of control and Rap-overexpression strains, from LB with and without the addition of 20 mM xylose. Columns indicate average of three replicates; dots indicate individual data. Y-axis lower limit is adjusted to the limit of detection of the assay.

Figure S3. Cell morphology of control strain and Rap-overexpression strains. Samples were taken from induced cultures at 72 h. Phase contrast microscopy 63X + 1.8X

magnification.

Figure S4. Biofilm formation of Bt8741 is inhibited by xylose addition. Three μ l of preinoculum of the control strain, were used to inoculate 3 mL of nutrient broth with different concentrations of xylose. After 48 h, cells from the biofilm were recovered, suspended in 1.5 ml of PBS, and OD₆₀₀ was measured. Columns indicate average of three replicates \pm SD.

Figure S5. Planktonic growth of control and Rap-overexpression strains, during the assays for biofilm formation. OD₆₀₀ was measured from the liquid media after 48 h. Columns indicate average of five individual measurements ± SD. NB, Nutrient Broth; **,

p<0.005; ****, p<0.0001.

Figure S6. Colony area of Rap overexpression strains in milk agar after 24 h of incubation. Columns indicate average of triplicate measurements \pm SD. MA, milk agar. **, p<0.005; ****, p<0.0001.

Supplementary Tables.

	Table S1. St	rains and	plasmids	used in	this	study
--	--------------	-----------	----------	---------	------	-------

Strain	Description	Reference
Bacillus thuringiensis 8741	Wild type	(1)
Bacillus subtilis 168	Wild type	(2)
Escherichia coli TOP10	Strain used for construction and cloning of overexpression plasmids	(3)
Plasmid	Description	Reference
pHT315	Cloning vector for Bt ≈15 copies per cell	(4)
pHT315- P _{xylA}	Xylose inducible overexpression plasmid	This study
pHT315- P _{xylA} 'rapC	Plasmid for overexpression of RapC from Bt8741	This study
pHT315- P _{xylA} 'rapK	Plasmid for overexpression of RapK from Bt8741	This study
pHT315- P _{xylA} 'rapF	Plasmid for overexpression of RapF from Bt8741	This study
pHT315- P _{xylA} 'rapF1	Plasmid for overexpression of RapF1 from Bt8741	This study
pHT315- P _{xylA} 'rapF2	Plasmid for overexpression of RapF2 from Bt8741	This study
pHT315- P _{xylA} 'rapI	Plasmid for overexpression of RapI from Bt8741	This study
pHT315- P _{xylA} 'rapl1	Plasmid for overexpression of RapI1 from Bt8741	This study
pHT315- P _{xylA} 'rapLike	Plasmid for overexpression of RapLike from Bt8741	This study
pHT315- P _{xylA} 'rapA	Plasmid for overexpression of RapA from Bs168	This study

Name	Sequence (5' to 3')	Description
GG1	AAG <u>AAGCTT</u> CCATGTCACTATTGCTTCAG	Fwd <i>xylR</i>
GG2	CTG <u>CTGCAG</u> AGATTGAGCCATGTGATTTC	Rev P _{xylA}
GG3	CTG <u>CTGCAG</u> GACGTTCAAACAAAAGTAATG	Fwd <i>rapK</i>
GG4	GTC <u>GTCGAC</u> TTCCCATTAATGTTAGGATTG	Rev <i>rapK</i>
GG5	CTG <u>CTGCAG</u> CAACTAGGAAACGAACAAATTAC	Fwd <i>rapI</i>
GG6	GTC <u>GTCGAC</u> TTCATCATTTCAATGACTCC	Rev rapI
GG7	CTG <u>CTGCAG</u> ACAGCAACCAGTAATGAGAAG	Fwd <i>rapF</i>
GG8	GTC <u>GTCGAC</u> GTTTTCTTCATTTTAATGCCTC	Rev rapF
GG9	CTG <u>CTGCAG</u> AACACTAAGTTTTTGACCCAAG	Fwd <i>rapC</i>
GG10	GTC <u>GTCGAC</u> TTTTCATCACTGTAACGCTC	Rev <i>rapC</i>
GG11	CTG <u>CTGCAG</u> AGTGTACATGTAATAAAAAAGGAAG	Fwd <i>rapF1</i>
GG12	GTC <u>GTCGAC</u> CAATTGAACTGCTGATGATC	Rev rapF1
GG13	CTG <u>CTGCAG</u> AACGTTCAACTACAAGGTAATG	Fwd <i>rapF2</i>
GG14	GTC <u>GTCGAC</u> TATCATTTTAATGCCCCTTTC	Rev rapF2
GG15	CTG <u>CTGCAG</u> GGAGCAGATGTAGTAACGC	Fwd <i>rapI1</i>
GG16	GTC <u>GTCGAC</u> ATAGCCAAACGAAATTTCTTC	Rev rap11
GG17	CTG <u>CTGCAG</u> TTATTAAAAGGGCATGAACAG	Fwd <i>raplike</i>
GG18	GTCGTCGACTCATTATCTTAGTGCCTCCTTAG	Rev raplike
GG19	CTG <u>CTGCAG</u> AGGATGAAGCAGACGATTC	Fwd <i>rapA</i>
GG20	GTC <u>GTCGAC</u> AACAAACCTGACATCCATTTAG	Rev rapA
GG26	AACATAGTACATAGCGAATCTTC	Fwd P _{xylA}
DS16	CAGGCTTTACACTTTATGC	Fwd
		pHT315
DS17	CGATTAAGTTGGGTAACG	Rev
		pHT315

 Table S2. Oligonucleotides used in this study.

Underlined sequence indicates restriction site; Fwd, forward primer; Rev, reverse primer.

References

- Rocha J, Flores V, Cabrera R, Soto-Guzmán A, Granados G, Juaristi E, Guarneros G, De La Torre M. 2012. Evolution and some functions of the NprR-NprRB quorum-sensing system in the *Bacillus cereus* group. Appl Microbiol Biotechnol 94:1069–1078.
- Perego M, Hanstein C, Welsh KM, Djavakhishvili T, Glaser P, Hoch JA. 1994.
 Multiple protein-aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in *B. subtilis*. Cell 79:1047–1055.
- Maniatis T, Fritsch EF, Sambrook J. 1988. Molecular Cloning : a laboratory manual. 2nd edition. Cold Spring Harb ,New York.
- Arantes O, Lereclus D. 1991. Construction of Cloning Vectors for *Bacillus* thuringiensis. Gene 108:115–119.