Science Advances

advances.sciencemag.org/cgi/content/full/6/9/eaay9269/DC1

Supplementary Materials for

Blood-stage malaria parasites manipulate host innate immune responses through the induction of sFGL2

Yong Fu, Yan Ding, Qinghui Wang, Feng Zhu, Yulong Tan, Xiao Lu, Bo Guo, Qingfeng Zhang, Yaming Cao, Taiping Liu*, Liwang Cui*, Wenyue Xu*

*Corresponding author. Email: xuwenyue@tmmu.edu.cn (W.X.); liwangcui@usf.edu (L.C.); liutaiping@tmmu.edu.cn (T.L.)

Published 26 February 2020, *Sci. Adv.* **6**, eaay9269 (2020) DOI: 10.1126/sciadv.aay9269

This PDF file includes:

Fig. S1. FGL2 deficiency has no significant effect on both fibrin deposition in the spleen and coagulation function of the parasite-infected mice.

Fig. S2. sFGL2 has no effect on parasite-specific antibody production.

Fig. S3. sFGL2 has no effect on parasite-specific CD4⁺ T cell activation.

Fig. S4. sFGL2 has no effect on parasite-specific CD8⁺ T cell activation.

Fig. S5. Full blots of the effect of rFGL2 administration on both mitogen-activated protein kinase and NF-κB activity in *P. chabaudi* lysate–stimulated macrophages by rFGL2.

Fig. S6. Full blots of the FcγRIIB-dependent inhibition of JNK in *P. chabaudi* lysate–activated macrophages by sFGL2.

Fig. S7. Full blots of the inhibition of JNK in *P. falciparum* lysate–activated macrophages by rFGL2.

Table S1. Detailed information of patients with malaria.

Fig. S1. FGL2 deficiency has no significant effect on both fibrin deposition in the spleen and coagulation function of the parasite-infected mice. (A) Immunofluorescence assay of fibrin deposition (green) in the spleens of WT and FGL2^{-/-} mice at 8 days post-infection with *P. chabaudi* (left); the intensity of fibrin was statistically analyzed (right). **(B)** Tail bleed time (right) and clotting time (left) between WT and FGL2^{-/-} mice at 8 days post-infection with *P. chabaudi*. Data are pooled from three independent experiments with at least five mice per group and represent mean ± SD. ns, not significant.

Fig. S2. sFGL2 has no effect on parasite-specific antibody production. (A) The levels of malaria parasite-specific total IgG, IgG1 and IgG2a in the serum of WT and FGL2^{-/-} mice were detected by ELISA at 7 days post-infection with *P. chabaudi*. **(B)** The representative result of GC B cells (B220⁺CD95⁺GL7⁺) in spleen of WT and FGL2^{-/-} mice at the indicated time points post-infection with *P. chabaudi* by flow cytometry (*left*), and the difference of GC B cells level between WT and FGL2^{-/-} mice was statistically analyzed (*right*).Data are pooled from three independent experiments with five mice per group and represent as mean \pm SD.

Fig. S3. sFGL2 has no effect on parasite-specific CD4⁺ T cell activation. (A) The representative FACS analysis of (upper) and the statistical analysis (bottom) of the proliferation of parasite-specific CD4⁺ (CD4⁺CD49d^{high}CD11a^{high}) in spleen of WT and FGL2^{-/-} mice at the indicated time points post-infection with *P.chabaudi*. **(B)** The representative FACS analysis (*left*) and statistical analysis (*right*) of IFN-γ production of malaria parasite-specific CD4⁺ T cells in spleen of WT and FGL2^{-/-} mice at the indicated time points post-infection with *P.chabaudi*. Data represent three separate experiments with at least three mice per group and represent the mean ± SD.

Fig. S4. sFGL2 has no effect on parasite-specific CD8⁺ T cell activation. (A) The representative FACS analysis (*left*) and statistical analysis (*right*) of the proliferation of parasite-specific CD8⁺ (CD8a^{low}CD11a^{high}). **(B)** The representative FACS analysis (*left*) and statistical analysis (*right*) of IFN-γ production of malaria parasite-specific CD8⁺ T cells in spleen of WT and FGL2^{-/-} mice at the indicated time points post-infection with *P.chabaudi*. **(C)** The representative FACS analysis (*left*) and statistical analysis (*right*) of Granzyme B production of malaria parasite-specific CD8⁺ T cells in spleen of WT and FGL2^{-/-} mice post-infection. **(D)** The representative FACS analysis (*left*) and statistical analysis (*right*) of perforin production of malaria parasite-specific CD8⁺ T cells in spleen of WT and FGL2^{-/-} mice post-infection with *P.chabaudi*. Data represent three separate experiments with at least three mice per group and represent as the mean ± SD.

Fig. S5. Full blots of the effect of rFGL2 administration on both mitogen-activated protein kinase and NF-κB activity in *P. chabaudi* lysate–stimulated macrophages by rFGL2. Related to Figure 4.

Fig. S6. Full blots of the FcyRIIB-dependent inhibition of JNK in *P. chabaudi* lysate-activated macrophages by sFGL2. Related to Figure 5.

Fig. S7. Full blots of the inhibition of JNK in *P. falciparum* lysate–activated macrophages by

rFGL2. Related to Figure 5.

Table S1. Detailed information of patients with malaria.

Sample	Sex ^b	Age	Axillary	<mark>Asexual</mark>	Gametocyte	Malaria	Previous	Previous	Year	Month
<mark>ID</mark> a			temperature	<mark>density</mark>	density	<mark>history</mark> c	malaria	malaria		
							date	species		
PF4	1	20	37.8	160	0	Ν			2013	5
PF5	1	25	38.4	3880	0	Ν			2013	5
PF6	1	29	38	27200	0	Ν			2013	5
PF7	1	47	37.1	440	0	Ν			2013	6
PF8	1	33	38	9400	0	Ν			2013	6
PF9	1	32	37	400	0	Ν			2013	1
PF10	1	19	37	0	1280	Ν			2013	2
PF14	1	9	38.5	9840	0	N			2013	5
PF16	1	26	38	800	0	N			2013	5
PF17	1	33	38	1800	0	Ν			2013	6
PF18	1	24	38	720	0	N			2013	6
PF19	1	20	39	20640	0	N			2013	6
PF22	2	45	Unknown	840	0	N			2013	6
PF24	2	58	37.5	800	0	N			2013	6
PF25	1	24	38	6400	0	N			2013	6
PF26	2	25	37.5	19520	0	N			2013	6
PF27	2	24	37.5	40000	0	N			2013	6
PF28	1	19	40	30400	0	N			2013	6
PF29	1	57	37	12400	0	N			2013	6
PF36	1	12	39	15040	0	N			2013	6
PV109	1	8	36	8680	440	N			2013	6
PV112	2	7	38	240	40	N			2013	6
PV113	1	7	40	6240	520	N			2013	4
PV115	1	7	40.5	320	120	N			2013	4
PV131	1	3	39	5640	200	N			2013	6
PV136	2	2	38	760	0	Y	2011/1/1	PV	2013	5
PV141	1	15	37.1	1280	0	N			2013	6
PV142	2	12	39.5	1400	0	Ν			2013	6
PV143	1	7	39.2	1240	0	N			2013	6
PV150	1	11	38.5	1640	360	Y	2012/6/1	PV	2013	6
PV151	1	12	40.4	840	0	N			2013	6
PV155	2	13	41	320	240	N			2013	7
PV2	1	6	37	0	16	N			2015	6
PV6	2	18	40	3960	80	N			2015	6
PV10	2	18	38.5	23680	1480	Ν			2015	6
PV11	1	5	37	928	192	N			2015	6
PV15	1	32	37.6	48000	1800	N			2015	6

PV17	2	20	37	18440	720	Ν	2015	6
PV18	2	19	37.8	11560	560	Ν	2015	6
PV29	2	13	37	12080	320	Ν	2015	6
PV34	2	20	37	10000	2040	Ν	2015	6
PV35	2	7	39.5	4080	600	Ν	2015	6
PV39	2	6	37	736	80	Ν	2015	6
PV477	1	3	36	11200	2280	Ν	2015	7
PV76	1	10	38.5	3600	200	Ν	2015	7
PV155	2	16	38.5	5640	3120	Ν	2015	6
PV244	2	30	38.5	768	608	Ν	2015	10
PV249	2	35	38	4400	1600	Ν	2015	9
PV254	2	13	39.5	320	0	Ν	2015	9
PV276	2	37	38	1088	32	Ν	2015	11
PV279	1	11	39.5	912	240	Ν	2015	11
PV315	1	57	39.5	3920	160	Y	2015	11
PV322	1	34	39.1	1280	448	Ν	2015	11
PV420	2	33	37	640	800	Ν	2015	4
PV422	2	20	38	16400	0	Ν	2015	5
PV423	1	11	39.8	4400	1200	Ν	2015	4
PV426	2	18	37	7920	1320	Ν	2015	4
PV431	1	62	39.1	19920	1560	Ν	2015	3
PV434	1	19	38	20400	1560	Ν	2015	5
PV436	2	9	36	480	896	Ν	2015	4
PV444	2	12	39	10520	200	Ν	2015	4
PV445	1	18	39	13800	200	Ν	2015	5
PV464	1	33	40	7600	5000	Ν	2015	5
PV475	2	12	36.6	23920	360	N	2015	5

^a PF, Plasmodium falciparum; PV, Plasmodium vivax.

^b 1, male; 2, female.

^c Y, yes; N, no.