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Section S1. Image representations of output molecular structure

The chosen image representation is even more important when considering non-ideal experimental conditions and

the inherent approximations present in any simulation model generating the training examples. The information

that we try to reconstruct should be not only present in AFM data, but it must also be robust with respect to minor

errors and unknowns. In particular, the determination of atoms which are too deep and therefore do not significantly

contribute to the AFM signal is an ill-posed problem, and we should therefore avoid output representations that

pretend to provide information about such atoms.

To aid in validation, we should also output a representation which is convenient for perception of the human

user as well as for design of the neural network architecture. Representation of the molecular structure as a list of

atomic coordinates is generally considered problematic for machine learning, as the size of such an output vector

would differ for each molecule, and it does not respect permutation symmetry (i.e. exchange of atoms corresponding

to the same element in the list produces apparently different descriptors, despite representing physically identical

structures). Various methods were developed in the past to overcome these problems (e.g Atom-centered symmetry

functions (68), or smooth overlap of atomic positions (69)), but do not present molecular geometry in a human-

readable form. Image-like representations are an intuitive choice for humans, projecting the system geometry into a

scalar or complex field sampled on a regular real-space grid (70).

The output property has to be generated together with simulated AFM data during training, therefore the

definition of the output property is closely related to the algorithm by which it is generated. In this work, we

designed three distinct image descriptors representing 2D image projections of molecular geometries (see Fig. S1).

Height Map For each pixel of the image, we calculated the depth at which the vertical component of forces

between sample and tip apex becomes more repulsive than some constant value (typically ≈ 0.1eV/Å). The

resulting image (see Fig. S1e,h) should roughly correspond to a hypothetical AFM image obtained in constant-force

mode with a non-flexible tip (unlike CO). It also roughly corresponds to the concept of the solvent-accessible

surface introduced in biochemistry (71), indicating areas accessible to the probe particle. This is also very useful to



rationalize the formation of the imaging contrast and supramolecular interactions in general. In the future we plan

also to map the electrostatic potential on top of this surface.

van der Waals Spheres While the Height Map corresponds to an isosurface of aggregate force (with contributions

from all atoms), a representation of molecular structure by van der Waals spheres is commonly used in chemical

visualization programs (e.g. Jmol), as it is intuitive for the human user. This also follows naturally from the

LJ-potential based PP method used in simulations. The vdW-Spheres representation (see Fig. S1f,i) shows creases

between atoms, in contrast to the blunt shapes of the Height Map. This was one motivation to introduce this output

descriptor - it allows us to see how well discrete atoms can be recognized from the images. In the nomenclature

of neural networks, we can roughly relate the Height Map to a soft-max-operation and vdW-Spheresto simple

max-operation over the contributions of atoms to the force field.

By its nature, the van der Waals Spheres representation encodes the depth of an atom’s position by brightness

of sphere and atomic radius (which is connected with atomic type) by sphere size. Therefore we considered

modification of the CNN learning process for the vdW-Spheres representation such that different sphere radii

would be split by colour for more convenient atomic type identification - we call this modification type map. In its

current form, it allows identification of 3 different categories of atoms according to sphere radii: hydrogen (red),

non-hydrogen peripheral (green) and carbon backbone (blue).

Atomic Disks This descriptor goes one step further from a quantity directly related to the force field towards a

more abstract representation. Here we render small disks (with the brightness conically decreasing from the center)

onto positions of atomic nuclei (see Fig. S1g,j). The brightness indicates the height of atoms, while the size of the

disk is proportional to the covalent radius of atom.

S1.1 Comparison of the different output representations of molecular structure gener-
ated from simulated AFM input

Here (Fig. S1 – Fig. S3) we compare predictions of other representations for molecules from Fig. 2 of the main text.

In general it can be said that decreasing the size of atomic features (from Height Map to Atomic Disks) helps to



better recognize the atoms by a human user, but also it makes the training more demanding and output less robust.

Hence, the selection remains a compromise, and we are planning to implement simultaneous calculation of all

descriptors (these and other descriptors in development) during the simulation process.
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Fig. S1 Different 2D image representations of the output geometry X for simulated AFM images of a
C7H10O2 molecule from the training set. a 3D render of molecular geometry; b-d simulated AFM ∆f images
with decreasing tip-sample distance; e-g 2D Image representation predicted by our CNN; h-j Reference 2D Image
representation produced directly from the molecule geometry.

.



   

e f g

h i j

Height map vdW­Spheres

A
FM

 ∆
f d

at
a c dfar middle closebgeometry

pr
ed

ic
tio

n
re

fe
re

nc
e

a

Atomic Disks

Fig. S2 Different 2D image representations of the output geometry X for simulated AFM images of a
60 molecule. a 3D render of molecular geometry; b-d simulated AFM ∆f images with decreasing tip-sample

distance; e-g 2D Image representation predicted by our CNN; h-j Reference 2D Image representation produced
directly from the molecule geometry.
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Atomic Disks

Fig. S3 Different 2D image representations of the output geometry X for simulated AFM images of
7 3D render of molecular geometry; b-d simulated AFM ∆f images

with decreasing tip-sample distance; e-g 2D Image representation predicted by our CNN; h-j Reference 2D Image
representation produced directly from the molecule geometry. Note that the Atomic Disk representation fails to
reliably predict the exact positions for atoms of the aromatic systems near to the sulphurs, but located deeper
i.e. lower in contrast. Failure to predict deeper atoms is a typical problem of our NN. It follows up from the
”conservatism” enforced by regularization techniques (e.g. related to noise and dropouts). If the CNN does not
accumulate enough evidence, it omits atoms completely instead of predicting them at wrong positions. In this
particular case, the prediction of lower lying atoms is perhaps disturbed by the dominant sulphur atoms.

.
dibenzo[a,h]thianthrene molecule ( 1). a



S1.2 Examples of molecules from the training set

  

Fig. S4. Molecules from the validation data set together with the vdW-Spheres representation predicted
by the CNN Here are presented 9 simulated random molecules from our validation data set. Each pair of images
contains: left – molecular geometry where color represents the type of atoms (white - H, gray - C, blue - N, red -
O); right – vdW-Spheres representation of the structure predicted by the CNN. The orientation of the molecule is
selected to maximize the number of visible atoms, as described in the main text.

Section  S2. Matching experiment to re laxed on-surface simulated configurations

From a physical point of view, it is reasonable to match experimental AFM images only to those simulated

orientations of a molecule which represent some local minimum on the surface. Nevertheless, such an approach

is strongly dependent on the ability to reliably find all such local minima (possible configurations) by purely

computational means, which is still generally an unsolved task. Although the development of novel global

configuration search methodology is beyond the scope of this paper, we tentatively examined this idea. As an initial

approximation, we used rigid-body molecular mechanics (73) with only a van der Waals force field to relax 500

uniformly distributed initial rotations of the camphor molecule into 7 distinct local minima. Then we further relaxed

those configurations with the density functional package cp2k (74). These local energy minimum configurations

.



were then compared to a set of experimental configurations using a linear correlation metric.

  

Experiment Simulation

Fig. S5 Matching between simulated relaxed configurations of 1S- amphor and experiment. 1-5 refer
to distinct molecular configurations with experiments in columns a-d and simulations in columns e-i. Selected
experimental AFM images (out of 10 slices used for input): a – far, b – middle, c – close tip-sample distances
and NN prediction d for the vdW-Spheresrepresentation. The vdW-Spheresrepresentation e corresponds to the full
molecular configuration f resulting in the best match with the experiments. The corresponding selected simulated
AFM images are given in panels g-i.

The CNN model’s predicted image representations for the molecular structure (vdW-Spheres) on Fig. S5 allow for

the assignment of simulated configurations with known geometry (column (f)) for each experimental configuration.

For the experiments considered in this work, we have only a few experimental and simulated configurations, allowing

for easy validation by a human expert. We did not find better agreement between corresponding experimental and

simulated configurations. The differences which we could see between experiment and simulation in this case are

not connected with predictions of the CNN model and are more likely related to the accuracy of computationally

relaxed configurations. Nevertheless, in the next sections we consider possible small adjustments to the accuracy of

matching.

. c



Section S3. Effect of small perturbations on AFM imaging and matching

To take account of possible tip- and surface-induced perturbations in the imaging process, we tried to address

possible variations of molecular configuration for the case of our benchmark molecule 1S-camphor in two ways:

1) Tilting of the whole molecule as a rigid body and 2) rotation of −CH3 groups. We found that both these

perturbations quite significantly affect the simulated AFM images and associated configuration predictions.

S3.1 Effect of molecule tilting

At first we consider angular tilting of the molecule from model configurations by 0-5◦ from normal to the Cu(111)

surface. The resultant images are presented in Fig. S6 – there are 5 different tilt variations of the same simulated

molecule configuration. Even such small angular tilting of the molecule from normal to the surface significantly

affects the AFM images. This follows from the nature of the AFM imaging process, where the tip ”scratches” the

surface of the molecule and upper atoms dominate the interaction. Even a small height change of the top-most atoms,

such as 50 pm, can have visible impact on the simulated AFM image. Image descriptors of simulated configuration

also reflect these variations to a degree, but they are not as obvious as in the AFM data. For close configurations, the

image descriptors are also similar and their features even allow estimates for the direction of molecular tilting. This

feature emphasizes that image descriptors are a more suitable representation for machine learning than raw AFM

images.



Fig. S6. Effect of tilt of molecules on simulated AFM images 1 to 5.
random angle from the normal to the Cu(111) surface; a-c 3 selected simulated AFM images: a – far, b – middle, c
– close tip-sample distance; d - atomic disks representation as predicted by the CNN from a given set of simulated
AFM images; e - atomic disks representation as a reference; f - vdW-spheres representation as predicted by the
CNN; g - vdW-spheres representation as a reference. h Full molecular geometry corresponding to simulated AFM
images.

S3.2 Effect of -CH3 rotations

For simplicity we assumed that the geometry of the molecule is rigid, i.e. that internal degrees of freedom are frozen.

While this is typically true for flat aromatic molecules, in the case of 3D aliphatic molecules, the barriers for rotation

around a single-bond between two carbon atoms is of the order of just 10 kJ/mol, therefore it can be induced during

deposition or scanning. Hence, we considered the possible impact of such rotations in the case of 1S-Camphor. In

this molecule there are 3 -CH3 groups capable of such rotations. AFM images are very sensitive to changes of

atomic positions of the closest atoms. Therefore, despite not affecting the global minimum energy configuration of

the molecule, the effects of rotating a -CH3 can be crucial. Examples of changes are presented in Fig. S7, where we

 Simulated configuration tilted with a small



considered one simulated Camphor configuration. This configuration has 3 different -CH3 groups sticking up (see

upper right corner on Fig. S7) that could be rotated independently, and the result of the rotations on images and

descriptors is shown in rows (1-5).
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Fig. S7. Adjustment of simulated configuration by -CH3 group rotations. 1 - Experimental configuration #
1; 2-5 - Simulated configuration with different rotations of the -CH3 groups. a-c selected AFM images: a – far, b –
middle, c – close tip-sample distance; d - vdW-Spheres representation as predicted by the CNN and e - references.
f Full molecular geometry corresponding to simulated AFM data.

S3.3 Ambiguity of molecular orientation

For a 3D molecule such as 1S-Camphor, the AFM tip is able to directly probe just 2-3 surface atoms. This limited

information is not sufficient to always reliably discriminate a single orientation of the molecule. In particular, it

may easily happen that a similar doublet or triplet of atoms is present on several places of the molecular surface. In



Fig. S8 we present 5 best matches from 500 uniformly distributed rotations to a single experimental stack. We found

that two very distinct configurations (row 3,4,5 vs. 2,6) both match experiment with a linear correlation coefficient

of the vdW-Spheres>0.92. Note that configuration in row 3 is close to a symmetric rotation of 180 degrees of the

configurations in rows 4 and 5. For more specific molecular identification, either further experimental configurations

are required (as in this work) or further refinement requires input from multiple descriptors in parallel. However,

even if this was the only data available, the possible configurations have still been greatly reduced with very little

computational effort.
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Fig. S8. Matching experimental configuration 2 of 1S-camphor with the closest simulated configurations. 1 -
Experimental configuration # 3; 2-6 Distinct simulated configurations ordered by descending similarity of vdW-
Spheres; a-c selected AFM images: a – far, b – middle, c – close tip-sample distance; d – vdW-Spheres representation
as predicted by the CNN and e references. f Full molecular geometry corresponding to simulated AFM images.



Section S4. Neural network architecture

To predict 2D image representations from a stack of AFM images we used a convolutional neural network (CNN)

approach. Our model is implemented in Keras (75) with a Tensorflow (76) backend. The network is similar

to encoder-decoder type networks (77) and equipped with 12 convolutional layers. The input AFM data size

was (128x128x10) and the output image representation was (128x128). The range in z is limited by the induced

instabilities at close approach and the usefulness of contrast features at longer distance, and we found that we have a

“useful” actual distance range of 1-1.5 Å and the contrast evolves rather smoothly over this range in 10 steps. A

schematic view of the network is presented in Fig. S9. Initially the AFM data stack contains features that have

lateral (x,y) and depth (z) dependencies, so we use 3D convolutional layers for data processing (’3D Conv’ on

Fig. S9). The model has three 3D convolution layers each followed by an average pooling layer that reduces the

size of the feature maps by a factor of 2 in each dimension, except for the last pooling layer which does not reduce

the size in the z-direction. The motivation for this is to avoid reducing the size in the z-direction too much before

moving to 2D feature maps. We also tried max pooling layers, but found average pooling to work better, possibly

due to max pooling losing too much information. The transition to 2D happens by reshaping the 3D image slices

into channels of a 2D feature map. Following this, a pair of 3x3 2D convolutions were applied.

The feature maps are upsampled in three stages, as in the downsampling. The upsampling is done by simply

using nearest neighbour interpolation followed by two 2D convolutions. The final convolution serves to reduce the

number of feature maps to one. In earlier attempts we tried using transposed convolutions for the upsampling, but

found that output density maps contained patterned artifacts. This has been known to be a problem with transposed

convolutions (78). Another related method is the subpixel convolution (79), which could mitigate the effect of the

artifacts (80).

All the convolutional layers use a LeakyReLU0.1 activation, except the last one which has a ReLU activation.

We tried using ReLU in all layers, but this resulted in ”dead” filters that gave zero or nearly zero output everywhere,

and we found that LeakyReLU yielded better results in practice. Using regular ReLU for the last layer is a natural

choice since the output has a clear zero point at the cut-off height that we choose. The ReLU and LeakyReLU



functions are defined as

ReLU(z) = max(0, z) (S1)

LeakyReLUα(z) =

{
z if z ≥ 0

αz if z < 0
(S2)

The loss function was the mean squared error. The optimizer for the gradient descent was the Adaptive Moment

Estimation (Adam) (81) optimizer. We set the learning rate to 0.001 and the decay to 10−5, and otherwise we use

the default parameters as defined in Keras.

The model was trained separately for the three different representations on two different data sets. The first data

set contains the elements H, C, N, O, and F (see Fig. S4), and the second data set was extended to additionally

contain Si, P, S, Cl, and Br. Table S1 lists the final losses on the trained models and Fig. S10 shows the losses as

functions of training epochs. The loss has the interpretation of being the square of the average error in height in Å.

The loss on the training and test sets are almost the same in every case except on the second data set with atomic

disks. From this we can conclude that the model is not badly overfitting to the training data. The losses on the

second data set are greater than on the first one, as would be expected since the data has larger variance.

Table S1. Losses on the training and test sets for the trained models.

Data Set 1 Data Set 2
Atomic Disks vdW-Spheres Height Map Atomic Disks vdW-Spheres Height Map

Train 3.47 × 10−4 3.79 × 10−3 4.01 × 10−3 3.83 × 10−4 3.98 × 10−3 4.49 × 10−3

Test 3.50 × 10−4 3.79 × 10−3 3.97 × 10−3 4.41 × 10−4 4.16 × 10−3 4.57 × 10−3



Table S2 Model architecture. The factors in parentheses denote parallel layers for separate output branches. The
total number of parameters is 122,811.

Layer type Output dimension Kernel size Activation Parameters
0 Input 128× 128× 10× 1 - - -
1 3D conv 128× 128× 10× 4 3× 3× 3 LeakyReLU0.1 112
2 Avg pool 64× 64× 5× 4 2× 2× 2 - -
3 3D conv 64× 64× 2× 8 3× 3× 3 LeakyReLU0.1 872
4 Avg pool 32× 32× 2× 8 2× 2× 2 - -
5 3D conv 32× 32× 2× 16 3× 3× 3 LeakyReLU0.1 3472
6 Avg pool 16× 16× 2× 16 2× 2× 1 - -
7 Reshape to 2D 16× 16× 32 - - -
8 2D conv 16× 16× 64 3× 3 LeakyReLU0.1 18496
9 2D conv 16× 16× 64 3× 3 LeakyReLU0.1 36928

10 NN-upsample 32× 32× 64(×3) - - -
11 2D conv 32× 32× 16(×3) 3× 3 LeakyReLU0.1 9232(×3)
12 2D conv 32× 32× 16(×3) 3× 3 LeakyReLU0.1 2320(×3)
13 NN-upsample 64× 64× 16(×3) - - -
14 2D conv 64× 64× 16(×3) 3× 3 LeakyReLU0.1 2320(×3)
15 2D conv 64× 64× 16(×3) 3× 3 LeakyReLU0.1 2320(×3)
16 NN-upsample 128× 128× 16(×3) - - -
17 2D conv 128× 128× 16(×3) 3× 3 LeakyReLU0.1 2320(×3)
18 2D conv 128× 128× 16(×3) 3× 3 LeakyReLU0.1 2320(×3)
19 2D conv 128× 128× 1(×3) 3× 3 None/ReLU/ReLU 145(×3)

3D Conv + LeakyReLU
Avg Pool

2D Conv
2D Conv + LeakyReLU

2D Conv + ReLU
NN upsample

Fig. S9. Illustration of the layers of the CNN model. The forward direction is from left to right. The sizes of the
layers represent the relative size of the feature maps. Not to scale.

.



Fig. S10. The mean squared loss for height maps, vdW-Sphere and atomic disks. The mean squared loss
on the training and validation sets as functions of the number of training epochs a for the height map prediction, b
for the vdW-Spheresprediction and c for the atomic disks prediction.
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Section S5. PP simulations

For each molecule, the Lennard-Jones and Electrostatic force field was pre-calculated on a regular cubic real-space

grid of size 30 × 30 × 30 Å with spacing 0.1 Å in each direction and stored in a floating point 3D texture on a

GPU. The Lennard-Jones field is calculated using standard OPLS parameters listed in table S3 (there is no re-fitting

of this force field within our approach). The electrostatic field is calculated from Mulliken charges taken from

the quantum chemistry simulations (note that the use of high-level couple cluster calculations is not important for

getting reasonable charges, but offers high accuracy charge densities for benchmarking and future applications).

The weighting of molecular orientations in the database mentioned in the main text is done automatically by

sorting orientations with respect to distance-weighted counting of atoms using the function S =
∑
i exp(−β(zi −

zclose)). zi is the z-coordinate of atom i in the coordinate system of the current scan, zclose corresponds to the

closest atom and the decay factor β is currently set to 1.0 [Å−1]. For a constant number of atoms, the function is

clearly maximal when all zi are similar.

In the process of the neural network training, we vary some simulation parameters in order to regularize

the training and to make it less dependent on a particular setup, therefore more robust with respect to uncertain

experimental conditions. Predominantly we vary the equilibrium tilt of the probe particle in the range ±1.0Å,

reflecting the asymmetric absorption of CO typical in experiment. We also vary the charge as well as Lennard-Jones

radius and binding energy by 0.1e, 0.2 A and 5˚ % respectively.

Table S3 Lennard-Jones parameters in PP imulation and rigid body relaxation of surface

type Rii[Å] Eii[eV]
H 1.4870 0.000681
C 1.9080 0.003729
N 1.7800 0.007372
O 1.6612 0.009106
S 2.0000 0.010841

Cu 2.2300 0.010000
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