Functional connections between and within brain subnetworks [Supplementary Material]

Fabrizio Parente^{*} and Alfredo Colosimo^{*}

^{*}Dept. of Anatomy, Histology, Forensic Medicine and Orthopaedics Sapienza. University of Rome

1 Metrics and jargon used in this paper.

Basic Notation:

N = set of all nodes in the network;

n = total number of nodes in a network;

k =node degree;

l = total number of links in a network.

• *Rich-club coefficient:*

Networks having a relatively high rich-club coefficient are characterized by many connections between nodes of high degree [1].

$$\phi(k)_{rich} = \frac{2E_{>k}}{n_{>k}(n_{>k}-1)}$$
(1)

where $E_{>k}$ = number of links within nodes $n_{>k}$, having node degree higher than k.

• Small-world phenomenon:

It is generally defined in terms of segregation-integration balance. In the present paper segregation and integration were evaluated through local efficiency and global efficiency, respectively. • Efficiency:

It has been proposed to evaluate the information exchange within a network [2]. The concept can be applied at both local and global scales. Local efficiency = measure of the information exchange between each node and its neighbors [3]:

$$E_{loc} = 1/n \sum_{i \in N} \frac{\sum_{j,h \in N; j \neq i} a_{ij} a_{ih} [d_{jh}(N_i)]^{-1}}{k_i (k_i - 1)}$$
(2)

where $a_{ij} =$ binary value equal to 1 if a link between i and j node does exist; $d_{ij} =$ shortest path length between nodes i and j.

 $Global \ efficiency =$ measure of the information exchange across the whole network

$$E_{glo} = 1/n \sum_{i \in N} \frac{\sum_{j \in N; j \neq i} d_{ij}^{-1}}{n-1}$$
(3)

• (Dis)assortativity:

Pearson correlation coefficient used to evaluate up to what extent nodes associate with other nodes sharing similar or different characters. In a disassortative network high degree nodes are connected, on average, to nodes with low(er) degree and, on average, low degree nodes are connected to high(er) degree nodes.

• Modularity:

A module is a set of nodes densely connected internally. If the nodes can be grouped into potentially overlapping and highly interconnected sets, the concept allows for a coarse-grained, and thus simplified, description of the network and of its community structure. The presence of community structures in networks, including non-overlapping modules, is based upon the evaluation of the Q index [4].

• Q index:

Q is defined as the normalized fraction of links in a module minus the expected number in an equivalent random network [4]:

$$Q = \frac{1}{l} \sum_{i,j \in N} (a_{ij} - \frac{k_i k_j}{l}) \delta_{m_i m_j}$$

$$\tag{4}$$

where a_{ij} = binary value equal to 1 if a link between i and j node does exist; k_i and k_j = node degree of nodes i and j; m_i and m_j = module of i and j; $\delta_{m_im_j}$ = Kronecker delta with value 1 if $m_i = m_j$, 0 otherwise.

• Functional cartography:

Method able to extract information from the topology of a complex network by means of the z and P indexes [5].

Within module node degree (z_i) : measure of the intra-module connectivity, for node i, z_i spans from $-\infty$ to $+\infty$ and nodes with z > 2.5 are defined hubs:

$$z_{i} = \frac{k_{i}(m_{i}) - \langle k \rangle (m_{i})}{\sigma^{k(m_{i})}}$$
(5)

where: m_i = module containing node i; $k_i(m_i)$ = intra-module node degree of node i (the number of links between i and all other nodes in m_i); $\langle k \rangle (m_i)$ = average of the intra-module node degree of nodes within-module m_i ; $\sigma^{k(m_i)}$ = standard deviation of the intra-module node degree of nodes within-module m_i .

Participation coefficient (P_i) : measure of the inter-module connectivity, for node i, P_i spans from 0 to 1, if the connections are within their own module, or distributed in all modules, respectively:

$$P_{i} = 1 - \sum_{m \in M} \left(\frac{k_{i}(m)}{k_{i}}\right)^{2}$$
(6)

where: $M = \text{set of modules}; k_i(m) = \text{number of links between i and nodes in module m.}$

• Null statistical models by network randomization:

The statistical significance of the results was checked by the straightforward method in [6] whose main advantage is the preservation, in the randomized network, of the degree distribution present in the original network. 2 Anatomical location of brain regions and modules.

Figure 1: Brain regions within functional subnetworks (modules): sagittal view. Color labeling is the same as in Figure 5 in the text, namely: Red = Limbic; blue = Frontoparietal; orange = Basal-ganglia; yellow = Temporo-parietal; purple = Occipital; green = DMN; light blue = thalamus. Numeric labels refer to the 90 ROIs obtained from [7]

Figure 2: Brain regions within functional subnetworks (modules), lateral view. Color labeling is the same as in Figure 5 in the text, namely: Red = Limbic; blue = Frontoparietal; orange = Basal-ganglia; yellow = Temporo-parietal; purple = Occipital; green = DMN; light blue = thalamus. The numeric labels refer to the 90 ROIs obtained from [7].

3 Overview of the research strategy used in the paper.

3.1 Reckoning the parameters of an Adjacency Matrix.

In Figure 3 a simple network is reported (left panel), together with the corresponding Adjacency Matrix (right panel).

Figure 3: *Matrix and network example.* Left: a network is shown having nodes with node degree = 2, 3 and 4 in red, green and blue, respectively. Right: the corresponding adjacency matrix used by the algorithm to calculate the network indexes. The total number of links is 40 corresponding, roughly, to 10% of all possible connections.

The following sequence of operations, coded in the form of a MATLAB script, can be used to estimate the network parameters, namely the Richclub, the Local-club and the Feeder-club indexes.

- Count the total amount of links in the network: 40 links, and saved as E_t .
- Find nodes having node degree > 2 (green and blue): 20 nodes, and count the number of links between them: 28 links;
- Find nodes having node degree > 3 (blue): 4, and count the number of links between them: 4;

- Find nodes having node degree > 4: 0;
- The number of nodes and of links are saved as N_{rich} and E_{rich} , respectively.
- Find nodes having node degree ≤ 2 (red): 8, and count the number of links between them: 4;
- Find nodes having node degree ≤ 3 (red and green): 24, and count the number of links between them: 28;
- Find nodes having node degree ≤ 4 (red, green and blue): 28, and counts the number of links: 40;
- The number of nodes and of links are saved as N_{local} and E_{local} , respectively.
- Reckon the number of links among nodes with node degree >2 (green and blue) and ≤ 2 (red) $\rightarrow E_t (E_{rich} + E_{local})$: 40 (28+4)= 8;
- Reckon the number of links among nodes with node degree > 3 (blue) and ≤ 3 (red and green) -> 40 - (4 + 28)= 8;
- Reckon the number of links among nodes with node degree > 4 (zero) and ≤3 (red, green and blue): 0;
- The number of links are saved as E_{feeder} .
- Reckon the rich-club coefficient (Rc): $2 * E_{rich} / [N_{rich} * (N_{rich} 1)];$
- Reckon the local-club coefficient (Lc): $2 * E_{local} / [N_{local} * (N_{local} 1];$
- Reckon the feeder-club coefficient (Fc): $E_{feeder} / (N_{rich} * N_{local})$.

The values generated by the previous sequence of operations on the basis of the network and of the Adjacency Matrix reported In Figure 3 are contained in Table 1. The MATLAB function able to generate the values is the following:

 $[Rc \ Lc \ Fc \ Erich \ Elocal \ Efeeder \ Nrich \ Nlocal] = club(R,2,4)$

where R is the 28 x 28 matrix of the network in the example and 2 and 4 are the minimum and the maximum node degree values in the network. The corresponding MATLAB script can be obtained from one of the authors (F.P.) upon request.

node degree	N_{rich}	N_{local}	E_{rich}	E_{local}	E_{feeder}	Rc	Lc	Fc
2	20	8	28	4	8	0.15	0.14	0.05
3	4	24	4	28	8	0.67	0.10	0.08
4	0	28	0	40	0	0	0.11	0

 Table 1: Network Parameters from the Adjacency Matrix in Figure 3.

3.2 Schematics of the analytical steps used in this paper.

Figure 4: Flow Chart of the computing strategy followed in this paper. The scripts indicated by asterisks or (\$) in the flow-chart have been taken from https://sites.google.com/site/bctnet/. The original script named 'home made' is reported below.

References

- M. van den Heuvel and O. Sporns. Rich-club organization of the human connectome. J Neurosci., 31(44):15775–15786, 2011.
- [2] V. Latora and M. Marchiori. Efficient behavior of small-world networks. *Phys. Rev. Lett.*, 87, 2001. 2
- [3] Rubinov M. and Sporns O. Weight-conserving characterization of complex functional brain networks. *Neuroimage*, 56:2068–2079, 2011. 2
- [4] M.E.J. Newman. Finding community structure in networks using the eigenvectors of matrices. *Phys. Rev. E*, 74:036104, 2006. 2
- [5] L.A.N. Guimera, R. Amaral. Cartography of complex networks: Modules and universal roles. J Stat Mech Theor Exp., page 2005P02001, 2005. 3
- [6] S. Maslov and K. Sneppen. Specificity and stability in topology of protein networks. *Science*, 296(6):910–3, 2002. 3
- [7] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix, B. Mazoyer, and M. Joliot. Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. *Neuroimage*, 15(1):273–89, 2002. 4, 5