OMTN, Volume 19

Supplemental Information

miR-25 Promotes Cardiomyocyte

Proliferation by Targeting FBXW7

Bei Wang, Mengting Xu, Miaomiao Li, Fujian Wu, Shijun Hu, Xiangbo Chen, Liqun Zhao, Zheyong Huang, Feng Lan, Dong Liu, and Yongming Wang

Supplemental Figure 1. Relative mRNA expression levels of marker genes for pluripotent stem cells (*OCT4*), mesendoderm (*MIXL1*), cardiac mesoderm (*MESP1*), cardiac progenitors (*NKX2-5*) and cardiomyocytes (*TNNT2*) were analyzed by qRT-PCR during CM differentiation (n=3, error bars show the mean \pm SEM).

Supplemental Figure 2. Anti-miRNA and mimic-miRNA screen for hESC-CMs proliferation. The percentage of EdU+ and α -ACTININ+ cells were quantificated using ImageJ. (n=3 per group, error bars showed mean± SD).

Supplemental Figure 3. miR-25 overexpression promotes the proliferation of CMs derived from two hiPSC lines. (A) EdU staining (green) revealed that miR-25 transfection increased the proliferation of CMs derived from hiPSC line 1. (B) Immunostaining of Ki-67 revealed that miR-25 transfection increased the proliferation of CMs derived from hiPSC line 1. (C) EdU staining (green) revealed that miR-25 transfection increased the proliferation of CMs derived from hiPSC line 2. (D) Immunostaining of Ki-67 revealed that miR-25 transfection increased the proliferation of CMs derived from hiPSC line 2. (D) Immunostaining of Ki-67 revealed that miR-25 transfection increased the proliferation of CMs derived from hiPSC line 2. Nuclei were stained with DAPI (blue); CMs were stained with an antibody against α -ACTININ (red). At least 2000 cells were quantified in each group.

Supplemental Figure 4. Overexpression of miR-25 did not influence CM morphology or electrical activity. (A) Representative images of hESC-CMs transfected with miR-25 mimics or NC stained for α -ACTININ (green), TNNT2 (red) and DAPI (blue). (B) Quantification of cell size. Approximately 60 cells for each group were analyzed. (C) Representative traces of average FPD recordings using the MEA system. (D, E) The results of field potential duration (FPD, Fridericia corrected) and beat period analysis (n=3, error bars show the mean ± SEM).

Supplemental Figure 5. RNA-seq analysis revealed that miR-25 overexpression influenced the expression of multiple genes in hESC-CMs. (A) KEGG classification enrichment analysis of the differentially expressed genes in CMs transfected with miR-25. (B) GO enrichment analysis of the differentially expressed genes in CMs transfected with miR-25.

Supplemental Figure 6. The potential targets of miR-25 were tested with a dual-luciferase assay. The potential target sites (highlighted in gray) of miR-25 on the 3'-UTR of *BTG2* (A), *RECK* (C), *LATS2* (E) and *CDKN1C* (G) were predicted by TargetScan. The mutated target sequences for *BTG2* are marked in red. (B, D, F, H) Results of luciferase reporter assays for each gene (n=3, error bars show the mean \pm SEM); **P<0.01; ***P<0.001; ***P<0.0001.

Supplemental Figure 7. Knockdown of *BTG2* had no influence on CM proliferation. EdU staining revealed that *BTG2* knockdown by siBTG2 had no influence on CM proliferation. Nuclei were stained with DAPI (blue); CMs were stained with an antibody against α -ACTININ (red). At least 2000 cells were quantified in each group.

Supplemental Figure 8. miR-25 shows more significant effect on the proliferation of atrium CMs. miR-25 injection increased the atrium CMs number. A transgenic zebrafish line with myocardium-specific RFP expression in the nuclei was employed.

Table S1. Primers and oligonucleotides

Name	Sequence (5'-3')	Description	
q-OCT4-F	CCTGAAGCAGAAGAGGATCACC	Primers fo	or
q-OCT4-R	AAAGCGGCAGATGGTCGTTTGG	qPCR	
q-MIXL1-F	CCCGACATCCACTTGCGCGAG		
q-MIXL1-R	GGAAGGATTTCCCACTCTGACG		
q-MESP2-F	GAACCCACCAGTGCCCTGGAC		
q-MESP2-R	TGCAGTCTCTGGCATGATGGGT		
q-NKX2-5-F	CTGTCTTCTCCAGCTCCACC		
q-NKX2-5-R	TTCTATCCACGTGCCTACAGC		
q-TNNT2-F	AAGAGGCAGACTGAGCGGGAAA		
q-TNNT2-R	AGATGCTCTGCCACAGCTCCTT		
q-FBXW7-F	GTTTGGTCAGCAGTCACAGGCA		
q-FBXW7-R	CCACACTTTGAGTGTCCGATCTG		
q-GAPDH-F	GAAGGTGAAGGTCGGAGTC		
q-GAPDH-R	GAAGATGGTGATGGGATTTC		
q-PCNA-F	CAAGTAATGTCGATAAAGAGGAGG		
q-PCNA-R	GTGTCACCGTTGAAGAGAGTGG		
q-BRCA2-F	GGCTTCAAAAAGCACTCCAGATG		
q-BRCA2-R	GGATTCTGTATCTCTTGACGTTCC		
q-NUSAP1-F	CTGACCAAGACTCCAGCCAGAA		
q-NUSAP1-R	GAGTCTGCGTTGCCTCAGTTGT		
q-RACGAP1-F	ATGCTGGCAGACTTTGTGTCCC		
q-RACGAP1-R	CAGCCAGAGATCCTATACAGGC		
q-CKS2-F	GAGGAGACTTGGTGTCCAACAG		
q-CKS2-R	GATTTGACGATCCCCAGATAAACT		
q-CCNA2-F	CTCTACACAGTCACGGGACAAAG		
q-CCNA2-R	CTGTGGTGCTTTGAGGTAGGTC		
q-CCNB-F	GACCTGTGTCAGGCTTTCTCTG		
q-CCNB-R	GGTATTTTGGTCTGACTGCTTGC		
q-CCND1-F	TCTACACCGACAACTCCATCCG		
q-CCND1-R	TCTGGCATTTTGGAGAGGAAGTG		
q-CCND2-F	GAGAAGCTGTCTCTGATCCGCA		
q-CCND2-R	CTTCCAGTTGCGATCATCGACG		
q-CDK2-F	ATGGATGCCTCTGCTCTCACTG		
q-CDK2-R	CCCGATGAGAATGGCAGAAAGC		
q-E2F2-F	CTCTCTGAGCTTCAAGCACCTG		
q-E2F2-R	CTTGACGGCAATCACTGTCTGC		
FBXW7-F	GTAATTCTAGGCGATCGCTCGAGTCAGTG	Primers fo	or
	GTGCAGGATGTTGG	luciferase	
FBXW7-R	TTTTATTGCGGCCAGCGGCCGCGCCCAAT	reporter assay	
	GACCACTGGAGAA		
BTG2-F	GTAATTCTAGGCGATCGCTCGAGTGCTAGT		

	GCTGCTTTGTGTG	
BTG2-R	TTTTATTGCGGCCAGCGGCCGCCATCCTGG	
	CCAAATGCCCTA	
RECK-F	GTAATTCTAGGCGATCGCTCGAG	
	GTGCTGATGTAGCATGCTTGT	
RECK-R	TTTTATTGCGGCCAGCGGCCGC	
	GGAAGGCCTGAAGCTCTCTC	
LATS2-F	CCGCTCGAGTACTGACAGACTGCCCACAC	
LATS2-R	GAATGCGGCCGCAGAGCGCTGTGAGTAAC	
	AACA	
CDKN1C-F	GTAATTCTAGGCGATCGCTCGAG	
	CGGTGAGCCAATTTAGAGCC	
CDKN1C-R	TTTTATTGCGGCCAGCGGCCGC	
	ATAACCGAGCTAGTGCGTGG	
MT-FBXW7-F	CACGTTAAATTTCTTTATTTTCTTCTCCAG	
MT-FBXW7-R	CTGGTTTGATTTAGAAAGTCTC	
MT1-BTG2-F	ACATTGAATGCCCCCTGGGTCCCAGGA	
MT1-BTG2-R	AGTGACTGAGAACTCTTGTCC	
MT2-BTG2-F	ACATTGAATATACTGTTGTGGGTTGGA	
MT2-BTG2-R	AAGTCTACGACAAATTTGGA	
hsa-miR-25-3p	5'-CAUUGCACUUGUCUCGGUCUGA-3'	Oligonucleotide
mimics	5'-AGACCGAGACAAGUGCAAUGUU-3'	sequences of
mimic negative	5'-UUCUCCGAACGUGUCACGUTT-3'	microRNA
control	5'-ACGUGACACGUUCGGAGAATT-3'	mimics and
siFBXW7	5'-CCAAUUGUGUAGACGAUAUAC-3'	siRNA
	5'-GUAUAUCGUCUACACAAUUGG-3'	
siBTG2	5'-GGUCAUAGAGCUACCGUAUTT-3'	
	5'-AUACGGUAGCUCUAUGACCTT-3'	
siNC	5'-UUCUCCGAACGUGUCACGUTT-3'	
	5'-ACGUGACACGUUCGGAGAATT-3'	