

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Variation of effect estimates in the analysis of mortality and length of hospital stay in patients with infections caused by bacteria producing extended-spectrum beta-lactamases: a systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-030266
Article Type:	Research
Date Submitted by the Author:	07-Mar-2019
Complete List of Authors:	Shamsrizi, Parichehr; University Hospital Tubingen Department of Internal Medicine I Gastroenterology Hepatology and Infectious Diseases, Division of Infectious Disease Gladstone, Beryl Primrose ; University Hospital Tubingen Department of Internal Medicine I Gastroenterology Hepatology and Infectious Diseases, Division of Infectious Disease Carrara, Elena; Integrated University Hospital of Verona, Division of Infectious Disease, Department of Diagnostic and Public Health Luise, Dora; Integrated University Hospital of Verona, Division of Infectious Disease, Department of Diagnostic and Public Health Cona, Andrea; ASST Santi Paolo e Carlo, Clinic of Infectious and Tropical Diseases, Department of Health Sciences Bovo, Chiara; Integrated University Hospital of Verona, Medical Direction Tacconelli, Evelina; University Hospital Tubingen Department of Internal Medicine I Gastroenterology Hepatology and Infectious Diseases, Division of Infectious Disease; Integrated University Hospital of Verona, Medical Direction Tacconelli, Evelina; University Hospital Tubingen Department of Internal Medicine I Gastroenterology Hepatology and Infectious Diseases, Division of Infectious Disease; Integrated University Hospital of Verona, Division of Infectious Disease, Department of Diagnostic and Public Health
Keywords:	Extended-spectrum beta-lactamase, mortality, bloodstream infection, length of stay, meta-analysis, systematic review

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 Variation of effect estimates in the analysis of mortality and length of hospital stay in patients with infections caused by bacteria producing extended-spectrum betalactamases: a systematic review and meta-analysis

AUTHORS:

Parichehr Shamsrizi¹, Beryl Primrose Gladstone¹, Elena Carrara², Dora Luise², Andrea Cona³, Chiara Bovo⁴, Evelina Tacconelli^{1,2}

AFFILIATIONS:

- 1) Division of Infectious Disease, Department of Internal Medicine I, DZIF Partner site, Tübingen University Hospital, Tübingen, Germany
- 2) Division of Infectious Disease, Department of Diagnostic and Public Health, University Hospital of Verona, Verona, Italy
- Clinic of Infectious and Tropical Diseases, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy.
- 4) Medical Direction, University Hospital of Verona, Verona, Italy

CORRESPONDING AUTHOR: Elena Carrara, MD

Address: Division of Infectious Disease, Department of Diagnostic and Public Health, University Hospital of Verona, Verona, Italy

Piazzale L.A. Scuro 10, Dipartimento di Malattie Infettive, Policlinico Borgo Roma, 37100 Verona, Italy.

Phone number: +39 3339566252

Email: elena.carrara@univr.it

WORD COUNT: 2372

ABSTRACT

Objective To assess the variation of effect estimates in the analysis of mortality and length of stay (LOS) in patients with infections caused by extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae.

Design Systematic review and meta-analysis

Methods Literature search for clinical studies from 1 January 1960 to 1 October 2018 was conducted in PubMed. Primary outcomes were risk ratios (RRs) of all-cause and attributable mortality and weighted mean differences (WMDs) in LOS in patients with bloodstream infections (BSIs) and non-invasive infections. Any change in the effect estimates was assessed by grouping studies according to design, setting, economy-based country classification, reporting period, microbiological aetiology, infection type, and adjustment for appropriateness of empirical treatment. The impact of ESBL production was calculated using random effect meta-analysis and heterogeneity was evaluated by I² statistics.

Results Eighty-four studies including 22,030 patients and 149 outcome measures were included in the meta-analysis. Most studies were retrospective cohorts from high-income countries, providing unadjusted estimates. ESBL production in patients with BSIs (56 studies) increased the RR for all-cause mortality by a factor of 1.70 (95% CI: 1.52-1.90; p<0.001), attributable mortality (16 studies) by 1.75 (95% CI: 1.448-2.108; p<0.001), and WMD in the intensive care unit by 3.07 days (95% CI: 1.61-4.54; p<0.001). WMD in hospital LOS was significantly higher in BSIs (4.41 days; 95% CI: 3.37-5.46; p<0.001) and non-invasive infections (2.19 days; 95% CI: 1.56-2.81; p<0.001). Subgroup analyses showed variation of estimates by study design, population, strain, and assessment of appropriateness of empiric treatment. High heterogeneity was observed in all analyses.

Conclusions Current evidence of the clinical burden of infections caused by ESBL-producing bacteria is highly heterogeneous and based mainly on unadjusted estimates derived from retrospective studies. Despite these limitations, ESBL production in strains causing BSIs seems associated with higher all-cause and attributable mortality and longer hospitalisation.

KEYWORDS

Extended-spectrum beta-lactamase, mortality, bloodstream infection, length of stay, metaanalysis, systematic review

STRENGTHS AND LIMITATIONS OF THIS STUDY

- Evidence of the impact of ESBL production on mortality and length of stay in strains causing invasive and non-invasive infections was collected systematically.
- Effect of multiple epidemiological and clinical variables was assessed in the calculation of estimates.
- Heterogeneity among studies was assessed.
- Only few studies had been performed in high-risk populations or low-income countries.

to beet teries only

INTRODUCTION

Infections caused by extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae are responsible for high morbidity and mortality worldwide.^{1,2,3} The 2018 World Health Organization list of antibiotic-resistant pathogens identified mortality as the most important criteria to prioritise bacteria for research and development of new, effective antibiotics.¹ In this prioritisation exercise, ESBL-producing Enterobacteriaceae were designated a critical priority because of their high all-cause mortality and high prevalence globally in healthcare-associated and community-acquired infections. The incidence and attributable mortality of multidrug-resistant bacterial infections, including ESBL-producing Enterobacteriaceae, in European countries has been recently estimated using a modelling analysis.⁴ In 2015 ESBL-producing *Escherichia coli* was responsible for almost 300,000 infections in Europe and 9,000 attributable deaths, and ESBL-producing Klebsiella pneumoniae caused around 70,000 infections and more than 3,500 deaths. The major limitation of this analysis is the sparseness of evidence on mortality due to ESBL-producing bacteria, which was limited largely to studies conducted in high-income countries.

Two systematic reviews have been performed to define the impact of ESBL production on mortality due to Enterobacteriaceae.^{2,3} Both meta-analyses included studies targeting bloodstream infections (BSIs) and showed doubling all-cause mortality for ESBL-associated bacteraemia compared to non-ESBL Enterobacteriaceae bacteraemia. A major drawback of the analyses, highlighted by the authors, was the lack of control for confounding and limited adjustment for empiric therapy. No systematic review has been performed to assess attributable mortality and other indicators of clinical impact such as length of stay (LOS).

Because estimates of clinical burden drive policy design for antibiotic stewardship and infection control interventions, precise and current estimates are essential. The objective of this systematic review and meta-analysis was to assess the variation of effect estimates in the analysis of mortality and LOS in patients with infections due to ESBL-producing Enterobacteriaceae.

METHODS

Literature search strategy

The search was performed by 2 researchers (BPG and PS) in PubMed on 05 October 2018 using the following search string: (ESBL AND Escherichia coli AND mortality" OR "ESBL AND Klebsiella pneumoniae AND mortality) OR (ESBL AND Escherichia coli AND length

BMJ Open

of stay OR length of hospitalisation) OR (ESBL AND Klebsiella pneumoniae AND length of stay OR length of hospitalisation). Reference lists of retrieved articles were also searched.

Eligibility criteria

We included all clinical studies with a comparison group assessing all-cause mortality, attributable mortality, and overall LOS and intensive care unit stay (ICU) LOS in hospitalised patients with ESBL infections. Studies published from 1 January 1960 to 1 October 2018 irrespective of the clinical setting and study design were included. The search was restricted to English language publications. Diagnostic studies, reviews, case reports, non-clinical studies, and abstracts of conference presentations were not included.

Data extraction

Two reviewers (PS and BPG) independently assessed the eligibility of trials and extracted data. In case of disagreement, a third reviewer (DL) was consulted. Extracted data were collected in an electronic worksheet, using EpiInfo 7.1: authors, journal, country, year of publication, year of study, time of data collection, study design, comparison group, study setting, population, aetiology, type and site of infection, and raw data related to mortality and LOS/ICU-LOS. Countries were classified as high-, middle-, or low-income using the World Bank Atlas method.⁵ Adjusted effect estimates such as odds ratios (ORs) or hazard ratios and quality indicators such as reporting of antibiotic therapy, appropriateness of empirical treatment, resistance mechanisms, and minimum inhibitory concentrations (MICs) were also extracted.

Mortality data were extracted as all-cause mortality or attributable mortality as defined in the studies. Where available, prespecified time periods for mortality assessment (i.e., 14 days, 28 days, in-hospital) were also extracted. LOS and ICU-LOS were extracted as days with mean and standard deviation or median and interquartile range.

Data analysis

The primary outcomes for the clinical impact of ESBL infections were RRs of all-cause and attributable mortality and the weighted mean difference (WMD) in LOS and ICU-LOS in patients with ESBL infections compared with those in patients with non-ESBL infections and, where available, with uninfected patients. The impact of ESBL production on attributable and all-cause mortality was calculated with random effect meta-analysis and expressed as RR with 95% confidence interval (CI). WMD in days with 95% CI was calculated to express the excess in LOS and ICU-LOS. Analysis of mortality focused on BSIs while LOS was

determined for BSIs and non-invasive infections (i.e., urinary tract infections, respiratory tract infections, surgical site infection).

Variation of the effect estimate was assessed by grouping the studies according to the following confounders: mortality time assessment (7 vs 14 days), aetiology (*E. coli* vs *K. pneumoniae*), clinical setting (paediatric, oncology, ICU), economic country areas (high-income countries [HICs] vs low- and medium-income countries [LMICs]), study design, assessment of empiric therapy, and year. Subgroup analysis was computed only if more than 2 studies were available for each group. Heterogeneity was evaluated by using I² statistics. Overall significance testing was carried out using Wald tests adjusted using the Bonferroni correction. The unadjusted ORs were compared with the adjusted ORs to estimate the effect of adjustment. Reporting and publication bias was presented in funnel plots (supplementary and tested by Egger's test. Statistical analyses were performed using Stata version 15. All meta-analyses were performed in accordance with the Cochrane Collaboration recommendations⁶ and reported according to the PRISMA statement.⁷

The protocol is available online.

(https://im1-tuebingen.de/wp

content/uploads/2019/03/ClinicalImpactAMR SR studyprotocol 2018.pdf)

Patient and Public Involvement

There was no patient or public involvement in this systematic review of published literature.

RESULTS

Our literature search identified 1006 studies, and 92 (9.2%) met the eligibility criteria on the basis of abstract screening. Full-text screening excluded an additional 5 articles, providing an evidence base of 87 studies (Figure 1).⁸⁻⁹⁴ The 87 studies included in the qualitative analysis were conducted between 1991 and 2017 in 25 countries, mainly in South Korea (14 studies), Thailand (7), USA (7), Taiwan (7), and Spain (7). Sixty (68.9%) studies were performed in HICs, 26 (29.9%) in LMICs, and 1 included both HICs and LMICs.⁵⁴ About half (44, 50.6%) were retrospective cohort studies, 24 (27.6%) case cohort studies, and 18 (20.7%) prospective cohort studies; 1 study had an interventional design.⁵⁵ The comparison group was patients with infections caused by gram-negative non-ESBL producers in 82 (94.3%) studies, non-infected patients in 2 (2.3%), and both control groups in 3 (3.5%). Most (57, 65.5%) studies included data from the entire hospital, while a few focused on specific settings, mainly ICUs (9, 10.3%) and paediatric wards (8, 9.2%). The most common ESBL-producing bacteria were

E. coli (23, 26.4%) and *K. pneumoniae* (17, 19.5%). An overview of study characteristics is provided in online supplementary table S1.

Because data in 3 studies ^{20,59,85} were insufficient for quantitative analysis, 84 (96.6%) studies were included in the meta-analysis analysing data from 22,030 patients and 149 outcome measures. Fifty-seven studies analysed BSIs and 10 non-invasive infections. Study characteristics for all studies are provided in online supplementary table S2.

All-cause mortality

All-cause mortality was reported in 81 studies including 21,942 patients. ESBL production in patients with BSIs increased all-cause mortality by a factor of 1.70 (95% CI: 1.52-1.90; p<0.001; I²=45.3%). The RR increased over time from 1.56 (95% CI: 1.15-2.11; p=0.004) in 1991-1999 to 1.74 (95% CI: 1.50-2.01; p<0.001) in 2000-2009, and it was stable in 2010-2018 (1.72, 95% CI: 1.39-2.13; p<0.001). The RR was higher in studies assessing appropriateness of empiric therapy (RR=1.75; 95% CI 1.54-1.99; p<0.001) than in those that did not (RR=1.55; 95% CI 1.26-1.90; p<0.001). The subgroup analysis by pathogen showed that ESBL production increased the RR in BSIs due to E. coli (RR=1.82; 95% CI: 1.50-2.21; p<0.001) compared to those due to K. pneumoniae (RR=1.48; 95% CI: 1.17-1.87; p=0.001). Stratification by population age showed an higher RR in paediatric population (RR=2.09; 95% CI: 1.62-2.71; p<0.001). Effect estimates did not vary significantly by study country, mortality time assessment (14 vs 28 days), ESBL molecular resistance mechanisms, or study design (Figure 2 and online supplementary figure S1). Adjusted estimates for inappropriate empirical antibiotic therapy were provided for 14 studies. The pooled unadjusted OR for allcause mortality was 2.91 (95% CI: 2.23-3.81; p<0.001, I²=27.1%; p=0.164) and the pooled OR after adjusting for receipt of appropriate empirical treatment was 3.22 (95% CI: 1.53-6.76; p=0.002; I²=87.5%; p<0.001).

Attributable mortality

Attributable mortality was analysed in 16 studies including 2,885 patients. All studies were performed in HICs. ESBL production in patients with BSIs increased the risk of attributable mortality by a factor of 1.75 (95% CI: 1.45-2.11; p<0.001; I²⁼0%). The RR increased over time from 1.53 (95% CI: 1.10-2.12; p=0.011) in 1991-1999 to 1.91 (95% CI: 1.43-2.54; p<0.001) in 2000-2009 (Figure 3). Pathogen-specific RR for attributable mortality was 1.60 (95% CI: 1.18-2.15; p=0.002) for *K. pneumoniae* and 1.76 (95% CI: 1.33-2.34; p<0.001) when the gram-negative organisms were analysed all together without species differentiation.

The subgroup analysis showed the RR was lower in case cohort studies (1.56; 95% CI: 1.09-2.25; p=0.016) than in cohort studies (1.80; 95% CI: 1.37-2.37; p<0.001).

Length of stay

 LOS data were provided in 37 studies (17 on BSIs and 8 on non-invasive infections) analysing 38 outcome measures. The WMD of LOS in patients with BSIs was 4.41 days (95% CI: 3.37-5.46; p<0.001) and decreased from 5.72 days (95% CI: 2.69-8.75; p<0.001) in 1991-1999 to 4.22 days (95% CI: 3.02-5.43; p<0.001) in 2000-2009 and was stable up to 2018 (4.30 days; 95% CI: 1.38-7.22; p=0,004). Higher WMD (p<0.001) was observed for BSIs due to *K. pneumoniae* (7.67 days; 4.63-10.71) than for those due to *E. coli* (6.07 days; 95% CI: 3.71-8.43). Retrospective cohort studies reported higher (p<0.001) WMD (6.43 days; 95% CI: 4.66-8.21; p<0.001) than case cohort studies (3.32 days; 95% CI: 2.03-4.61). Studies in HICs showed higher WMD (4.56 days; 95% CI 3.43-5.70; p<0.001) than studies in LMICs (3.55 days; 95% CI 0.84-6.26; p=0.01) (Figure 4).

Studies with non-invasive infections reported a WMD of 2.19 days (95% CI: 1.56-2.81; p<0.001), which decreased from 7.66 (95% CI: 5.83-9.46; p<0.001) in 2000-2009 to 1.44 (95% CI: 0.77-2.10; p<0.001) in 2010-2018 (online supplementary figure S3).

The data on ICU-LOS were provided in 7 studies and showed that BSIs caused by ESBL producers had a WMD of LOS of 3.07 days (95% CI: 1.61-4.54; p<0.001).

Egger's test and the funnel plots (online supplementary figure S4 and S5) showed evidence for small study effects (p<0.001) and publication bias.

DISCUSSION

This systematic review shows that ESBL production has a significant impact on the most relevant patient-related clinical outcomes. In the subgroup analyses, all-cause mortality, attributable mortality, and LOS both in hospital and in ICU were higher for patients with BSIs due to ESBL-producing Enterobacteriaceae than for patients with BSIs due to non-ESBL-producing strains. Non-invasive infections caused by ESBL-producing strains were associated with prolonged LOS. Within the limitation of the low number of studies evaluating specific patient populations, paediatric and cancer patients seemed to suffer a higher impact of ESBL invasive infections than the overall population. Stratifying by pathogen type, the impact of ESBL production was higher for *E. coli* BSIs than for *K. pneumoniae* BSIs. No relevant differences in mortality analysis emerged with stratification by study design or country income level. Impact of ESBL infections on mortality became more evident in more recent

BMJ Open

studies. Studies reporting on appropriateness of empirical therapy, ESBL resistance mechanisms, and MICs showed a higher clinical impact of ESBL infections than studies not assessing these variables. In particular, pooled ORs adjusted for inappropriate empirical treatment, showed a remarkably higher OR for mortality in patients with ESBL infections.

Our findings confirm the results of previous systematic reviews. Schwaber et al. performed a systematic review comparing mortality in ESBL BSIs and non-ESBL BSIs in studies published through 2003.² The authors show a pooled RR for all-cause mortality of 1.85 but, in contrast to our study, they combined E. coli, Klebsiella spp., and Proteus spp. in the analysis because of sample size limitations. Rottier et al. analysed studies published through 2010 and adjusting results for inappropriate empirical treatment found an adjusted OR of 1.37.³ Our study, adding more than 50 studies in 17 years to the Rottier systematic review, confirmed the clinical importance of ESBL production to all-cause mortality and for the first time assessed the role of ESBL production on attributable mortality. We addressed relevant confounders through subgroup analyses and found that population, pathogen, and assessment of empiric therapy all had an impact on estimates. Because we believe that appropriate empirical treatment plays a relevant role in invasive infections, we performed a secondary analysis by pooling only adjusted ORs and confirming the significant impact of antibiotic resistance as already shown in a previously published systematic review.⁹⁵ The impact of ESBL production on LOS has been also estimated, assessing BSIs and non-invasive infections separately and confirming the prolongation of hospitalisation.

Our study has some limitations. Although results of the meta-analyses were significant in all the subgroups, we could analyse only a limited number of studies providing information for subgroups such as haematological patients and low-income countries, making generalizability of results less certain for these specific patient populations. Only a few studies reported MIC data or specific ESBL molecular resistant phenotype (i.e., AmpC). Moreover, publication bias was detected in both the main analyses (all-cause mortality and LOS), thus implying the possibility that results from small studies with non-significant results might have been conducted and not published, resulting in a possible overestimation of our results. The non-homogeneous reporting of some relevant data in published literature (e.g., disease severity and underlying comorbidities) may also have affected the precision of the estimate. Patients with ESBL are intrinsically at higher risk of mortality and complications because they are often older, have more comorbidities or higher antibiotic exposure, and are at higher risk of receiving inappropriate empirical treatment.⁹⁶

In summary, our systematic review emphasises the importance of suspicion and confirmation of ESBL production as soon as possible for invasive infections and demonstrates that ESBL production increases the risk of attributable mortality and LOS in both hospital and ICU for invasive and non-invasive infections. Patients with ESBL infections remain at higher risk of mortality and prolonged LOS even after adjustment for empiric inappropriate treatment. Control for other relevant confounders is hindered by the sparseness of published data. Future studies addressing the clinical burden of drug-resistant infections must include ESBL production and should assess both the impact of molecular mechanisms of resistance and effect on specific patient populations such as haematological patients and those in LMIC.

Acknowledgements We thank Anne McDonough, a professional medical writer who provided medical writing support funded by the authors.

Author Contributions ET contributed to the study concept. BPG and PS performed data analysis. PS and AC extracted data and wrote the first draft of the manuscript. DL contributed to the first draft of the manuscript. EC and ET wrote the final version of the manuscript. CB reviewed the paper. All authors read, edited, and approved the final manuscript. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Funding This work was supported by the German Center for Infection Research Clinical Research Unit for Health-Care Associated Infections grant number TTU 08.701 and DRIVE-AB (115618). The funder had no involvement in the study design; in the collection, analysis and interpretation of the data; in the writing of the report; or in the decision to submit the paper for publication.

Competing interests The authors report no competing interests.

Patient consent Not required

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement Requests for data should be addressed to the corresponding author.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http:// creativecommons.org/ licenses/ by- nc/ 4. 0/.

REFERENCES

- Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. *Lancet Infect Dis* 2018;18:318–27.
- 2. Schwaber MJ, Carmeli Y. Mortality and delay in effective therapy associated with extended-spectrum beta-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. *J Antimicrob Chemother* 2007;60:913–20.
- Rottier WC, Ammerlaan HS, Bonten MJ. Effects of confounders and intermediates on the association of bacteraemia caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae and patient outcome: a meta-analysis. J Antimicrob Chemother 2012;67:1311–20.
- Cassini A, Högberg LD, Plachouras D, et al; Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. *Lancet Infect Dis* 2019;19:56–66.
- 5. The World Bank. What is the World Bank Atlas method? https://datahelpdesk.worldbank.org/knowledgebase/articles/77933-what-is-the-worldbank-atlas-method. Accessed January 14, 2019.
- Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from http://handbook.cochrane.org.
- 7. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ* 2009;339:b2535.
- Lautenbach E, Patel JB, Bilker WB, et al. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. *Clin Infect Dis* 2001;32:1162–71.
- Leistner R, Sakellariou C, Gurntke S, et al. Mortality and molecular epidemiology associated with extended-spectrum beta-lactamase production in Escherichia coli from bloodstream infection. *Infect Drug Resist* 2014;7:57–62.
- Lin JN, Chen YH, Chang LL, et al. Clinical characteristics and outcomes of patients with extended-spectrum beta-lactamase-producing bacteremias in the emergency department. *Intern Emerg Med* 2011;6:547–55.

BMJ Open

- 11. Kim HJ, Park JH, Park DI, et al. Clinical impact of extended-spectrum beta-lactamaseproducing Enterobacteriaceae in patients with biliary tract infection. *Dig Dis Sci* 2013;58:841–9.
- 12. Kim SH, Kwon JC, Choi SM, et al. Escherichia coli and Klebsiella pneumoniae bacteremia in patients with neutropenic fever: factors associated with extended-spectrum beta-lactamase production and its impact on outcome. *Ann Hematol* 2013;92:533–41.
- Pillay T, Pillay DG, Adhikari M, et al. Piperacillin/tazobactam in the treatment of Klebsiella pneumoniae infections in neonates. *Am J Perinatol* 1998;15:47–51.
- 14. Kim BN, Woo JH, Kim MN, et al. Clinical implications of extended-spectrum betalactamase-producing Klebsiella pneumoniae bacteraemia. *J Hosp Infect* 2002;52:99–106.
- 15. Kim YK, Pai H, Lee HJ, et al. Bloodstream infections by extended-spectrum betalactamase-producing Escherichia coli and Klebsiella pneumoniae in children: epidemiology and clinical outcome. *Antimicrob Agents Chemother* 2002;46:1481–91.
- 16. Bhavnani SM, Ambrose PG, Craig WA, et al. Outcomes evaluation of patients with ESBL- and non-ESBL-producing Escherichia coli and Klebsiella species as defined by CLSI reference methods: report from the SENTRY Antimicrobial Surveillance Program. *Diagn Microbiol Infect Dis* 2006;54:231–6.
- Blomberg B, Jureen R, Manji KP, et al. High rate of fatal cases of pediatric septicemia caused by gram-negative bacteria with extended-spectrum beta-lactamases in Dar es Salaam, Tanzania. *J Clin Microbiol* 2005;43:745–9.
- Panhotra BR, Saxena AK, Al-Ghamdi AM. Extended-spectrum beta-lactamase-producing Klebsiella pneumoniae hospital acquired bacteremia. Risk factors and clinical outcome. *Saudi Med J* 2004;25:1871–6.
- 19. Marra AR, Wey SB, Castelo A, et al. Nosocomial bloodstream infections caused by Klebsiella pneumoniae: impact of extended-spectrum beta-lactamase (ESBL) production on clinical outcome in a hospital with high ESBL prevalence. *BMC Infect Dis* 2006;6:24.
- 20. Skippen I, Shemko M, Turton J, et al. Epidemiology of infections caused by extendedspectrum beta-lactamase-producing Escherichia coli and Klebsiella spp.: a nested casecontrol study from a tertiary hospital in London. *J Hosp Infect* 2006;64:115–23.
- 21. Schwaber MJ, Navon-Venezia S, Kaye KS, et al. Clinical and economic impact of bacteremia with extended-spectrum-beta-lactamase-producing Enterobacteriaceae. *Antimicrob Agents Chemother* 2006;50:1257–62.

- 22. Apisarnthanarak A, Kiratisin P, Saifon P, et al. Clinical and molecular epidemiology of community-onset, extended-spectrum beta-lactamase-producing Escherichia coli infections in Thailand: a case-case-control study. *Am J Infect Control* 2007;35:606–12.
- 23. Tumbarello M, Spanu T, Sanguinetti M, et al. Bloodstream infections caused by extendedspectrum-beta-lactamase-producing Klebsiella pneumoniae: risk factors, molecular epidemiology, and clinical outcome. *Antimicrob Agents Chemother* 2006;50:498–504.
- 24. Apisarnthanarak A, Kiratisin P, Saifon P, et al. Risk factors for and outcomes of healthcare-associated infection due to extended-spectrum beta-lactamase-producing Escherichia coli or Klebsiella pneumoniae in Thailand. *Infect Control Hosp Epidemiol* 2007;28:873–6. doi: 10.1086/518725
- 25. Kanafani ZA, Mehio-Sibai A, Araj GF, et al. Epidemiology and risk factors for extendedspectrum beta-lactamase-producing organisms: a case control study at a tertiary care center in Lebanon. *Am J Infect Control* 2005;33:326–32.
- 26. Zaoutis TE, Goyal M, Chu JH, et al. Risk factors for and outcomes of bloodstream infection caused by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species in children. *Pediatrics* 2005;115:942–9.
- 27. Loh LC, Nor Izran Hanim Bt Abdul S, Rosdara Masayuni Bt Mohd S, et al. Hospital Outcomes of Adult Respiratory Tract Infections with Extended-Spectrum B-Lactamase (ESBL) Producing Klebsiella Pneumoniae. *Malays J Med Sci* 2007;14:36–40.
- Melzer M, Petersen I. Mortality following bacteraemic infection caused by extended spectrum beta-lactamase (ESBL) producing E. coli compared to non-ESBL producing E. coli. *J Infect* 2007;55:254–9. doi: 10.1016/j.jinf.2007.04.007
- 29. Song KH, Jeon JH, Park WB, et al. Clinical outcomes of spontaneous bacterial peritonitis due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species: a retrospective matched case-control study. *BMC Infect Dis* 2009;9:41.
- 30. Bennett JW, Robertson JL, Hospenthal DR, et al. Impact of extended spectrum betalactamase producing Klebsiella pneumoniae infections in severely burned patients. J Am Coll Surg 2010;211:391–9.
- 31. Trecarichi EM, Tumbarello M, Spanu T, et al. Incidence and clinical impact of extendedspectrum-beta-lactamase (ESBL) production and fluoroquinolone resistance in bloodstream infections caused by Escherichia coli in patients with hematological malignancies. *J Infect* 2009;58:299–307.
- 32. Tuon FF, Kruger M, Terreri M, et al. Klebsiella ESBL bacteremia-mortality and risk factors. *Braz J Infect Dis* 2011;15:594–8.

BMJ Open

- 33. Kang CI, Song JH, Chung DR, et al. Risk factors and treatment outcomes of communityonset bacteraemia caused by extended-spectrum beta-lactamase-producing Escherichia coli. *Int J Antimicrob Agents* 2010;36:284–7.
 - 34. Pena C, Gudiol C, Calatayud L, et al. Infections due to Escherichia coli producing extended-spectrum beta-lactamase among hospitalised patients: factors influencing mortality. J Hosp Infect 2008;68:116–22.
 - 35. Tumbarello M, Spanu T, Di Bidino R, et al. Costs of bloodstream infections caused by Escherichia coli and influence of extended-spectrum-beta-lactamase production and inadequate initial antibiotic therapy. *Antimicrob Agents Chemother* 2010;54:4085–91.
 - 36. Kang CI, Chung DR, Ko KS, et al. Risk factors for infection and treatment outcome of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae bacteremia in patients with hematologic malignancy. *Ann Hematol* 2012;91:115–21.
 - 37. Wu YH, Chen PL, Hung YP, et al. Risk factors and clinical impact of levofloxacin or cefazolin nonsusceptibility or ESBL production among uropathogens in adults with community-onset urinary tract infections. *J Microbiol Immunol Infect* 2014;47:197–203.
- Rodriguez-Bano J, Picon E, Gijon P, et al. Community-onset bacteremia due to extendedspectrum beta-lactamase-producing Escherichia coli: risk factors and prognosis. *Clin Infect Dis* 2010;50:40–8.
- 39. Gurntke S, Kohler C, Steinmetz I, et al. Molecular epidemiology of extended-spectrum beta-lactamase (ESBL)-positive Klebsiella pneumoniae from bloodstream infections and risk factors for mortality. *J Infect Chemother* 2014;20:817–9.
- 40. Oh MM, Chae JY, Kim JW, et al. Positive culture for extended-spectrum beta-lactamase during acute prostatitis after prostate biopsy is a risk factor for progression to chronic prostatitis. *Urology* 2013;81:1209–12.
- 41. Leistner R, Gurntke S, Sakellariou C, et al. Bloodstream infection due to extendedspectrum beta-lactamase (ESBL)-positive K. pneumoniae and E. coli: an analysis of the disease burden in a large cohort. *Infection* 2014;42:991–7.
- 42. Ku NS, Chung HS, Choi JY, et al. Clinical usefulness of the 2010 clinical and laboratory standards institute revised breakpoints for cephalosporin use in the treatment of bacteremia caused by Escherichia coli or Klebsiella spp. *Biomed Res Int* 2015;2015:831074.
- 43. Anunnatsiri S, Towiwat P, Chaimanee P. Risk factors and clinical outcomes of extended spectrum beta-lactamase (ESBL)-producing Escherichia coli septicemia at Srinagarind

University Hospital, Thailand. *Southeast Asian J Trop Med Public Health* 2012;43:1169–77.

- 44. Kang CI, Kim SH, Kim DM, et al. Risk factors for and clinical outcomes of bloodstream infections caused by extended-spectrum beta-lactamase-producing Klebsiella pneumoniae. *Infect Control Hosp Epidemiol* 2004;25:860–7.
- 45. Raviv Y, Shitrit D, Amital A, et al. Multidrug-resistant Klebsiella pneumoniae acquisition in lung transplant recipients. *Clin Transplant* 2012;26:E388–94.
- 46. MacVane SH, Tuttle LO, Nicolau DP. Impact of extended-spectrum beta-lactamaseproducing organisms on clinical and economic outcomes in patients with urinary tract infection. *J Hosp Med* 2014;9:232–8.
- 47. Abhilash KP, Veeraraghavan B, Abraham OC. Epidemiology and outcome of bacteremia caused by extended spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella spp. in a tertiary care teaching hospital in south India. *J Assoc Physicians India* 2010;58 Suppl:13-7.
- 48. Shanthi M, Sekar U. Extended spectrum beta lactamase producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. J Assoc Physicians India 2010;58 Suppl:41–4.
- 49. Han SB, Jung SW, Bae EY, et al. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae bacteremia in febrile neutropenic children. *Microb Drug Resist* 2015;21:244–51.
- 50. Lee S, Song DY, Cho SH, et al. Impact of extended-spectrum beta-lactamase on acute pyelonephritis treated with empirical ceftriaxone. *Microb Drug Resist* 2014;20:39–44.
- 51. Chayakulkeeree M, Junsriwong P, Keerasuntonpong A, et al. Epidemiology of extendedspectrum beta-lactamase producing gram-negative bacilli at Siriraj Hospital, Thailand, 2003. Southeast Asian J Trop Med Public Health 2005;36:1503–9.
- Apisarnthanarak A, Kiratisin P, Mundy LM. Predictors of mortality from communityonset bloodstream infections due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. *Infect Control Hosp Epidemiol* 2008;29:671– 4.
- 53. Apisarnthanarak A, Kiratisin P, Saifon P, et al. Predictors of mortality among patients with community-onset infection due to extended-spectrum beta-lactamase-producing Escherichia coli in Thailand. *Infect Control Hosp Epidemiol* 2008;29:80–2.

BMJ Open

- 54. Jean SS, Ko WC, Xie Y, et al. Clinical characteristics of patients with communityacquired complicated intra-abdominal infections: a prospective, multicentre, observational study. *Int J Antimicrob Agents* 2014;44:222–8.
 - 55. Lee J, Pai H, Kim YK, et al. Control of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a children's hospital by changing antimicrobial agent usage policy. *J Antimicrob Chemother* 2007;60:629–37.
 - 56. Briongos-Figuero LS, Gomez-Traveso T, Bachiller-Luque P, et al. Epidemiology, risk factors and comorbidity for urinary tract infections caused by extended-spectrum betalactamase (ESBL)-producing enterobacteria. *Int J Clin Pract* 2012;66:891–6.
 - 57. Ha YE, Kang CI, Cha MK, et al. Epidemiology and clinical outcomes of bloodstream infections caused by extended-spectrum beta-lactamase-producing Escherichia coli in patients with cancer. *Int J Antimicrob Agents* 2013;42:403–9.
 - 58. Du B, Long Y, Liu H, et al. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae bloodstream infection: risk factors and clinical outcome. *Intensive Care Med* 2002;28:1718–23.
- 59. Stone PW, Gupta A, Loughrey M, et al. Attributable costs and length of stay of an extended-spectrum beta-lactamase-producing Klebsiella pneumoniae outbreak in a neonatal intensive care unit. *Infect Control Hosp Epidemiol* 2003;24:601–6.
- 60. Pena C, Pujol M, Ardanuy C, et al. An outbreak of hospital-acquired Klebsiella pneumoniae bacteraemia, including strains producing extended-spectrum beta-lactamase. *J Hosp Infect* 2001;47:53–9.
- 61. Kola A, Maciejewski O, Sohr D, et al. Clinical impact of infections caused by ESBLproducing E. coli and K. pneumoniae. *Scand J Infect Dis* 2007;39:975–82.
- 62. Tsai MH, Lee IT, Chu SM, et al. Clinical and Molecular Characteristics of Neonatal Extended-Spectrum beta-Lactamase-Producing Gram-Negative Bacteremia: A 12-Year Case-Control-Control Study of a Referral Center in Taiwan. *PLoS One* 2016;11(8):e0159744.
- 63. Maslikowska JA, Walker SA, Elligsen M, et al. Impact of infection with extendedspectrum beta-lactamase-producing Escherichia coli or Klebsiella species on outcome and hospitalization costs. *J Hosp Infect* 2016;92:33–41.
- 64. Onken A, Said AK, Jorstad M, et al. Prevalence and antimicrobial resistance of microbes causing bloodstream infections in Unguja, Zanzibar. *PLoS One* 2015;10:e0145632.
- 65. Nguyen ML, Toye B, Kanji S, et al. Risk factors for and outcomes of bacteremia caused by extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella species at a

Canadian tertiary care hospital. *Can J Hosp Pharm* 2015;68(2):136–43. [published Online First: 2015/05/13]

- 66. Denis B, Lafaurie M, Donay JL, et al. Prevalence, risk factors, and impact on clinical outcome of extended-spectrum beta-lactamase-producing Escherichia coli bacteraemia: a five-year study. Int *J Infect Dis* 2015;39:1–6.
- 67. Chopra T, Marchaim D, Johnson PC, et al. Risk factors for bloodstream infection caused by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: A focus on antimicrobials including cefepime. *Am J Infect Control* 2015;43:719–23.
- 68. Artero A, Esparcia A, Alberola J, et al. Prospective cohort study of risk factors for extended-spectrum ss-lactamase-producing Escherichia coli urinary tract infections in elderly patients admitted to hospital. *Int J Clin Pract* 2017;71:doi:10.1111/ijcp.13001
- 69. Chen IL, Huang HC, Wu CT, et al. Analysis of early-onset bloodstream infection due to Escherichia coli infection in premature babies. *Medicine* 2017;96:e7748.
- 70. Islas-Munoz B, Volkow-Fernandez P, Ibanes-Gutierrez C, et al. Bloodstream infections in cancer patients. Risk factors associated with mortality. *Int J Infect Dis* 2018;71:59–64.
- 71. Ma J, Li N, Liu Y, et al. Antimicrobial resistance patterns, clinical features, and risk factors for septic shock and death of nosocomial E coli bacteremia in adult patients with hematological disease: A monocenter retrospective study in China. *Medicine* 2017;96:e6959.
- 72. Man MY, Shum HP, Chan YH, et al. Clinical predictors and outcomes of Klebsiella pneumoniae bacteraemia in a regional hospital in Hong Kong. *J Hosp Infect* 2017;97:35–41.
- 73. Marando R, Seni J, Mirambo MM, et al. Predictors of the extended-spectrum-beta lactamases producing Enterobacteriaceae neonatal sepsis at a tertiary hospital, Tanzania. *Int J Med Microbiol* 2018;308:803–11.
- 74. Namikawa H, Yamada K, Fujimoto H, et al. Clinical characteristics of bacteremia caused by extended-spectrum beta-lactamase-producing Escherichia coli at a tertiary hospital. *Intern Med* 2017;56:1807–15.
- 75. Shi SH, Feng XN, Lai MC, et al. Biliary diseases as main causes of pyogenic liver abscess caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae. *Liver Int* 2017;37:727–34.

BMJ Open

- 76. Tanir Basaranoglu S, Ozsurekci Y, Aykac K, et al. A comparison of blood stream infections with extended spectrum beta-lactamase-producing and non-producing Klebsiella pneumoniae in pediatric patients. *Ital J Pediat* 2017;43:79.
- 77. Razazi K, Mekontso Dessap A, Carteaux G, et al. Frequency, associated factors and outcome of multi-drug-resistant intensive care unit-acquired pneumonia among patients colonized with extended-spectrum beta-lactamase-producing Enterobacteriaceae. *Ann Intensive Care* 2017;7:61.
- 78. Ray S, Anand D, Purwar S, et al. Association of high mortality with extended-spectrum beta-lactamase (ESBL) positive cultures in community acquired infections. *J Crit Care* 2018;44:255–60.
- 79. Haruki Y, Hagiya H, Haruki M, et al. Clinical characteristics and outcome of critically ill patients with bacteremia caused by extended-spectrum beta-lactamase-producing and non-producing Escherichia coli. *J Infect Chemother* 2018;24:944–7.
- Lin WT, Tang HJ, Lai CC, et al. Clinical manifestations and bacteriological features of culture-proven Gram-negative bacterial arthritis. J Microbiol Immunol Infect 2017;50:527–31.
- Buys H, Muloiwa R, Bamford C, et al. Klebsiella pneumoniae bloodstream infections at a South African children's hospital 2006-2011, a cross-sectional study. BMC Infect Dis 2016;16:570.
- Lee CC, Lee CH, Hong MY, et al. Propensity-matched analysis of the impact of extendedspectrum beta-lactamase production on adults with community-onset Escherichia coli, Klebsiella species, and Proteus mirabilis bacteremia. J Microbiol Immunol Infect 2018;51:519–26.
- 83. Huang YY, Alleyne A, Leung V, et al. Urosepsis due to extended-ppectrum betalactamase-producing Escherichia coli: a retrospective, single-centre review of risk Factors and clinical outcomes. *Can J Hosp Pharm* 2018;71:119-27.
- 84. Komatsu Y, Kasahara K, Inoue T, et al. Molecular epidemiology and clinical features of extended-spectrum beta-lactamase- or carbapenemase-producing Escherichia coli bacteremia in Japan. *PLoS One* 2018;13:e0202276.
- 85. Liu M, Li M, Wu L, et al. Extended-spectrum beta-lactamase-producing E. coli septicemia among rectal carriers in the ICU. *Medicine* 2018;97:e12445.
- 86. Nivesvivat T, Piyaraj P, Thunyaharn S, et al. Clinical epidemiology, risk factors and treatment outcomes of extended-spectrum beta-lactamase producing Enterobacteriaceae

bacteremia among children in a tertiary care hospital, Bangkok, Thailand. *BMC Res Notes* 2018;11:624.

- 87. Cordery RJ, Roberts CH, Cooper SJ, et al. Evaluation of risk factors for the acquisition of bloodstream infections with extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species in the intensive care unit; antibiotic management and clinical outcome. J Hosp Infect 2008;68:108–15.
- Daikos GL, Kosmidis C, Tassios PT, et al. Enterobacteriaceae bloodstream infections: presence of integrons, risk factors, and outcome. *Antimicrob Agents Chemother* 2007;51:2366–72. doi: 10.1128/AAC.00044-07 [published Online First: 2007/04/25]
- 89. Gudiol C, Calatayud L, Garcia-Vidal C, et al. Bacteraemia due to extended-spectrum betalactamase-producing Escherichia coli (ESBL-EC) in cancer patients: clinical features, risk factors, molecular epidemiology and outcome. *J Antimicrob Chemother* 2010;65(2):333– 41.
- 90. Marchaim D, Gottesman T, Schwartz O, et al. National multicenter study of predictors and outcomes of bacteremia upon hospital admission caused by Enterobacteriaceae producing extended-spectrum beta-lactamases. *Antimicrob Agents Chemother* 2010;54:5099–104.
- 91. Menashe G, Borer A, Yagupsky P, et al. Clinical significance and impact on mortality of extended-spectrum beta lactamase-producing Enterobacteriaceae isolates in nosocomial bacteremia. *Scand J Infect Dis* 2001;33:188–93.
- 92. Ortega M, Marco F, Soriano A, et al. Analysis of 4758 Escherichia coli bacteraemia episodes: predictive factors for isolation of an antibiotic-resistant strain and their impact on the outcome. *J Antimicrob Chemother* 2009;63:568–74.
- 93. Szilagyi E, Fuzi M, Borocz K, et al. Risk factors and outcomes for bloodstream infections with extended-spectrum beta-lactamase-producing Klebsiella pneumoniae ; Findings of the nosocomial surveillance system in Hungary. *Acta Microbiol Immunol Hung* 2009;56:251–62. doi:
- 94. Tsai SS, Huang JC, Chen ST, et al. Characteristics of Klebsiella pneumoniae bacteremia in community-acquired and nosocomial infections in diabetic patients. *Chang Gung Med J* 2010;33:532–9.
- 95. Carrara E, Pfeffer I, Zusman O, et al. Determinants of inappropriate empirical antibiotic treatment: systematic review and meta-analysis. *Int J Antimicrob Agents* 2018;51:548–53,
- 96. Gandra S, Barter DM, Laxminarayan R. Economic burden of antibiotic resistance: how much do we really know? *Clin Microbiol Infect* 2014;20:973–80.

FIGURE LEGENDS

Figure 1: Literature search and study inclusion and exclusion

Figure 2: Pooled risk ratios for all-cause mortality in patients with ESBL bloodstream infections compared to patients with non-ESBL bloodstream infections- subgroups not included in attributable mortality

Figure 3: Pooled risk ratios for attributable mortality in patients with ESBL bloodstream infections compared to patients with non-ESBL bloodstream infections

Figure 4: Weighted mean difference in the length of stay for patients with ESBL bloodstream infections compared to patients with non-ESBL bloodstream infections

mean dh...

			risk
Category	Ν		ratio (95% CI)
Overall			
Overall	56	+	1.70 (1.52, 1.9
Mortality time			
14 day mortality	5	│ — ◆ — —	1.77 (1.15, 2.7)
28 day mortality	22		1.63 (1.35, 1.9
Time not defined	27		1.70 (1.47, 1.9
Income classification			
High income countries	41		1.76 (1.54, 2.0
Low/middle income countries	15		1.56 (1.25, 1.9
Study population			
All kinds of patients	36	-	1.65 (1.43, 1.9
Cancer patients	5	│ ─ ←	1.73 (1.16, 2.5
Children	7		2.09 (1.62, 2.7
Neonates	3		1.76 (1.27, 2.4
Appropriateness of therapy			
Reported	44	-	1.75 (1.54, 1.9
Not reported	12		1.55 (1.26, 1.9

BMJ Open

Page 24 of 45

Category	Ν		ratio (95% CI)
Dverall			
Dverall	11		1.75 (1.45, 2.11)
Pathogen			
Klebsiella pneumoniae	4	 →	1.60 (1.18, 2.15)
Escherichia coli & Klebsiella pneumoniae	2		2.84 (1.34, 6.02)
Gram negative bacteria	5		1.76 (1.33, 2.34)
Study design			
Retrospective cohort studies	6		1.80 (1.37, 2.37)
Case cohort studies	3	-	1.56 (1.09, 2.25)
Study period			
/ears: 1991–1999	3	→	1.53 (1.10, 2.12)
/ears: 2000-2009	7		1.91 (1.43, 2.54)
ЛІС			
Reported	7		1.76 (1.37, 2.25)
Not reported	4	—	1.73 (1.20, 2.51)
Empirical therapy			
Reported	4	│ →──	1.76 (1.17, 2.64)
Not reported	3		1.76 (1.18, 2.63)

Page 25 of 45

BMJ Open

Category	Ν		Weighted mean difference (95% CI)
Setting			
Hospital	17	│	4.41 (3.37, 5.45)
ICU	4	── ◆──	3.07 (1.61, 4.54)
Definition			
Post infection	8	←	4.57 (2.95, 6.20)
Total	11		4.05 (2.89, 5.22)
Pathogen			
Klebsiella pneumoniae	3	←	→ 7.67 (4.63, 10.71)
Escherichia coli	4		- 6.07 (3.70, 8.43)
Escherichia coli & Klebsiella pneumoniae	5	_	- 6.37 (4.22, 8.52)
Gram negative bacteria	5	│ → ``	1.83 (0.28, 3.38)
Study design			
Betrospective cohort studies	9	_	6 43 (4 66 8 20)
Case cohort studies	7	· · · · · ·	3.32 (2.03, 4.61)
Income classification			
High income countries	13	· · · · · · · · · · · · · · · · · · ·	4.56 (3.43, 5.69)
Low/middle income countries	4	↓	3.55 (0.84, 6.26)
Continent			
Europe	6	│ •	7.96 (6.12, 9.80)
North America	3	· · · · · · · · · · · · · · · · · · ·	→ 6.39 (2.72, 10.05)
Asia	7	↓	2.08 (0.72, 3.44)
Study period			
Years: 1991–1999	2	──	5.72 (2.69, 8.75)
Years: 2000–2009	12	→	4.22 (3.02, 5.43)
Years: 2010–2018	3	→	4.30 (1.38, 7.22)
	-2	0 2 5	10
	_		
		Number of days of hospital stay	
For	peer review only - h	http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Supplementary table S1: Study characteristics overview

Subgroup	All Studies	Bloodstream infections	Noninvasive infections
	87	57	10
Country			
South Korea 11,12,14,15,29,33,36,40,42,44,49,50,55,57	14	9	2
Thailand ^{22,24,43,51-53,86}	7	3	
USA 8,16,26,30,46,59,67	7	2	1
Spain ^{34,38,56,60,68,89,92}	7	4	2
Taiwan 10,37,62,69,80,82,94	7	5	2
China 58,71,72,75,85	5	4	
Israel ^{21,45,90,91}	4	3	
Germany ^{9,39,41,61}	4	3	
Italy ^{23,31,35}	3	3	
Japan ^{74,79,84}	3	3	
Tanzania ^{17,64,73}	3	3	
India 47,48,78	3	1	1
Canada 63,65,83	3	2	
UK ^{20,28,87}	3	3	
France ^{66,77}	2	1	1
South Africa ^{13,81}	2	1	
Brazil ^{13,81}	2	2	
Greece ⁸⁸	1	1	
Hungary ⁹³	1	1	
Lebanon ²⁵	1	-	6
Malaysia ²⁷	1	-	1
Mexico ⁷⁰	1	1	
Saudi Arabia 18	1	1	
Turkey ⁷⁶	1	1	
Continent			
Asia 10-12,14,15,18,21,22,23,25,27,29,33,36,37,40,42-45,47-53,55,57,58,62,69,71,72,74,74,78-80,82,84-86,90,91,94	46	29	6
Europe 9,20,23,28,31,34,35,38,39,41,56,60,61,66,68,76,77,87-89,92,93	22	17	3
North America 8,16,26,30,46,59,63,65,67,83	10	4	1
Africa 13,17,64,73,81	5	4	-
South America 19,32,70	3	3	-
More than 1 continent ⁵⁴	1	-	-

Page 27 of 45	

BMJ Open

Income group			
High-income countries 8-12,14-16,18,20,21,23,26,28-31,34-42,44-46,49,50,55-57,59-63,65-69,74,77,79,80,82-84,87-94,	60	41	8
Low- and middle-income countries 13,17,19,22,24,25,27,32,43,48,51-53,58,64,70-73,75,76,78,81,85,86	26	16	2
High-income countries AND Low- and middle-income countries 54	1	-	-
Study design			
Case cohort study 8,10,22-26,29,38,42,44,53,56,59,61-63,65-67,83-85	24	14	
Retrospective cohort study 9,11-15,18,19,21,27,31-36,39-41,43,45,46,48-52,57,58,69,71,72,74-76,79-82,86,87,91,93,94	44	32	
Prospective cohort study 16,17,28,30,37,47,54,60,64,68,70,73,77,78,88-90,92	18	11	
Year group			
1991-1999 8,58,13,14,15,60,19,23,26,34,44,91,92	13	10	-
2000-2009 9-12,16-18,20-22,24,25,27-33,35-43,45,47-50,52,53,55,56,59,61,62,65-67,87-90,93,94	49	31	6
2010-2018 46,51,52,57,63,64,68-86	25	16	4
Pathogen			
Escherichia coli 9,22,28,31,33-35,38,41,43,50,53,56,57,66,68,69,71,74,84,85,89,92	23	16	3
Klebsiella pneumoniae 13,14,18,19,23,27,30,32,39,41,45,59,60,72,76,81,93,94	17	11	1
E. coli and K. pneumoniae 8,11,12,15,24,26,36,41,42,44,46,48,49,52,55,58,61,67,83,86,87	20	13	2
Gram-negative bacteria ^{10,16,17,20,21,25,29,37,40,47,51,54,62-65,70,73,75,77-80,82,88,90,91}	27	17	4
Study setting			
Entire hospital 8,9,14,16,18-25,27,28,31-36,38-44,46-48,50-53,56-58,60,63-67,71,72,74,80,83,84,88-94	57	40	7
Intensive care unit ^{30,59,62,73,77-79,86,87}	9	5	1
Pediatric ward 15,17,26,49,55,76,81,86	8	7	
Neonatal ward 13,59,62,69,73	5	3	
Neonatal intensive care unit ^{59,62,73}	3	2	-
Medical ward 11,37,68	3	-	2
Not provided ^{29,45}	2	-	-
Emergency Department 10,82	2	2	-
Surgical ward ^{30,54}	2	-	-
Burn unit ³⁰	1	-	-
Oncology ⁷⁰	1	1	-
Referral centre for hepatopacreaticobiliary diseases 75	1	-	-
Hemotological 12	1	1	-

		26	7
All kinds of patients of 11,12,10,10,20,21,20,22,50,57,57,41,44,40,40,50,54,50,56,00,01,05,00,71,05,00,74,60,60,50,55	55	36	/
Intensive care unit patients ^{30,77-79,85,87}	6	3	1
Children 15,17,26,49,55,76,81,86	8	7	-
Neonates 13,59,62,69,73	5	3	-
Cancer patients 31,49,57,70,89	5	5	-
Immunocompromised patients 49	1	1	-
Diabetic patients ⁹⁴	1	1	-
Elderly patients 68	1	-	1
Patients with chemotherapy/stem cell transplantation ^{12,89}	2	2	-
Patients after prostatitis biopsy 40	1	-	1
Lungs transplantation patients 45	1	-	-
Hematological patients ⁷¹	1	1	-
All except cardiothoracic therapy, transplant surgery, burns ⁷²	1	1	
Patients with pyogenic liver abscess 75	1	-	-
Data reported	\mathbf{Q}		
Treatment information 8,10-11,21-24,28-36,38,42-47,49,50,52-63,65,66,68-94	74	50	6
Appropriateness of treatment 8,10-12,14,15,17-19,21-24,28-36,38,42-44,46,47,49,50,52-54,56-58,60-63,65,66,68,70-72,74,75,77,79,81-84,87-94	62	45	5
Empirical therapy 12,14,15,22,23,31,33-36,38,42,49,50,54,56,57,61,74,79,81,92	22	16	2
Treatment outcome 8,10-19,23,24,28-36,38,42-47,49,50,52-55,57-63,65,66,70-72,74,76-79,81-84,86-90,92-94	64	45	3
Minimum inhibitory concentration results 8,9,11,12,14-17,20-23,25,26,30,31,33-39,41,42,45,48-50,52- 57,60,61,64,66,67,74-76,78,79,81,83-85,87,92,93	52	34	4
AmpC genotyping 8,9,15,30,39,44,48,54,55,63,64,68,84	13	6	2
			Y

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Pathogen

EC, KP

EC, KP

GNB

EC, KP

EC

GNB

EC, KP

EC

EC

EC, KP

	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective
Lautenbach E ⁸	1997- 1998	USA	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality; LOS	Risk factors for infection with ESBL-producing pathogens, difference in clinical outcomes of infections: resistant vs. susceptible organisms
∫yim SH ¹² 1 2 2	2007- 2008	South Korea	Cohort study, Retrospective	Non-ESBL-infection	Patients who received either chemotherapy or stem cell transplantation; neutropenic fever	Hematolo gical ward, Others	All-cause mortality (28 day)	Risk factors for acquisition of ESBL, appropriateness of empirical antimicrobial therapy, clinical outcomes in relation to ESBL production
∑ ∡Chayakulkeere M ⁵¹ 5	2015- 2015	Thailand	Cohort study, Retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Prevalence & risk factors for infections with & antibiotic susceptibility patterns of & outcomes of patients infected with ESBL-producing-GNB
Apisarnthanarak Ά ⁵² 8 9	2003- 2007	Thailand	Cohort study, Retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Predictors for mortality associated with community-onset BSI with ESBL-producing pathogens, initial empirical antimicrobial regimens, associated hospital resource utilisation,costs accrued after diagnosis of BSI
Qpisarnthanarak P ⁵³ 2	2003- 2004	Thailand	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Mortality associated with community-onset infection due to ESBL- producing pathogens, associated hospital resource use, post-infection hospital cost
3 _{ean SS⁵4} 4 5 6 7	2010- 2011	Portugal, Columbia, the Philippines, Taiwan, Thailand	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Surgical ward	Attributable mortality, LOS	Clinical impact on hospitalised patients with community-acquired complicated intra-abdominal infection: ESBL-producing- vs. non-ESBL- producing pathogens
о фее ^{ј55} О 1	1999- 2005	South Korea	interventional studies	Non-ESBL-infection	Children	Pediatric ward	All-cause mortality (28 day)	impact of a change in antibiotic policy on ESBL-prevalence
⊉riongos-Figuero 3S ⁵⁶	2009- 2010	Spain	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Characteristics & associated risk factors for EBSL-enterobacteria-UTIs
4 _{Ha YE⁵⁷ 5 6}	2010- 2012	South Korea	Cohort study, retrospective	Non-ESBL-infection	Patients with cancer	Entire hospital	All-cause mortality (28 day)	Clinical &molecular epidemiology of ESBL-EC bacteraemia, clinical impact of ESBLs on patient outcome
− Du B⁵8 8	1997- 1999	China	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Risk factors for nosocomial ESBL-EC- and ESBL-KP- bacteraemia & influence on patient outcome.

- 40
- 41
- 42
- 43
- 44 45
- 46

Page	30	of	45
------	----	----	----

	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Stone PW ⁵⁹	2001	USA	Case cohort study	Non-ESBL-infection	Neonates at NICU	NICU	LOS	costs of interventions aimed at controlling the outbreak, attributable length of stay associated with infection and colonisation with ESBL-KP	КР
Pillay T ¹³	1995- 1996	South Africa	Cohort study, retrospective	Non-ESBL-infection	Neonates	Neonatal ward	All-cause mortality	Use of piperacillin/tazobactam in treatment of KP- infection	КР
kim BN ¹⁴	1999- 2000	South Korea	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, LOS	Prevalence & clinical characteristics of ESBL-KP- bacteraemia, impact of ESBL- production on outcome of patients with KP- bacteraemia in endemic situation.	КР
kim YK ¹⁵	1993- 1998	South Korea	Cohort study, retrospective	Non-ESBL-infection	Children	Pediatric ward	All-cause mortality	Risk factors & clinical outcomes & clinical responses to treatment of ESBL-EC- and ESBL-KP-bacteraemia, prevalence and types of their ESBLs	EC, KP
} }havnani SM ¹⁶ } } }	2001- 2002	USA	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality	Risk factors for occurrence of invasive ESBL-EC- and ESBL-KP-infections, factors associated with clinical outcome, drug regimens for treatment of infections associated ESBL/non-ESBL strains in real-life clinical practice, clinical response rates for patients treated with cephalosporins/other classes of antimicrobial agents, /carbapenems, clinical response for those patients with infection associated with ESBL and non–ESBL-producing strains with MIC values V8 Ag/mL treated with cephalosporins.	GNB
βlomberg B ¹⁷	2001- 2002	Tanzania	Cohort study, prospective	Non-ESBL-infection	Neonates, children	Pediatric ward	All-cause mortality	Prevalence & clinical implications of ESBL production in EC-,KP-, Salmonellae- septicemia	GNB
Pena C ⁶⁰	1993- 1995	Spain	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality	Clinical epidemiology& outcome of ESBL-KP- bacteraemia, relevance of ESBL strains in mortality of patients with hospital-acquired KP-BSI.	КР
ola A ⁶¹	2002- 2004	Germany	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS, ICU-LOS	Outcomes of ESBL-EC- and ESBL-KP-infections	EC, KP
īsai MH ⁶²	2001- 2012	Taiwan	Case cohort study	Control group: non- ESBL-infection, second control group: all hospitalised patients	Neonates at NICU	NICU	Attributable mortality, all- cause mortality, LOS	Clinical features& risk factors& molecular epidemiology of ESBL-GNB	GNB
1aslikowska JA ⁶³	2010- 2013	Canada	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality, LOS	Differences in clinical & microbiological outcome, mortality, and/or hospital resource use: ESBL-EC- and ESBL-Ks- vs non-ESBL-EC- and non-ESBL-Ks-infections	GNB

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

, - -	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Onken A ⁶⁴	2012- 2013	Tanzania	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Most common bacterial pathogens causing BSI, antimicrobial susceptibility	GNB
3 Nguyen ML ⁶⁵ 9 0	2005- 2010	Canada	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS, ICU-LOS	Risk factors for & patient outcomes associated with ESBL-EC- and ESBL- Ks- bacteraemia, appropriateness of empiric antibiotic therapy & effect of inappropriate empiric therapy on outcomes	GNB
Ъепіз В ⁶⁶ 2 3	2005- 2009	France	Case-control study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (28 day), LOS	Prevalence & risk factors for ESBL-EC bacteraemia, impact on length of stay &30day mortality	EC
4 _{chopra T⁶⁷ 5 6 7}	2004- 2009	USA	Case cohort study	Case 2(Control1): non- ESBL-infection, second control group: no infection	All kinds of patients	Entire hospital	All-cause mortality (28 day)	Predictors of ESBL-EC- and ESBL-KP-BSI, focus on cefepime exposure.	EC, KP
မိုanhotra BR ¹⁸ 9	2001- 2003	Kingdom of Saudi Arabia	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Risk factors & clinical outcome of ESBL-KP-bacteraemia (hospital acquired)	КР
20 Marra AR ¹⁹ 22	1996- 2001	Brazil	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (14 day)	ESBL-KP- associated mortality	KP
23 Skippen I ²⁰ 25	2003- 2005	UK	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Risk factors for & outcomes of ESBL-EC- and ESBL-KP-invasive transmission of organism in the healthcare setting	GNB
2 6 chwaber MJ ²¹ 27 28	2000- 2003	Israel	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality	Outcomes of ESBL-production in Enterobacteriaceae-bacteraemia.	GNB
9 Apisarnthanarak 19 Apisarnthanarak	2003- 2004	Thailand	Case cohort study	Control group: non- ESBL-infection, second control group: no infection	All adult patients	Entire hospital	All-cause mortality, LOS	Clinical & molecular epidemiologic factors associated with community onset ESBL-EC- infections, hospital resource utilisation, estimate costs associated with medical care (hospitalised patients)	EC
3 ³ umbarello M ²³ 94 95 96	1999- 2003	Italy	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality, LOS, ICU-LOS	Factors associated with isolation of ESBL- KP-strains	КР
Z eistner R ⁹	2008- 2010	Germany	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital,	All-cause mortality, LOS	Difference in mortality: ESBL-EC-BSIs vs. non-ESBL-EC-BSIs, molecular epidemiology of ESBL-positive isolates	EC

5 1 -	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Apisarnthanarak A ²⁴	2003- 2004	Thailand	Case cohort study	Control group: non- ESBL-infection, second control group: no infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Risk factors for & outcomes of ESBL-EC- and ESBL-KP-infections (healthcare associated)	EC, KP
Kanafani ZA ²⁵ 1 2	2003	Lebanon	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Epidemiology of infections with ESBL-EC and ESBL-Ks at AUBMC risk factors & outcomes of infections - focus on effect of prior antibiotic administration & the risks imparted by specific classes of antimicrobial agents	GNB
Zaoutis TE ²⁶	1999- 2003	USA	Case cohort study	Non-ESBL-infection	Children	Entire hospital	All-cause mortality, LOS	Risk factors & outcomes associated with ESBL-EC-and ESBL-KP-BSI	EC, KP
եց Թoh LC ²⁷ 7	2003- 2004	Malaysia	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Impact of ESBL-KP-respiratory tract infections on hospital mortality, requirement for mechanical ventilation & length stay	КР
&Melzer M ²⁸ 9 20	2003- 2005	UK	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Differences in mortality & length of hospital stay & time from bacteraemia to death in patients with ESBL-EC- vs. non-ESBL-EC-bacteremic-infection	EC
2 J _{ong KH²⁹ 22 23 24 25}	2000- 2006	South Korea	Case cohort study	Non-ESBL-infection	Patients with spontaneous bacterial peritonitis	Not provided	All-cause mortality (28 day)	Outcomes of ESBL-EC-and ESBL-Ks- vs non-ESBL-EC-and ESBL-Ks-SBP (based on isolation from ascites), impact of ineffective initial antimicrobial therapy on outcome in patients with ESBL-EC- and ESBL-Ks-SBP, risk factors for infection by ESBL-producing microorganisms.	GNB
2 G ennett JW ³⁰ 27 28 29	2004- 2008	USA	Cohort study, prospective	Non-ESBL-infection	ICU-patients	ICU, Surgical ward, Burn unit	All-cause mortality (28 day)	ESBL types and strain variability, presence of host factors to determine potential role in morbidity and mortality during ESBL-KP-infections	КР
8 0 recarichi EM ³¹ 81 82	2000- 2007	Italy	Cohort study, retrospective	Non-ESBL-infection	Patients with hematological malignancies	Entire hospital	All-cause mortality (28 day)	Risk factors for mortality in patients suffering from hematological malignancies with concurrent EC-bacteraemia. Focus on impact of ESBL- production & fluoroquinolone resistance by bacterial isolates	EC
3uon FF ³² 84 85	2006- 2009	Brazil	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (28 day), LOS	Risk factors & mortality rate in ESBL-KP-bacteraemia	КР
6 7 8	2008- 2009	South Korea	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (28 day)	Risk factors of ESBL-EC among community-onset bacteraemia, treatment outcomes	EC

BMJ Open

	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Pena C ³⁴	1996- 2003	Spain	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (28 day)	Risk factors for mortality among patients with EC- infections	EC
Tumbarello M ³⁵) <u>2</u> } 1	2006	Italy	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	ICU, Medical ward, Entire hospital, surgical wide	All-cause mortality (21 day), LOS	Clinical &economic impacts of ESBL production, inadequate Initial Antibiotic Therapy of EC-BSI	EC
T Kang Cl ³⁶ 5 7 3	2006- 2009	South Korea	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality (28 day)	Impact of ESBL-producing bacteraemia on outcome in patients with hematologic malignancy.	EC, KP
Wu YH ³⁷) 2	2009- 2012	Taiwan	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Medical ward	LOS	Host-related risk factors for community-onset UTI due to levofloxacin- or cefazolin-nonsusceptible isolates or uropathogens with ESBL production, clinical impact of UTIs due to antimicrobial-nonsusceptible pathogens	GNB
kodriguez-Bano J ³⁸ 1 5	2004- 2006	Spain	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (14 day)	Epidemiology& risk factors (focus on previous antimicrobial use) & mortality rate for patients with ESBL-EC-COBSI	EC
Gürtnke S ³⁹ 7	2008- 2011	Germany	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Distribution of ESBL genotypes, hospital mortality in cases of ESBL-KP- BSI	КР
3 Oh MM⁴⁰	2006- 2011	South Korea	Cohort study, retrospective	Non-ESBL-infection	Patients after Prostatitis Biopsy	Entire hospital	LOS	Impact of ESBL-positive-strains on clinical course & progression to chronic prostatitis in patients with postbiopsy acute prostatitis.	GNB
Leistner R ⁴¹	2008- 2011	Germany	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Financial disease burden attributable to ESBL-positive species in cases of EC-and KP-BSI	EC, KP
2 in JN ¹⁰ 1 5 5	2005- 2009	Taiwan	Case cohort study	Non-ESBL-infection	All kinds of patients	Emergenc y Room	Attributable mortality, all- cause mortality (28 day), LOS, ICU-LOS	Clinical & microbiological characteristics, risk factors for acquisition of infection, prescription of initial empirical antibiotics mortality rate of infection	GNB
š u NS ⁴²	2006- 2010	South Korea	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (28 day)	Clinical usefulness of breakpoints for treatment of Enterobacteriaceae- bacteraemia, (focus on EC- and Ks-bacteraemia): CLSI 2009- vs. CLSI 2010-guidelines.	EC, KP

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 3	84 of 45
--------	----------

	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Anunnatsiri S ⁴³	2005- 2006	Thailand	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Incidence of ESBL-EC-septicemia, factors associated with infection & clinical outcomes	EC
Kang Cl ⁴⁴ 0 1	1998- 2002	South Korea	Case cohort study	Non-ESBL-infection	All kinds of patients	Hospital- wide	All-cause mortality (28 day)	Risk factors for mortality & treatment outcome of ESBL-EC- and ESBL- KP-BSI	EC, KP
∑raviv Y ⁴⁵ 3 4	2004- 2007	Israel	Cohort study, retrospective	Control group: non- ESBL-infection, second control group: no infection	patients with lung transplantation	Not provided	All-cause mortality (28 day)	Outcomes of lung transplant recipients infected by CRKP and ESBL carbapenem-sensitive KP (referred to MDR-KP)	КР
6(im H) ¹¹ 7 8	2005- 2010	South Korea	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Medical ward	All-cause mortality (28 day), LOS	Clinical outcome of patients with biliary tract infection: ESBL-producing bacterial isolates vs. non-ESBL-producing-bacterial isolates, predictors of poor prognosis, impact of ineffective antimicrobial therapy on clinical outcome	EC, KP
0⁄lacVane SH⁴6 1 2	2011- 2012	USA	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all-cause mortality, LOS	clinical & economic outcomes of patients with ESBL-EC- and ESBL-KP- UTI vs. non-ESBL-EC- and non-ESBL-KP-UTI	EC, KP
.3 ∯bhilash KP ⁴⁷ 5	2007	India	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (14 day)	Prevalence & risk factors & outcome of antibiotic treatment among hospitalised patients with ESBL-EC- and ESBL-Ks-BSI	GNB
.0 ∱hanthi M⁴ ⁸ 8	2006	India	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Prevalence & impact on clinical outcome of ESBL-production among nosocomial isolates of EC & KP	EC, KP
9 _{Han SB} ⁴⁹ 0 1 2	2009- 2013	South Korea	Cohort study, retrospective	Non-ESBL-infection	Children (immunocompromised, with cancer, neutropenic fever)	Pediatric ward	Attributable mortality, all- cause mortality (28 day)	Clinical outcomes of ESBL-EC- and ESBL-KP-bacteraemia & their antibiotic susceptibilities	EC, KP
3 ee S⁵⁰ 4 5	2009- 2011	South Korea	Cohort study, retrospective	Non-ESBL-infection	Patients with Acute Pyelonephritis	Entire hospital	All-cause mortality (14 day), LOS	Impact of ESBL on clinical outcomes of Acute Pyelonephritis treated with empirical ceftriaxone (which was inappropriate for ESBL- producing organisms)	EC
Artero A ⁶⁸ 7 9	2013- 2015	Spain	Cohort study, prospective	Non-ESBL-infection	Elderly	Medical ward	All-cause mortality, LOS	Identify clinical factors to predict ESBL-EC among elderly patients with UTI admitted to hospital in a high rate setting of ESBL-EC	EC

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Chen IL ⁶⁹	2004- 2015	Taiwan	Cohort study, retrospective	Non-ESBL-infection	Neonates	Neonatal ward	All-cause mortality	Compare the clinical characteristics & laboratory data of preterm babies with EC BSI: survival vs. nonsurvival groups, ESBL vs non-ESBL groups, determine the predictive factors of EC BSI in preterm babies	EC
slas-Munoz B ⁷⁰	2016- 2017	Mexico	Cohort study, prospective	Non-ESBL-infection	Cancer patients	Oncologic al ward	All-cause mortality (28 day)	Evaluate the clinical epidemiological characteristics & risk factors associated with mortality in cancer patients with BSI-special emphasis on MDR bacteria	GNB (and others)
3 Ma J ⁷¹ 5	2012- 2015		Cohort study, retrospective	Non-ESBL-infection	Patients with hematological diseases	Entire hospital	All-cause mortality (28 day)	Evaluate the antimicrobial resistance & clinical features & risk factors for septic shock & death of nosocomial EC-BSI	EC
o ∲Man MY ⁷² 9	2009- 2016	China	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients, except patients from Burn unit, transplant surgery ward or with thoracic therapy	Entire hospital	All-cause mortality (28 day)	Evaluate the incidence & clinical characteristics & outcomes of patients with KP BSI in critical care & general ward settings	КР
Marando R ⁷³ 2 3	2016	Tanzania	Cohort study, prospective	Non-ESBL-infection	Neonates	NICU	All-cause mortality	Investigate factors associated with ESBL-PE neonatal sepsis & mortality among neonates, characterise selected isolates to show virulence potential & transmission dynamics	GNB
1 Namikawa H ⁷⁴ 5 7	2011- 2015	Japan	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Investigate clinical characteristics of patients with ESBL-EC-BSI	EC
§hi SH ⁷⁵ 9)	2008- 2015	China	Cohort study, retrospective	Non-ESBL-infection	Patients with pyogenic liver abscess	Centre for hepatopa ncreatico biliary diseases	All-cause mortality, LOS	Aetiology & morbidity & clinical characteristics of pyogenic liver abscess caused by ESBL-PE	GN
2 Janir Basaranoglu 5 ⁷⁶ 1 -	2011- 2015	Turkey	Cohort study, retrospective	Non-ESBL-infection	Children	Pediatric ward	All-cause mortality (28 day)	Assess risk factors for health care associated ESBL-KP-BSI in children, analyze clinical outcomes: ESBL-KP vs. non-ESBL-KP	KP
Razazi K ⁷⁷	2009- 2015	France	Cohort study, prospective	Non-ESBL-infection	ICU-patients	ICU	All-cause mortality, LOS, ICU-LOS	Determine, among ESBL-PE carriers, the prevalence & associated factors & clinical impact of ESBL-PE pneumonia, determine factors associated with ICUAP caused by carbapenem-resistant bacteria	GNB

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Ray S ⁷⁸	2014- 2016	India	Cohort study, prospective	Non-ESBL-infection	ICU-patients	ICU	All-cause mortality	Investigate spectrum of microbial resistance pattern in the community and their effects on mortality	GNB
Haruki Y ⁷⁹) 	2006- 2016	Japan	Cohort study, retrospective	Non-ESBL-infection	ICU-patients	ICU	All-cause mortality	Compare the clinical characteristics & outcomes of critically ill patients in an ICU, who were hospitalised for BSI caused by ESBL-EC or non- ESBL-EC.	GNB
<u>y</u> in WT ⁸⁰ 1	2009- 2014	Taiwan	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Investigate the clinical manifestations & bacteriological features of culture-proven, GNB arthritis	GNB
β uys H ⁸¹ 7 3	2006- 2011	South Africa	Cohort study, retrospective	Non-ESBL-infection	Children	Pediatric ward	All-cause mortality	Describe the clinical presentation of KPBSI, risk factors associated with ESBL-KPBSI, antibiotic susceptibility patterns of the KP isolates & KPBSI mortality including factors associated with in-patient mortality	КР
0)ee CC ⁸²	2008- 2013	Taiwan	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Emergenc y Departme nt	Attributable mortality, all- cause mortality (28 day), LOS, ICU-LOS	Analyse the impact of ESBL-producing isolates on the outcome of bacteremic patient after controlling for baseline patient characteristics & bacteraemia severity by using a propensity-matched analysis (PSM)	GNB
Huang YY ⁸³ 5 7	2011- 2013	Canada	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Determine cumulative incidence of ESBL urosepsis, identify major risk factors for ESBL urosepsis, determine impact of international travel on development of ESBL urosepsis	EC, KP
S Somatsu Y ⁸⁴	2008- 2013	Japan	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (14 day)	Identify risk factors & clinical outcomes in patients with BSI due to ESBL- or carbapenemase-producing EC, determine prevalence & genetic background	EC
ju MM ⁸⁵	2011- 2016	China	Case cohort study	Control group: non- ESBL-infection, second control group: no infection	ICU-patients	ICU	All-cause mortality	Identify risk factors for ESBL-producing ECBSI among carriers at ICU	EC
yivesvivat T ⁸⁶	2010- 2017	Thailand	Cohort study, retrospective	Non-ESBL-infection	Children	Pediatric ward	All-cause mortality, LOS	Determine prevalence, risk factors & clinical outcomes of ESBL- producing EB in paediatric BSI	ЕС <i>,</i> КР

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
6 Cordery RJ ⁸⁷ 7 8 9	2004- 2006	UK	Cohort study, retrospective	Non-ESBL-infection	ICU-patients	ICU	All-cause mortality	Elucidate specific risk factors for the acquisition of ESBL infection in the ICU; all-cause mortality (in ICU) compared in patients with infections due to ESBL- and non-ESBL-producing organisms	GNB
10 1 Paikos GL ⁸⁸ 12 13 14	2003- 2005	Greece	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Identify risk factors associated BSI caused by integron-carrying EB; evaluate the consequences of these genetic elements on patient outcome	GNB
5udiol C ⁸⁹ 16 17	2006- 2008	Spain	Cohort study, prospective	Non-ESBL-infection	Cancer patients and hematopoietic stem cell transplant patients	Entire hospital	All-cause mortality	Assess clinical features, risk factors, molecular epidemiology & outcome of ESBLEC BSI in hospitalised cancer patients	EC
1 8 ⁄Iarchaim D ⁹⁰ 19 20	2006- 2008	Israel	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Define predictors & outcomes of ESBL BSI among patients with bacteraemia due to EB upon hospital admission	GNB
2 Menashe G ⁹¹ 22 23 24 25 26	1997	Israel	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Determine: prevalence of ESBL-P organisms among adult patients with nosocomial EB BSI treated in our institution; association between ESBL production & resistance to other antibiotics; clinical characteristics of patients with nosocomial ESBL-P BSI compared with those infected with non-producing strains; impact of ESBL production on outcome of patients with nosocomial EB BSI	GNB
27 28 29 30 31	1991- 2007	Spain	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Describe source, resistance rate to fluoroquinolone & beta-lactam antibiotics and mortality of EC BSI episodes in a single institution; identify predictive factors for isolation of fluoroquinolone-resistant or ESBL- producing strains.	EC
³ Zziglyi M ⁹³ 33 34	2005- 2008	Hungary	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality,	Investigate risk factors for & outcomes of BSI caused by ESBL-producing and ESBL-non-producing KP	КР
35 Tsai SS ⁹⁴ 36 37	2005- 2006	Taiwan	Cohort study, retrospective	Non-ESBL-infection	Diabetic patients	Entire hospital	All-cause mortality	Analyze characteristics, risk factors & outcomes of diabetic patients with community- vs. hospital-acquired KP BSI	КР

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

EC = Escherichia coli	
KP = Klebsiella pneumoniae	
GNB = Gram-negative bacteria	
BSI = Bloodstream infection	
UTI = Urinary tract infection	
ICU = Intensive care unit	
NICU = Neonatal intensive care unit	
ESBL-PE = Extended-spectrum beta-lactamase-producing Enterobacteriaceae	
EB = Enterobacteriaceae	
LOS = Length of stay	

 For peer review only

Supplementary figure S1: Pooled risk ratios for all-cause mortality in patients with ESBL bloodstream infections compared to patients with non-ESBL bloodstream infections—all subgroups

Category	Ν		ratio (95% CI)
Overall			
Overall	56	+	1.70 (1.52, 1.90)
Mortality time			
14 day mortality	5	→	1.77 (1.15, 2.72)
28 day mortality	22	→-	1.63 (1.35, 1.97)
Time not defined	27		1.70 (1.47, 1.97)
Pathogen			
Klebsiella pneumoniae	12	→	1.48 (1.17, 1.87)
Escherichia coli	16	→	1.82 (1.50, 2.21)
Escherichia coli & Klebsiella pneumoniae	13	· • • • • • • • • • • • • • • • • • • •	2.08 (1.44, 3.01)
Gram negative bacteria	15	→	1.66 (1.43, 1.94)
Study design			
Prospective cohort studies	11		1,78 (1,45, 2,17)
Retrospective cohort studies	33	<u>→</u>	1.68 (1.46, 1.93)
Case cohort studies	12		1.76 (1.27, 2.45)
Income classification			
High income countries	41	→	1.76 (1.54, 2.00)
Low/middle income countries	15		1.56 (1.25, 1.96)
Study period			
Years: 1991–1999	9	→	1.56 (1.15, 2.11)
Years: 2000–2009	32	→	1.74 (1.50, 2.01)
Years: 2010–2018	15		1.72 (1.39, 2.13)
Study population			
All kinds of patients	36	→	1.65 (1.43, 1.90)
Cancer patients	5	→	1.73 (1.16, 2.57)
Children	7		2.09 (1.62, 2.71)
Neonates	3	→	1.76 (1.27, 2.45)
Appropriateness of therapy			
Reported	44	→	1.75 (1.54, 1.99)
Not reported	12		1.55 (1.26, 1.90)
МІС			
Reported	33	→-	1.79 (1.56, 2.06)
Not reported	23		1.56 (1.30, 1.88)
Empirical therapy			
Reported	15		2.13 (1.78, 2.55)
Not reported	9	→	1.77 (1.45, 2.15)

Supplementary figure S2: Pooled risk ratios for all-cause mortality in patients with noninvasive ESBL infections compared to patients with noninvasive non-ESBL infections

Category	Ν		risk ratio (95% CI)
Overall			
Overall	7	-	1.58 (1.23, 2.02)
Pathogen			
Escherichia coli	2	↓ ◆	1.30 (0.85, 1.98)
Escherichia coli & Klebsiella pneumoniae	2	•	→ 5.46 (1.00, 29.81)
Gram negative bacteria	2	+	2.04 (0.81, 5.16)
Study design			
Prospective cohort studies	2		1.58 (1.16, 2.17)
Retrospective cohort studies	4		2.16 (1.26, 3.71)
ncome classification			
High income countries	5	→	1.53 (1.12, 2.09)
_ow/middle income countries	2	→	1.81 (1.00, 3.29)
Study period			
Years: 2000–2009	3	↓ ↓ ↓	1.40 (0.87, 2.27)
Years: 2010–2018	4	→	1.69 (1.25, 3.39)
Appropriateness of therapy			
Reported	4	→	1.48 (1.13, 1.95)
Not reported	3	→	2.05 (1.17, 3.59)
MIC			
Reported	2 -	→	1.49 (0.38, 5.88)
Not reported	5		1.69 (1.29, 2.22)
AmpC			
Reported	2	↓ →	1.85 (0.93, 3.71)
Not reported	5	 →	1.56 (1.13, 2.14)
			1

Supplementary figure S3: Weighted mean differences in length of hospital stay in patients with noninvasive ESBL infections compared to patients with noninvasive non-ESBL infections

Supplementary figure S4: Funnel plot of risk ratios for all-cause mortality in patients with ESBL bloodstream infections compared to patients with non-ESBL bloodstream infections

The y axis se(logRR) is the standard error of the log risk ratio Pseudo 95% confidence limit refers to the 95% confidence limits around the summary treatment effect for each standard error on the vertical axis and to the expected distribution of studies in the absence of heterogeneity or of selection biases.

The y axis se(WMD) is the standard error of the weighted mean difference. Pseudo 95% confidence limit refers to the 95% confidence limits around the summary treatment effect for each standard error on the vertical axis and to the expected distribution of studies in the absence of heterogeneity or of selection biases.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary figure S5: Funnel plot of weighted mean differences in the length of stay for patients with ESBL bloodstream infections compared to patients with non-ESBL bloodstream infections

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	6
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
/ Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	4
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	4
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	5
v Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	5
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	5
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	5,6

Page 45 of 45

3

4

5

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	6
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	6
4 Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	6
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	suppl.material
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	8
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	21-23 and suppl.material
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	6-8
5 Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	8
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	7,8
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	8
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	9
5 Conclusions 6	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	9
9 Funding 0	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	10
+ F +2 <i>From:</i> Moher D, Liberati A, Tetzlaf +3 doi:10.1371/journal.pmed1000097 +4	f J, Altn	nan DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLos	Med 6(7): e1000097.

BMJ Open

Page 1 of 2

Reported on

- 45 46
- 47

BMJ Open

Variation of effect estimates in the analysis of mortality and length of hospital stay in patients with infections caused by bacteria producing extended-spectrum beta-lactamases: a systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-030266.R1
Article Type:	Original research
Date Submitted by the Author:	19-Sep-2019
Complete List of Authors:	Shamsrizi, Parichehr; University Hospital Tubingen Department of Internal Medicine I Gastroenterology Hepatology and Infectious Diseases, Division of Infectious Disease Gladstone, Beryl Primrose ; University Hospital Tubingen Department of Internal Medicine I Gastroenterology Hepatology and Infectious Diseases, Division of Infectious Disease Carrara, Elena; Integrated University Hospital of Verona, Division of Infectious Disease, Department of Diagnostic and Public Health Luise, Dora; Integrated University Hospital of Verona, Division of Infectious Disease, Department of Diagnostic and Public Health Cona, Andrea; ASST Santi Paolo e Carlo, Clinic of Infectious and Tropical Diseases, Department of Health Sciences Bovo, Chiara; Integrated University Hospital of Verona, Medical Direction Tacconelli, Evelina; University Hospital Tubingen Department of Internal Medicine I Gastroenterology Hepatology and Infectious Diseases, Division of Infectious Disease; Integrated University Hospital of Verona, Medical Direction Tactonelli, Evelina; University Hospital Tubingen Department of Internal Medicine I Gastroenterology Hepatology and Infectious Diseases, Division of Infectious Disease; Integrated University Hospital of Verona, Division of Infectious Disease, Department of Diagnostic and Public Health
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Infectious diseases, Epidemiology
Keywords:	Extended-spectrum beta-lactamase, mortality, bloodstream infection, length of stay, meta-analysis, systematic review

BMJ Open

3 4	1	Variation of effect estimates in the analysis of mortality and length of hospital stay in
5	2	patients with infections caused by bacteria producing extended-spectrum beta-
6 7	3	lactamases: a systematic review and meta-analysis
8 9	4	
10	5	AUTHORS:
12	6	Parichehr Shamsrizi ¹ , Beryl Primrose Gladstone ¹ , Elena Carrara ² , Dora Luise ² , Andrea Cona ³ ,
13 14	7	Chiara Bovo ⁴ , Evelina Tacconelli ^{1,2}
15 16	8	
17	9	AFFILIATIONS:
19 20	10	1) Division of Infectious Disease, Department of Internal Medicine I, DZIF Partner site,
20 21	11	Tübingen University Hospital, Tübingen, Germany
22 23	12	2) Division of Infectious Disease, Department of Diagnostic and Public Health, University
24 25	13	Hospital of Verona, Verona, Italy
25 26	14	3) Clinic of Infectious and Tropical Diseases, Department of Health Sciences, ASST Santi
27 28 29 30 31 32 33 34 35	15	Paolo e Carlo, University of Milan, Milan, Italy.
	16	4) Medical Direction, University Hospital of Verona, Verona, Italy
	17	
	18	CORRESPONDING AUTHOR: Elena Carrara, MD
	19	Address: Division of Infectious Disease, Department of Diagnostic and Public Health,
36 37	20	University Hospital of Verona, Verona, Italy
38	21	Piazzale L.A. Scuro 10, Dipartimento di Malattie Infettive, Policlinico Borgo Roma, 37100
39 40	22	Verona, Italy.
41 42	23	Phone number: +39 3339566252
43	24	Email: elena.carrara@univr.it
44 45	25	
46 47	26	WORD COUNT: 2701
48 49		
50 51		
52		
53 54		
55 56		
57		
50 59		
60		

- ABSTRACT **Objective** To assess the variation of effect estimates in the analysis of mortality and length of stay (LOS) in patients with infections caused by extended-spectrum beta-lactamase (ESBL)-producing *Enterobacteriaceae*. **Design** Systematic review and meta-analysis Methods Literature search for clinical studies from 1 January 1960 to 1 October 2018 was conducted in PubMed. Primary outcomes were risk ratios (RRs) of all-cause and attributable mortality and weighted mean differences (WMDs) in LOS in patients with bloodstream infections (BSIs) and non-invasive infections. Any change in the effect estimates was assessed by grouping studies according to design, setting, economy-based country classification, reporting period, microbiological aetiology, infection type, and adjustment for appropriateness of empirical treatment. The impact of ESBL production was calculated using random effect meta-analysis and heterogeneity was evaluated by I² statistics and metaregression. **Results** Eighty-four studies including 22,030 patients and 149 outcome measures were included in the meta-analysis. Most studies were retrospective cohorts from high-income countries, providing unadjusted estimates. ESBL production in patients with BSIs (56 studies) increased the RR for all-cause mortality by a factor of 1.70 (95% CI: 1.52-1.90; p<0.001), attributable mortality (16 studies) by 1.75 (95% CI: 1.448-2.108; p<0.001), and WMD in the intensive care unit by 3.07 days (95% CI: 1.61-4.54; p<0.001). WMD in hospital LOS was significantly higher in BSIs (4.41 days; 95% CI: 3.37-5.46; p<0.001) and non-invasive infections (2.19 days; 95% CI: 1.56-2.81; p<0.001). Subgroup analyses showed variation of estimates by study design, population, strain, and assessment of appropriateness of empiric treatment. High heterogeneity was observed in all analyses. **Conclusions** Current evidence of the clinical burden of infections caused by ESBL-producing
 - bacteria is highly heterogeneous and based mainly on unadjusted estimates derived from
 retrospective studies. Despite these limitations, ESBL production in strains causing BSIs seems
 associated with higher all-cause and attributable mortality and longer hospitalisation.

30 KEYWORDS

31 Extended-spectrum beta-lactamase, mortality, bloodstream infection, length of stay, meta32 analysis, systematic review

1 2	
$\frac{3}{4}$ 1	STRENGTHS AND LIMITATIONS OF THIS STUDY
⁴ 5 2	• Evidence of the impact of ESBL production on mortality and length of stay in strains
6 7 3	causing invasive and non-invasive infections was collected systematically.
8 9 4	• Effect of multiple epidemiological and clinical variables was assessed in the calculation of
10 5 11 5	estimates.
12 6	 Heterogeneity among studies was assessed.
13 14 7	• Only few studies had been performed in high-risk populations or low-income countries.
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	

1 INTRODUCTION

Infections extended-spectrum caused by beta-lactamase (ESBL)-producing *Enterobacteriaceae* are responsible for high morbidity and mortality worldwide.^{1,2,3} The 2018 World Health Organization list of antibiotic-resistant pathogens identified mortality as the most important criteria to prioritise bacteria for research and development of new, effective antibiotics.¹ In this prioritisation exercise, ESBL-producing Enterobacteriaceae were designated a critical priority because of their high all-cause mortality and high prevalence globally in healthcare-associated and community-acquired infections. The incidence and attributable mortality of multidrug-resistant bacterial infections, including ESBL-producing Enterobacteriaceae, in European countries has been recently estimated using a modelling analysis.⁴ In 2015 ESBL-producing *Escherichia coli* was responsible for almost 300,000 infections in Europe and 9,000 attributable deaths, and ESBL-producing Klebsiella pneumoniae caused around 70,000 infections and more than 3,500 deaths. The major limitation of this analysis is the sparseness of evidence on mortality due to ESBL-producing bacteria, which was limited largely to studies conducted in high-income countries.

Two systematic reviews have been performed to define the impact of ESBL production on mortality due to Enterobacteriaceae.^{2,3} Both meta-analyses included studies targeting bloodstream infections (BSIs) and showed doubling all-cause mortality for ESBL-associated bacteraemia compared to non-ESBL Enterobacteriaceae bacteraemia. A major drawback of the analyses, highlighted by the authors, was the lack of control for confounding and limited adjustment for empiric therapy. No systematic review has been performed to assess attributable mortality and other indicators of clinical impact such as length of stay (LOS).

Because estimates of clinical burden drive policy design for antibiotic stewardship and infection control interventions, precise and current estimates are essential. The objective of this systematic review and meta-analysis was to assess the variation of effect estimates in the analysis of mortality and LOS in patients with infections due to ESBL-producing Enterobacteriaceae.

28 METHODS

29 Literature search strategy

The search was performed by 2 researchers (BPG and PS) in PubMed on 05 October 2018 using
search terms (supplementary table S1) relevant to the following combinations: (ESBL AND
Escherichia coli AND mortality) OR (ESBL AND Klebsiella pneumoniae AND mortality) OR
(ESBL AND Escherichia coli AND length of stay OR length of hospitalisation) OR (ESBL

AND Klebsiella pneumoniae AND length of stay OR length of hospitalisation). Reference lists
 of retrieved articles were also searched.

3 Eligibility criteria

We included all clinical studies with a comparison group assessing all-cause mortality, attributable mortality, and overall LOS and intensive care unit stay (ICU) LOS in hospitalised patients with ESBL infections. Studies published from 1 January 1960 to 1 October 2018 irrespective of the clinical setting and study design were included. No language restriction has been applied. Diagnostic studies, reviews, case reports, non-clinical studies, and abstracts of conference presentations were not included.

10 Data extraction

Two reviewers (PS and BPG) independently assessed the eligibility of trials and extracted data. In case of disagreement, a third reviewer (DL) was consulted. Extracted data were collected in an electronic worksheet, using EpiInfo 7.1: authors, journal, country, year of publication, year of study, time of data collection, study design, comparison group, study setting, population, aetiology, type and site of infection, and raw data related to mortality and LOS/ICU-LOS. Countries were classified as high-, middle-, or low-income using the World Bank Atlas method.⁵ Adjusted effect estimates such as odds ratios (ORs) or hazard ratios and quality indicators such as reporting of antibiotic therapy, appropriateness of empirical treatment, resistance mechanisms, and minimum inhibitory concentrations (MICs) were also extracted.

Mortality data were extracted as all-cause mortality or attributable mortality as defined in the
 studies. Where available, prespecified time periods for mortality assessment (i.e., 14 days, 28
 days, in-hospital) were also extracted. LOS and ICU-LOS were extracted as days with mean
 and standard deviation or median and interquartile range.

24 Data analysis

The primary outcomes for the clinical impact of ESBL infections were RRs of all-cause and attributable mortality and the weighted mean difference (WMD) in LOS and ICU-LOS in patients with ESBL infections compared with those in patients with non-ESBL infections and, where available, with uninfected patients. The impact of ESBL production on attributable and all-cause mortality was calculated with random effect meta-analysis and expressed as RR with 95% confidence interval (CI). WMD in days with 95% CI was calculated to express the excess in LOS and ICU-LOS.

Variation of the effect estimate was assessed by grouping the studies according to the following study/outcome characteristics: mortality time assessment (7 vs 14 days), aetiology (E. coli vs K. pneumoniae), clinical setting (paediatric, oncology, ICU), economic country areas (high-income countries [HICs] vs low- and medium-income countries [LMICs]), study design, assessment of empiric therapy, and year. The source of infection was assessed and analysis of mortality focused on BSIs while LOS was determined for BSIs and non-invasive infections (i.e., urinary tract infections, respiratory tract infections, surgical site infection) due to limited reporting.

Subgroup analysis was computed only if more than 2 studies were available for each group. Heterogeneity was evaluated by using I² statistics and metaregression. Overall significance testing was carried out using Wald tests adjusted using the Bonferroni correction. The unadjusted ORs were compared with the adjusted ORs to estimate the effect of adjustment. Reporting and publication bias was presented in funnel plots (supplementary figure 1 and 2) and tested by Egger's test. Statistical analyses were performed using Stata version 15. Risk of bias was assessed independently by two authors (PS, DL) using the Newcastle - Ottawa quality assessment scale for cohort studies.⁶ Studies were classified as low, moderate, or high quality according to AHRQ standards (supplementary table S2). All meta-analyses were performed in accordance with the Cochrane Collaboration recommendations⁷ and reported according to the PRISMA statement.⁸

- 7 20 The protocol is available online.
- ⁹ 21 (https://im1-tuebingen.de/wp-
- 1 22 content/uploads/2019/03/ClinicalImpactAMR_SR_studyprotocol_2018.pdf)
- ¹³ 23 Patient and Public Involvement

24 There was no patient or public involvement in this systematic review of published literature.

8 25 RESULTS

Our literature search identified 1006 studies, and 92 (9.2%) met the eligibility criteria on the basis of abstract screening. Full-text screening excluded an additional 5 articles, providing an evidence base of 87 studies (Figure 1).⁹⁻⁹⁵ The 87 studies included in the qualitative analysis were conducted between 1991 and 2017 in 25 countries, mainly in South Korea (14 studies), Thailand (7), USA (7), Taiwan (7), and Spain (7). Sixty (68.9%) studies were performed in HICs, 26 (29.9%) in LMICs, and 1 included both HICs and LMICs.⁵⁵ About half (44, 50.6%) were retrospective cohort studies, 24 (27.6%) case cohort studies, and 18 (20.7%) prospective

cohort studies; 1 study had an interventional design.⁵⁶ The comparison group was patients with
infections caused by gram-negative non-ESBL producers in 82 (94.3%) studies, non-infected
patients in 2 (2.3%), and both control groups in 3 (3.5%). Most (57, 65.5%) studies included
data from the entire hospital, while a few focused on specific settings, mainly ICUs (9, 10.3%)
and paediatric wards (8, 9.2%). The most common ESBL-producing bacteria were *E. coli* (23,
26.4%) and *K. pneumoniae* (17, 19.5%). An overview of study characteristics is provided in
online supplementary table S3.

Because data in 3 studies ^{21,60,86} were insufficient for quantitative analysis, 84 (96.6%) studies were included in the meta-analysis analysing data from 22,030 patients and 149 outcome measures. Fifty-seven studies analysed BSIs and 10 non-invasive infections. Study characteristics for all studies are provided in online supplementary table S4. 49 (58.3%) studies were of high quality, 23 (27.3%) were of moderate quality, and 12 (14.3%) were of low quality (supplementary table S5).

14 All-cause mortality

All-cause mortality was reported in 81 studies including 21,942 patients (56 on BSIs and 7 on non-invasive infections). ESBL production in patients with BSIs increased all-cause mortality by a factor of 1.70 (95% CI: 1.52-1.90; p<0.001; I²=45.3%; p<0.001). The RR increased over time from 1.56 (95% CI: 1.15-2.11; p=0.004) in 1991-1999 to 1.74 (95% CI: 1.50-2.01; p<0.001) in 2000-2009, and it was stable in 2010-2018 (1.72, 95% CI: 1.39-2.13; p<0.001). The RR was higher in studies assessing appropriateness of empiric therapy (RR=1.75; 95% CI 1.54-1.99; p<0.001) than in those that did not (RR=1.55; 95% CI 1.26-1.90; p<0.001). The subgroup analysis by pathogen showed that ESBL production increased the RR in BSIs due to *E. coli* (RR=1.82; 95% CI: 1.50-2.21; p<0.001) compared to those due to *K. pneumoniae* (RR=1.48; 95% CI: 1.17-1.87; p=0.001). Stratification by population age showed a higher RR in paediatric population (RR=2.09; 95% CI: 1.62-2.71; p<0.001). Effect estimates did not vary significantly by study country, mortality time assessment (14 vs 28 days), ESBL molecular resistance mechanisms, or study design (Figure 2 and online supplementary figure 3). Adjusted estimates for inappropriate empirical antibiotic therapy were provided for 14 studies. The pooled unadjusted OR for all-cause mortality was 2.91 (95% CI: 2.23-3.81; p<0.001, $I^2=27.1\%$; p=0.164) and the pooled OR after adjusting for receipt of appropriate empirical treatment was 3.22 (95% CI: 1.53-6.76; p=0.002; I²=87.5%; p<0.001).

Studies with non-invasive infections reported a RR of 1.58 (95% CI: 1.23-2.02; p<0.001)
(supplementary figure 4).

Attributable mortality

Attributable mortality was analysed in 16 studies including 2,885 patients. All studies were performed in HICs. ESBL production in patients with BSIs increased the risk of attributable mortality by a factor of 1.75 (95% CI: 1.45-2.11; p<0.001; I²⁼0%; p<0.001). The RR increased over time from 1.53 (95% CI: 1.10-2.12; p=0.011) in 1991-1999 to 1.91 (95% CI: 1.43-2.54; p<0.001) in 2000-2009 (Figure 3). Pathogen-specific RR for attributable mortality was 1.60 (95% CI: 1.18-2.15; p=0.002) for K. pneumoniae and 1.76 (95% CI: 1.33-2.34; p<0.001) when the gram-negative organisms were analysed all together without species differentiation. The subgroup analysis showed the RR was lower in case cohort studies (1.56; 95% CI: 1.09-2.25; p=0.016) than in cohort studies (1.80; 95% CI: 1.37-2.37; p<0.001).

11 Length of stay

LOS data were provided in 37 studies (17 on BSIs and 8 on non-invasive infections) analysing 38 outcome measures. The WMD of LOS in patients with BSIs was 4.41 days (95% CI: 3.37-5.46; p<0.001) and decreased from 5.72 days (95% CI: 2.69-8.75; p<0.001) in 1991-1999 to 4.22 days (95% CI: 3.02-5.43; p<0.001) in 2000-2009 and was stable up to 2018 (4.30 days; 95% CI: 1.38-7.22; p=0,004). Higher WMD (p<0.001) was observed for BSIs due to K. *pneumoniae* (7.67 days; 4.63-10.71) than for those due to *E. coli* (6.07 days; 95% CI 3.71-8.43). Retrospective cohort studies reported higher (p<0.001) WMD (6.43 days; 95% CI: 4.66-8.21; p<0.001) than case cohort studies (3.32 days; 95% CI: 2.03-4.61). Studies in HICs showed higher WMD (4.56 days; 95% CI 3.43-5.70; p<0.001) than studies in LMICs (3.55 days; 95% CI 0.84-6.26; p=0.01) (Figure 4).

- Studies with non-invasive infections reported a WMD of 2.19 days (95% CI: 1.56-2.81;
 p<0.001), which decreased from 7.66 (95% CI: 5.83-9.46; p<0.001) in 2000-2009 to 1.44 (95%
 CI: 0.77-2.10; p<0.001) in 2010-2018 (online supplementary figure 5).
- The data on ICU-LOS were provided in 7 studies and showed that BSIs caused by ESBL
 producers had a WMD of LOS of 3.07 days (95% CI: 1.61-4.54; p<0.001).
- 51 27 Heterogeniety of the studied effect-modifiers did not reach statistical significance when
 52 53 28 assessed by metaregression (supplementary table S6).
- Sensitivity analysis based on the quality of studies revealed no notable difference in the effect
 estimates after exclusion of low-quality studies (data not shown). Egger's test and the funnel
 plots (online supplementary figure 1 and 2) showed evidence for small study effects (p<0.001)
- 60 32 and publication bias.

1 DISCUSSION

This systematic review shows that ESBL production has a significant impact on the most relevant patient-related clinical outcomes. In the subgroup analyses, all-cause mortality, attributable mortality, and LOS both in hospital and in ICU were higher for patients with BSIs due to ESBL-producing Enterobacteriaceae than for patients with BSIs due to non-ESBL-producing strains. Non-invasive infections caused by ESBL-producing strains were associated with higher all-cause mortality and prolonged LOS. Within the limitation of the low number of studies evaluating specific patient populations, paediatric and cancer patients seemed to suffer a higher impact of ESBL invasive infections than the overall population. Stratifying by pathogen type, the impact of ESBL production was higher for E. coli BSIs than for K. pneumoniae BSIs. No relevant differences in mortality analysis emerged with stratification by study design or country income level. Impact of ESBL infections on mortality became more evident in more recent studies. Studies reporting on appropriateness of empirical therapy, ESBL resistance mechanisms, and MICs showed a higher clinical impact of ESBL infections than studies not assessing these variables. In particular, pooled ORs adjusted for inappropriate empirical treatment, showed a remarkably higher OR for mortality in patients with ESBL infections.

Our findings confirm the results of previous systematic reviews. Schwaber et al. performed a systematic review comparing mortality in ESBL BSIs and non-ESBL BSIs in studies published through 2003.² The authors show a pooled RR for all-cause mortality of 1.85 but, in contrast to our study, they combined E. coli, Klebsiella spp., and Proteus spp. in the analysis because of sample size limitations. Rottier et al. analysed studies published through 2010 and adjusting results for inappropriate empirical treatment found an adjusted OR of 1.37.³ Our study, adding more than 50 studies in 17 years to the Rottier systematic review, confirmed the clinical importance of ESBL production to all-cause mortality and for the first time assessed the role of ESBL production on attributable mortality. We addressed relevant effect-modifiers through subgroup analyses and found that population, pathogen, and assessment of empiric therapy all had an impact on estimates. Because we believe that appropriate empirical treatment plays a relevant role in invasive infections, we performed a secondary analysis by pooling only adjusted ORs and confirming the significant impact of antibiotic resistance as already shown in a previously published systematic review.⁹⁶ The lack of consideration of appropriateness of therapy in the studies evaluating mortality seems to underestimate the risk of ESBL production on mortality. However, studies assessing the impact of appropriate therapy did not provide

homogeneous definition and could refer either to empirical or definite therapy or a single
 component irrespective of the dosage, making results difficult to interpret. The impact of ESBL
 production on LOS has been also estimated, assessing BSIs and non-invasive infections
 separately and confirming the prolongation of hospitalisation.

Our systematic review contributes to the discussion on the limitation of current evidence for the estimation of mortality due to antibiotic-resistant infections. Our finding underlines the importance of considering a multivariable model with a whole set of determinants when trying to quantify the impact of resistance on clinical outcomes. The source of infection, for example, can influence the role of empirical treatment on the clinical outcome. For example, patients with UTI receiving inappropriate empirical antibiotic therapy can potentially show a favourable outcome, most probably due to the high concentration of antibiotic reached in the urinary tract.97

Our study has some limitations. Although results of the meta-analyses were significant in all the subgroups, we could analyse only a limited number of studies providing information for subgroups such as haematological patients and low-income countries, making generalizability of results less certain for these specific patient populations. Only a few studies reported MIC data or specific ESBL molecular resistant phenotype (i.e., AmpC). Moreover, publication bias was detected in both the main analyses (all-cause mortality and LOS), thus implying the possibility that results from small studies with non-significant results might have been conducted and not published, resulting in a possible overestimation of our results. The non-homogeneous reporting of some relevant data in published literature (e.g., disease severity, underlying comorbidities and resistance mechanism) may also have affected the precision of the estimate. Patients with ESBL are intrinsically at higher risk of mortality and complications because they are often older, have more comorbidities or higher antibiotic exposure, and are at higher risk of receiving inappropriate empirical treatment.⁹⁸ Finally, due to resource constraints, we had to limit our search to PubMed database with the chance of missing relevant studies.

In summary, our systematic review emphasises the importance of suspicion and confirmation of ESBL production as soon as possible for invasive infections and demonstrates that ESBL production increases the risk of attributable mortality and LOS in both hospital and ICU for invasive and non-invasive infections. Patients with ESBL infections remain at higher risk of mortality and prolonged LOS even after adjustment for empiric inappropriate treatment. Control for other relevant effect-modifiers is hindered by the sparseness of published data. Future studies addressing the clinical burden of drug-resistant infections must include ESBL

Page 11 of 54

60

BMJ Open

1 2		
- 3 4	1	production and should assess both the impact of molecular mechanisms of resistance and effect
5	2	on specific patient populations such as haematological patients and those in LMIC.
7	3	Acknowledgements We thank Anne McDonough, a professional medical writer who provided
8 9	4	medical writing support funded by the authors.
10 11	5	Author Contributions ET contributed to the study concept. BPG and PS performed data
12 13	6	analysis. PS and AC extracted data and wrote the first draft of the manuscript. DL contributed
14 15	7	to the first draft of the manuscript. EC and ET wrote the final version of the manuscript. CB
16	8	reviewed the paper. All authors read, edited, and approved the final manuscript. The
17 18	9	corresponding author had full access to all the data in the study and had final responsibility for
19 20	10	the decision to submit for publication.
21 22	11	Funding This work was supported by the German Center for Infection Research Clinical
23	12	Research Unit for Health-Care Associated Infections grant number TTU 08.701 and DRIVE-
24 25	13	AB (115618). The funder had no involvement in the study design; in the collection, analysis
26 27	14	and interpretation of the data; in the writing of the report; or in the decision to submit the paper
28 29	15	for publication.
30 31	16	Competing interests The authors report no competing interests.
32 33	17	Patient consent Not required
34 25	18	Provenance and peer review Not commissioned; externally peer reviewed.
35 36 27	19	Data sharing statement Requests for data should be addressed to the corresponding author.
37 38	20	
39 40	21	Open access This is an open access article distributed in accordance with the Creative
41	22	Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to
42 43	23	distribute, remix, adapt, build upon this work non-commercially, and license their derivative
44 45	24	works on different terms, provided the original work is properly cited, appropriate credit is
46 47	25	given, any changes made indicated, and the use is non-commercial. See: http://
47 48	26	creativecommons. org/ licenses/ by- nc/ 4. 0/.
49 50	27	
51 52		
53		
54		
55 56		
57		
58 50		
J7		

1 REFERENCES

1 2 3

4 5

6

7 8

9 10

11 12

13

14

60

- Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new
 antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. *Lancet Infect Dis* 2018;18:318–27.
- 5 2. Schwaber MJ, Carmeli Y. Mortality and delay in effective therapy associated with
 6 extended-spectrum beta-lactamase production in Enterobacteriaceae bacteraemia: a
 7 systematic review and meta-analysis. *J Antimicrob Chemother* 2007;60:913–20.
- 15
 16
 17
 18
 10
 10
 11
 2012;67:1311-20.
 2012;67:1311-20.
 2012;67:1311-20.
- 12 4. Cassini A, Högberg LD, Plachouras D, et al; Attributable deaths and disability-adjusted
 13 life-years caused by infections with antibiotic-resistant bacteria in the EU and the European
 14 Economic Area in 2015: a population-level modelling analysis. *Lancet Infect Dis* 15 2019;19:56–66.
- 29 16 5. The World Bank. What the World Atlas method? is Bank 30 https://datahelpdesk.worldbank.org/knowledgebase/articles/77933-what-is-the-world-31 17 32 bank-atlas-method. Accessed January 14, 2019. 18 33
- 34 19 6. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M et al. The Newcastle-35 36 20 Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. 37 21 The Ottawa Health Research Institute: Ottawa, Canada. 38 39 http://www.ohri.ca/programs/clinical epidemiology/oxford.htm. Accessed April 14 2015 22 40
- 23 7. Higgins JPT, Green S (editors). *Cochrane Handbook for Systematic Reviews of*24 *Interventions* Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011.
 45 25 Available from http://handbook.cochrane.org.
- 26 8. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and
 27 meta-analyses: the PRISMA statement. *BMJ* 2009;339:b2535.
- 50 28 9. Lautenbach E, Patel JB, Bilker WB, et al. Extended-spectrum beta-lactamase-producing
 51 29 Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of
 53 30 resistance on outcomes. *Clin Infect Dis* 2001;32:1162–71.
- 31 10. Leistner R, Sakellariou C, Gurntke S, et al. Mortality and molecular epidemiology
 32 associated with extended-spectrum beta-lactamase production in Escherichia coli from
 33 bloodstream infection. *Infect Drug Resist* 2014;7:57–62.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2	
3	1
4 5	2
6	3
7 8	4
9 10	5
11	5
12 13	0
14 15	/
16	8
17 18	9
19	10
20 21	11
22 23	12
24	13
25 26	14
27	15
28 29	16
30 31	17
32	18
33 34	19
35 36	20
37	20
38 39	21
40	22
41 42	23
43 44	24
45	25
46 47	26
48	27
49 50	28
51 52	29
53	30
54 55	31
56	32
57 58	-
59 60	

Lin JN, Chen YH, Chang LL, et al. Clinical characteristics and outcomes of patients with
 extended-spectrum beta-lactamase-producing bacteremias in the emergency department.
 Intern Emerg Med 2011;6:547–55.

4 12. Kim HJ, Park JH, Park DI, et al. Clinical impact of extended-spectrum beta-lactamaseproducing Enterobacteriaceae in patients with biliary tract infection. *Dig Dis Sci*6 2013;58:841–9.

- 7 13. Kim SH, Kwon JC, Choi SM, et al. Escherichia coli and Klebsiella pneumoniae bacteremia
 8 in patients with neutropenic fever: factors associated with extended-spectrum beta9 lactamase production and its impact on outcome. *Ann Hematol* 2013;92:533–41.
- 10 14. Pillay T, Pillay DG, Adhikari M, et al. Piperacillin/tazobactam in the treatment of Klebsiella
 11 pneumoniae infections in neonates. *Am J Perinatol* 1998;15:47–51.
- 12 15. Kim BN, Woo JH, Kim MN, et al. Clinical implications of extended-spectrum beta 13 lactamase-producing Klebsiella pneumoniae bacteraemia. *J Hosp Infect* 2002;52:99–106.
- 14 16. Kim YK, Pai H, Lee HJ, et al. Bloodstream infections by extended-spectrum beta 15 lactamase-producing Escherichia coli and Klebsiella pneumoniae in children: epidemiology
 16 and clinical outcome. *Antimicrob Agents Chemother* 2002;46:1481–91.
- 17 17. Bhavnani SM, Ambrose PG, Craig WA, et al. Outcomes evaluation of patients with ESBL and non-ESBL-producing Escherichia coli and Klebsiella species as defined by CLSI
 reference methods: report from the SENTRY Antimicrobial Surveillance Program. *Diagn Microbiol Infect Dis* 2006;54:231–6.
- 18. Blomberg B, Jureen R, Manji KP, et al. High rate of fatal cases of pediatric septicemia
 caused by gram-negative bacteria with extended-spectrum beta-lactamases in Dar es
 Salaam, Tanzania. *J Clin Microbiol* 2005;43:745–9.
- Panhotra BR, Saxena AK, Al-Ghamdi AM. Extended-spectrum beta-lactamase-producing
 Klebsiella pneumoniae hospital acquired bacteremia. Risk factors and clinical outcome.
 Saudi Med J 2004;25:1871–6.
 - 27 20. Marra AR, Wey SB, Castelo A, et al. Nosocomial bloodstream infections caused by
 28 Klebsiella pneumoniae: impact of extended-spectrum beta-lactamase (ESBL) production
 29 on clinical outcome in a hospital with high ESBL prevalence. *BMC Infect Dis* 2006;6:24.
 - Skippen I, Shemko M, Turton J, et al. Epidemiology of infections caused by extended spectrum beta-lactamase-producing Escherichia coli and Klebsiella spp.: a nested case control study from a tertiary hospital in London. *J Hosp Infect* 2006;64:115–23.

Enterobacteriaceae.

22. Schwaber MJ, Navon-Venezia S, Kaye KS, et al. Clinical and economic impact of bacteremia with extended-spectrum-beta-lactamase-producing Antimicrob Agents Chemother 2006;50:1257-62. 23. Apisarnthanarak A, Kiratisin P, Saifon P, et al. Clinical and molecular epidemiology of community-onset, extended-spectrum beta-lactamase-producing Escherichia coli infections in Thailand: a case-case-control study. Am J Infect Control 2007;35:606-12. 24. Tumbarello M, Spanu T, Sanguinetti M, et al. Bloodstream infections caused by extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae: risk factors, molecular epidemiology, and clinical outcome. Antimicrob Agents Chemother 2006;50:498-504. 25. Apisarnthanarak A, Kiratisin P, Saifon P, et al. Risk factors for and outcomes of healthcare-associated infection due to extended-spectrum beta-lactamase-producing Escherichia coli or Klebsiella pneumoniae in Thailand. Infect Control Hosp Epidemiol 2007;28:873-6. doi: 10.1086/518725 26. Kanafani ZA, Mehio-Sibai A, Araj GF, et al. Epidemiology and risk factors for extended-spectrum beta-lactamase-producing organisms: a case control study at a tertiary care center in Lebanon. Am J Infect Control 2005;33:326-32. 27. Zaoutis TE, Goyal M, Chu JH, et al. Risk factors for and outcomes of bloodstream infection caused by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species in children. Pediatrics 2005;115:942-9. 28. Loh LC, Nor Izran Hanim Bt Abdul S, Rosdara Masayuni Bt Mohd S, et al. Hospital Outcomes of Adult Respiratory Tract Infections with Extended-Spectrum B-Lactamase (ESBL) Producing Klebsiella Pneumoniae. Malays J Med Sci 2007;14:36-40. 29. Melzer M, Petersen I. Mortality following bacteraemic infection caused by extended spectrum beta-lactamase (ESBL) producing E. coli compared to non-ESBL producing E. coli. J Infect 2007;55:254-9. doi: 10.1016/j.jinf.2007.04.007 30. Song KH, Jeon JH, Park WB, et al. Clinical outcomes of spontaneous bacterial peritonitis due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species: a retrospective matched case-control study. BMC Infect Dis 2009;9:41. 31. Bennett JW, Robertson JL, Hospenthal DR, et al. Impact of extended spectrum beta-lactamase producing Klebsiella pneumoniae infections in severely burned patients. J Am Coll Surg 2010;211:391-9. 32. Trecarichi EM, Tumbarello M, Spanu T, et al. Incidence and clinical impact of extended-spectrum-beta-lactamase (ESBL) production and fluoroquinolone resistance in bloodstream

Page 15 of 54

1

BMJ Open

2		
3 4	1	infections caused by Escherichia coli in patients with hematological malignancies. <i>J Infect</i>
5 6	2	2009;58:299–307.
7	3	33. Tuon FF, Kruger M, Terreri M, et al. Klebsiella ESBL bacteremia-mortality and risk
8 9	4	factors. Braz J Infect Dis 2011;15:594–8.
10 11	5	34. Kang CI, Song JH, Chung DR, et al. Risk factors and treatment outcomes of community-
12 12	6	onset bacteraemia caused by extended-spectrum beta-lactamase-producing Escherichia
14	7	coli. Int J Antimicrob Agents 2010;36:284–7.
15 16	8	35. Pena C, Gudiol C, Calatayud L, et al. Infections due to Escherichia coli producing extended-
17 19	9	spectrum beta-lactamase among hospitalised patients: factors influencing mortality. J Hosp
19	10	Infect 2008;68:116–22.
20 21	11	36. Tumbarello M, Spanu T, Di Bidino R, et al. Costs of bloodstream infections caused by
22 23	12	Escherichia coli and influence of extended-spectrum-beta-lactamase production and
24	13	inadequate initial antibiotic therapy. Antimicrob Agents Chemother 2010;54:4085–91.
25 26	14	37. Kang CI, Chung DR, Ko KS, et al. Risk factors for infection and treatment outcome of
27 28	15	extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae
29	16	bacteremia in patients with hematologic malignancy. Ann Hematol 2012;91:115-21.
30 31	17	38. Wu YH, Chen PL, Hung YP, et al. Risk factors and clinical impact of levofloxacin or
32 33	18	cefazolin nonsusceptibility or ESBL production among uropathogens in adults with
34	19	community-onset urinary tract infections. J Microbiol Immunol Infect 2014;47:197-203.
35 36	20	39. Rodriguez-Bano J, Picon E, Gijon P, et al. Community-onset bacteremia due to extended-
37 38	21	spectrum beta-lactamase-producing Escherichia coli: risk factors and prognosis. Clin Infect
39 40	22	Dis 2010;50:40–8.
41	23	40. Gurntke S, Kohler C, Steinmetz I, et al. Molecular epidemiology of extended-spectrum
42 43	24	beta-lactamase (ESBL)-positive Klebsiella pneumoniae from bloodstream infections and
44 45	25	risk factors for mortality. J Infect Chemother 2014;20:817–9.
46	26	41. Oh MM, Chae JY, Kim JW, et al. Positive culture for extended-spectrum beta-lactamase
47 48	27	during acute prostatitis after prostate biopsy is a risk factor for progression to chronic
49 50	28	prostatitis. Urology 2013;81:1209–12.
51 52	29	42. Leistner R, Gurntke S, Sakellariou C, et al. Bloodstream infection due to extended-spectrum
52 53	30	beta-lactamase (ESBL)-positive K. pneumoniae and E. coli: an analysis of the disease
54 55	31	burden in a large cohort. <i>Infection</i> 2014;42:991–7.
56 57	32	43. Ku NS, Chung HS, Choi JY, et al. Clinical usefulness of the 2010 clinical and laboratory
58	33	standards institute revised breakpoints for cephalosporin use in the treatment of bacteremia
59 60	34	caused by Escherichia coli or Klebsiella spp. <i>Biomed Res Int</i> 2015:2015:831074
	~ •	

2		
3	1	44. Anunnatsiri S, Towiwat P, Chaimanee P. Risk factors and clinical outcomes of extended
4 5	2	spectrum beta-lactamase (ESBL)-producing Escherichia coli septicemia at Srinagarind
6 7	3	University Hospital, Thailand. Southeast Asian J Trop Med Public Health 2012;43:1169-
8 9	4	77.
10	5	45. Kang CI, Kim SH, Kim DM, et al. Risk factors for and clinical outcomes of bloodstream
12	6	infections caused by extended-spectrum beta-lactamase-producing Klebsiella pneumoniae.
13 14	7	Infect Control Hosp Epidemiol 2004;25:860–7.
15 16	8	46. Raviv Y, Shitrit D, Amital A, et al. Multidrug-resistant Klebsiella pneumoniae acquisition
17	9	in lung transplant recipients. Clin Transplant 2012;26:E388-94.
18 19	10	47. MacVane SH, Tuttle LO, Nicolau DP. Impact of extended-spectrum beta-lactamase-
20 21	11	producing organisms on clinical and economic outcomes in patients with urinary tract
22	12	infection. J Hosp Med 2014;9:232–8.
23 24	13	48. Abhilash KP, Veeraraghavan B, Abraham OC. Epidemiology and outcome of bacteremia
25 26	14	caused by extended spectrum beta-lactamase (ESBL)-producing Escherichia coli and
27 28	15	Klebsiella spp. in a tertiary care teaching hospital in south India. J Assoc Physicians India
29	16	2010;58 Suppl:13-7.
30 31	17	49. Shanthi M, Sekar U. Extended spectrum beta lactamase producing Escherichia coli and
32 33	18	Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. J
34 35	19	Assoc Physicians India 2010;58 Suppl:41–4.
36	20	50. Han SB, Jung SW, Bae EY, et al. Extended-spectrum beta-lactamase-producing Escherichia
37 38	21	coli and Klebsiella pneumoniae bacteremia in febrile neutropenic children. Microb Drug
39 40	22	<i>Resist</i> 2015;21:244–51.
41	23	51. Lee S, Song DY, Cho SH, et al. Impact of extended-spectrum beta-lactamase on acute
42 43	24	pyelonephritis treated with empirical ceftriaxone. Microb Drug Resist 2014;20:39-44.
44 45	25	52. Chayakulkeeree M, Junsriwong P, Keerasuntonpong A, et al. Epidemiology of extended-
46 47	26	spectrum beta-lactamase producing gram-negative bacilli at Siriraj Hospital, Thailand,
48	27	2003. Southeast Asian J Trop Med Public Health 2005;36:1503–9.
49 50	28	53. Apisarnthanarak A, Kiratisin P, Mundy LM. Predictors of mortality from community-onset
51 52	29	bloodstream infections due to extended-spectrum beta-lactamase-producing Escherichia
53	30	coli and Klebsiella pneumoniae. Infect Control Hosp Epidemiol 2008;29:671-4.
54 55	31	54. Apisarnthanarak A, Kiratisin P, Saifon P, et al. Predictors of mortality among patients with
56 57	32	community-onset infection due to extended-spectrum beta-lactamase-producing
58 59 60	33	Escherichia coli in Thailand. Infect Control Hosp Epidemiol 2008;29:80-2.
00		
		17

BMJ Open

3 4	1	55. Jean SS, Ko WC, Xie Y, et al. Clinical characteristics of patients with community-acquired
5	2	complicated intra-abdominal infections: a prospective, multicentre, observational study. Int
6 7	3	J Antimicrob Agents 2014;44:222–8.
8 9	4	56. Lee J, Pai H, Kim YK, et al. Control of extended-spectrum beta-lactamase-producing
10	5	Escherichia coli and Klebsiella pneumoniae in a children's hospital by changing
12	6	antimicrobial agent usage policy. J Antimicrob Chemother 2007;60:629-37.
13 14	7	57. Briongos-Figuero LS, Gomez-Traveso T, Bachiller-Luque P, et al. Epidemiology, risk
15 16	8	factors and comorbidity for urinary tract infections caused by extended-spectrum beta-
10	9	lactamase (ESBL)-producing enterobacteria. Int J Clin Pract 2012;66:891-6.
18 19	10	58. Ha YE, Kang CI, Cha MK, et al. Epidemiology and clinical outcomes of bloodstream
20 21	11	infections caused by extended-spectrum beta-lactamase-producing Escherichia coli in
22 23	12	patients with cancer. Int J Antimicrob Agents 2013;42:403–9.
24	13	59. Du B, Long Y, Liu H, et al. Extended-spectrum beta-lactamase-producing Escherichia coli
25 26	14	and Klebsiella pneumoniae bloodstream infection: risk factors and clinical outcome.
27 28	15	Intensive Care Med 2002;28:1718–23.
29	16	60. Stone PW, Gupta A, Loughrey M, et al. Attributable costs and length of stay of an extended-
30 31	17	spectrum beta-lactamase-producing Klebsiella pneumoniae outbreak in a neonatal intensive
32 33	18	care unit. Infect Control Hosp Epidemiol 2003;24:601-6.
34 35	19	61. Pena C, Pujol M, Ardanuy C, et al. An outbreak of hospital-acquired Klebsiella pneumoniae
36	20	bacteraemia, including strains producing extended-spectrum beta-lactamase. J Hosp Infect
37 38	21	2001;47:53–9.
39 40	22	62. Kola A, Maciejewski O, Sohr D, et al. Clinical impact of infections caused by ESBL-
41 42	23	producing E. coli and K. pneumoniae. Scand J Infect Dis 2007;39:975-82.
43	24	63. Tsai MH, Lee IT, Chu SM, et al. Clinical and Molecular Characteristics of Neonatal
44 45	25	Extended-Spectrum beta-Lactamase-Producing Gram-Negative Bacteremia: A 12-Year
46 47	26	Case-Control-Control Study of a Referral Center in Taiwan. PLoS One
48	27	2016;11(8):e0159744.
49 50	28	64. Maslikowska JA, Walker SA, Elligsen M, et al. Impact of infection with extended-spectrum
51 52	29	beta-lactamase-producing Escherichia coli or Klebsiella species on outcome and
53	30	hospitalization costs. J Hosp Infect 2016;92:33-41.
54 55	31	65. Onken A, Said AK, Jorstad M, et al. Prevalence and antimicrobial resistance of microbes
56 57	32	causing bloodstream infections in Unguja, Zanzibar. PLoS One 2015;10:e0145632.
58 59	33	66. Nguyen ML, Toye B, Kanji S, et al. Risk factors for and outcomes of bacteremia caused by
60	34	extended-spectrum β -lactamase-producing Escherichia coli and Klebsiella species at a

1

2 3	1	Canadian tertiary care bosnital Can I Hosn Pharm 2015:68(2):136 43 [published Online]
4	1 2	Eirst: 2015/05/13]
6	2	67 Denis B. Lafaurie M. Donay, II. et al. Prevalence, rick factors, and impact on clinical
7 8	3	outcome of extended encetrum here lastemase producing Escherichia coli bastereomic: a
9 10	4 5	five weer study. Int Unfact Dis 2015:20:1.6
11	5	(2) Change T. Manchaine D. Jahusen DC, et al. Disk fasters for his deterministration second
12 13	0	68. Chopra 1, Marchaim D, Johnson PC, et al. Risk factors for bloodstream infection caused
14 15	/	by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsielia
16	8	pneumoniae: A focus on antimicrobiais including cerepime. Am J Inject Control
17 18	9	2015;43:719–23.
19 20	10	69. Artero A, Esparcia A, Alberola J, et al. Prospective cohort study of risk factors for extended-
21	11	spectrum ss-lactamase-producing Escherichia coli urinary tract infections in elderly patients
22 23	12	admitted to hospital. Int J Clin Pract 2017;71:doi:10.1111/ijcp.13001
24 25	13	70. Chen IL, Huang HC, Wu CT, et al. Analysis of early-onset bloodstream infection due to
26	14	Escherichia coli infection in premature babies. <i>Medicine</i> 2017;96:e7748.
27 28	15	71. Islas-Munoz B, Volkow-Fernandez P, Ibanes-Gutierrez C, et al. Bloodstream infections in
29 30	16	cancer patients. Risk factors associated with mortality. Int J Infect Dis 2018;71:59-64.
31	17	72. Ma J, Li N, Liu Y, et al. Antimicrobial resistance patterns, clinical features, and risk factors
32 33	18	for septic shock and death of nosocomial E coli bacteremia in adult patients with
34 35	19	hematological disease: A monocenter retrospective study in China. Medicine
36	20	2017;96:e6959.
37 38	21	73. Man MY, Shum HP, Chan YH, et al. Clinical predictors and outcomes of Klebsiella
39 40	22	pneumoniae bacteraemia in a regional hospital in Hong Kong. J Hosp Infect 2017;97:35-
41	23	41.
42 43	24	74. Marando R, Seni J, Mirambo MM, et al. Predictors of the extended-spectrum-beta
44 45	25	lactamases producing Enterobacteriaceae neonatal sepsis at a tertiary hospital, Tanzania.
46 47	26	Int J Med Microbiol 2018;308:803–11.
48	27	75. Namikawa H, Yamada K, Fujimoto H, et al. Clinical characteristics of bacteremia caused
49 50	28	by extended-spectrum beta-lactamase-producing Escherichia coli at a tertiary hospital.
51 52	29	Intern Med 2017;56:1807–15.
53	30	76. Shi SH, Feng XN, Lai MC, et al. Biliary diseases as main causes of pyogenic liver abscess
54 55	31	caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae. Liver Int
56 57	32	2017;37:727–34.
58		
59 60		

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
27	
20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	

1	77. Tanir Basaranoglu S, Ozsurekci Y, Aykac K, et al. A comparison of blood stream infections
2	with extended spectrum beta-lactamase-producing and non-producing Klebsiella
3	pneumoniae in pediatric patients. Ital J Pediat 2017;43:79.
4	78. Razazi K, Mekontso Dessap A, Carteaux G, et al. Frequency, associated factors and
5	outcome of multi-drug-resistant intensive care unit-acquired pneumonia among patients
6	colonized with extended-spectrum beta-lactamase-producing Enterobacteriaceae. Ann
7	Intensive Care 2017;7:61.
8	79. Ray S, Anand D, Purwar S, et al. Association of high mortality with extended-spectrum
9	beta-lactamase (ESBL) positive cultures in community acquired infections. J Crit Care
10	2018;44:255–60.
11	80. Haruki Y, Hagiya H, Haruki M, et al. Clinical characteristics and outcome of critically ill
12	patients with bacteremia caused by extended-spectrum beta-lactamase-producing and non-
13	producing Escherichia coli. J Infect Chemother 2018;24:944-7.
14	81. Lin WT, Tang HJ, Lai CC, et al. Clinical manifestations and bacteriological features of
15	culture-proven Gram-negative bacterial arthritis. J Microbiol Immunol Infect 2017;50:527-
16	31.
17	82. Buys H, Muloiwa R, Bamford C, et al. Klebsiella pneumoniae bloodstream infections at a
18	South African children's hospital 2006-2011, a cross-sectional study. BMC Infect Dis
19	2016;16:570.
20	83. Lee CC, Lee CH, Hong MY, et al. Propensity-matched analysis of the impact of extended-
21	spectrum beta-lactamase production on adults with community-onset Escherichia coli,

- Klebsiella species, and Proteus mirabilis bacteremia. J Microbiol Immunol Infect
 2018;51:519–26.
- 84. Huang YY, Alleyne A, Leung V, et al. Urosepsis due to extended-ppectrum beta-lactamase producing Escherichia coli: a retrospective, single-centre review of risk Factors and clinical
 outcomes. *Can J Hosp Pharm* 2018;71:119-27.
- 8 27 85. Komatsu Y, Kasahara K, Inoue T, et al. Molecular epidemiology and clinical features of
 9 28 extended-spectrum beta-lactamase- or carbapenemase-producing Escherichia coli
 1 29 bacteremia in Japan. *PLoS One* 2018;13:e0202276.
- 30 86. Liu M, Li M, Wu L, et al. Extended-spectrum beta-lactamase-producing E. coli septicemia
 31 among rectal carriers in the ICU. *Medicine* 2018;97:e12445.
- 32 87. Nivesvivat T, Piyaraj P, Thunyaharn S, et al. Clinical epidemiology, risk factors and
 33 treatment outcomes of extended-spectrum beta-lactamase producing Enterobacteriaceae

bacteremia among children in a tertiary care hospital, Bangkok, Thailand. BMC Res Notes 2018;11:624. 88. Cordery RJ, Roberts CH, Cooper SJ, et al. Evaluation of risk factors for the acquisition of bloodstream infections with extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species in the intensive care unit; antibiotic management and clinical outcome. J Hosp Infect 2008;68:108-15. 89. Daikos GL, Kosmidis C, Tassios PT, et al. Enterobacteriaceae bloodstream infections: presence of integrons, risk factors, and outcome. Antimicrob Agents Chemother 2007;51:2366-72. doi: 10.1128/AAC.00044-07 [published Online First: 2007/04/25] 90. Gudiol C, Calatayud L, Garcia-Vidal C, et al. Bacteraemia due to extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) in cancer patients: clinical features, risk factors, molecular epidemiology and outcome. J Antimicrob Chemother 2010;65(2):333-41. 91. Marchaim D, Gottesman T, Schwartz O, et al. National multicenter study of predictors and outcomes of bacteremia upon hospital admission caused by Enterobacteriaceae producing extended-spectrum beta-lactamases. Antimicrob Agents Chemother 2010;54:5099-104. 92. Menashe G, Borer A, Yagupsky P, et al. Clinical significance and impact on mortality of extended-spectrum beta lactamase-producing Enterobacteriaceae isolates in nosocomial bacteremia. Scand J Infect Dis 2001;33:188-93. 93. Ortega M, Marco F, Soriano A, et al. Analysis of 4758 Escherichia coli bacteraemia episodes: predictive factors for isolation of an antibiotic-resistant strain and their impact on the outcome. J Antimicrob Chemother 2009;63:568-74. 94. Szilagyi E, Fuzi M, Borocz K, et al. Risk factors and outcomes for bloodstream infections with extended-spectrum beta-lactamase-producing Klebsiella pneumoniae; Findings of the nosocomial surveillance system in Hungary. Acta Microbiol Immunol Hung 2009;56:251-62. doi: 95. Tsai SS, Huang JC, Chen ST, et al. Characteristics of Klebsiella pneumoniae bacteremia in community-acquired and nosocomial infections in diabetic patients. Chang Gung Med J 2010;33:532-9. 96. Carrara E, Pfeffer I, Zusman O, et al. Determinants of inappropriate empirical antibiotic treatment: systematic review and meta-analysis. Int J Antimicrob Agents 2018;51:548-53, 97. Horcajada JP, Shaw E, Padilla B, et al. Healthcare-associated, community-acquired and hospital-acquired bacteraemic urinary tract infections in hospitalized patients: a prospective

1 ว		
3	1	multicentre cohort study in the era of antimicrobial resistance. Clin Microbiol Infect. 2013
4 5	2	Oct;19(10):96
6 7	3	98. Gandra S, Barter DM, Laxminarayan R. Economic burden of antibiotic resistance: how
8 9	4	much do we really know? Clin Microbiol Infect 2014;20:973-80.
$\begin{array}{c} 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 9\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 27\\ 28\\ 29\\ 30\\ 31\\ 23\\ 34\\ 35\\ 36\\ 37\\ 38\\ 9\\ 40\\ 41\\ 43\\ 44\\ 56\\ 47\\ 48\\ 9\\ 50\\ 55\\ 56\\ 57\\ 89\\ 60\\ \end{array}$		

FIGURE LEGENDS

Figure 1: Literature search and study inclusion and exclusion

Figure 2: Pooled risk ratios for all-cause mortality in patients with ESBL bloodstream

infections compared to patients with non-ESBL bloodstream infections- subgroups not included in attributable mortality

Figure 3: Pooled risk ratios for attributable mortality in patients with ESBL bloodstream infections compared to patients with non-ESBL bloodstream infections

nean α... i to patients with ... Figure 4: Weighted mean difference in the length of stay for patients with ESBL bloodstream infections compared to patients with non-ESBL bloodstream infections

 BMJ Open

Page 24 of 54

Category	Ν		risk ratio (95% CI)
Overall			
Overall	56	→	1.70 (1.52, 1.90)
Mortality time			
14 day mortality	5	│ — → — —	1.77 (1.15, 2.72)
28 day mortality	22		1.63 (1.35, 1.97)
Time not defined	27	-	1.70 (1.47, 1.97)
Income classification			
High income countries	41		1.76 (1.54, 2.00)
Low/middle income countries	15		1.56 (1.25, 1.96)
Study population			
All kinds of patients	36		1.65 (1.43, 1.90)
Cancer patients	5	│ — → — ─	1.73 (1.16, 2.57)
Children	7	│	2.09 (1.62, 2.71)
Neonates	3		1.76 (1.27, 2.45)
Appropriateness of therapy			
Reported	44	-	1.75 (1.54, 1.99)
Not reported	12		1.55 (1.26, 1.90)
	For peer review only - http://bmjopen.bmj.com/site/about/g	I I I I 1 2 3 uidelines.xhtml	4
			risk
--	----	-----------	------------------------------
Category	Ν		ratio (95% CI)
Overall			
Overall	11	-	1.75 (1.45, 2.1
Pathogen			
Klebsiella pneumoniae	4		1.60 (1.18, 2.1
Escherichia coli & Klebsiella pneumoniae	2		2.84 (1.34, 6.02
Gram negative bacteria	5		1.76 (1.33, 2.34
Study design			
Retrospective cohort studies	6	→	1.80 (1.37, 2.3)
Case cohort studies	3		1.56 (1.09, 2.2
Study period			
Years: 1991–1999	3		1.53 (1.10, 2.12
Years: 2000–2009	7		1.91 (1.43, 2.54
MIC			
Reported	7	_	1.76 (1.37, 2.25
Not reported	4		1.73 (1.20, 2.5 ⁻
Empirical therapy			
Reported	4	│↓	1.76 (1.17, 2.64
Not reported	3		1.76 (1.18, 2.63

Page 26 of 54

Category	Ν			Weighted mean difference (95% CI)
Setting				
Hospital	17			4.41 (3.37, 5.45)
ICU	4			3.07 (1.61, 4.54)
Definition				
Post infection	8	_		4.57 (2.95, 6.20)
Total	11			4.05 (2.89, 5.22)
Pathogen				
Klebsiella pneumoniae	3			◆ 7.67 (4.63, 10.71)
Escherichia coli	4		•	6.07 (3.70, 8.43)
Escherichia coli & Klebsiella pneumoniae	5			6.37 (4.22, 8.52)
Gram negative bacteria	5	│ — ◆ —		1.83 (0.28, 3.38)
Study design				
Retrospective cohort studies	9			6.43 (4.66, 8.20)
Case cohort studies	7			3.32 (2.03, 4.61)
Income classification				
High income countries	13		—	4.56 (3.43, 5.69)
Low/middle income countries	4		♦	3.55 (0.84, 6.26)
Continent				
Europe	6			7.96 (6.12, 9.80)
North America	3		•	→ 6.39 (2.72, 10.05)
Asia	7	→	•	2.08 (0.72, 3.44)
Study period				
Years: 1991–1999	2		•	5.72 (2.69, 8.75)
Years: 2000–2009	12		—	4.22 (3.02, 5.43)
Years: 2010–2018	3		•	4.30 (1.38, 7.22)
	-2	0 2	 5	I 10
		Numb	er of days of hospital sta	/
For	peer review only - h	http://bmjopen.bmj.com/s	ite/about/guidelines.xhtml	

The y axis se(logRR) is the standard error of the log risk ratio Pseudo 95% confidence limit refers to the 95% confidence limits around the summary treatment effect for each standard error on the vertical axis and to the expected distribution of studies in the absence of heterogeneity or of selection biases.

The y axis se(WMD) is the standard error of the weighted mean difference. Pseudo 95% confidence limit refers to the 95% confidence limits around the summary treatment effect for each standard error on the vertical axis and to the expected distribution of studies in the absence of heterogeneity or of selection biases.

Supplementary figure 3: Pooled risk ratios for all-cause mortality in patients with ESBL bloodstream infections compared to patients with non-ESBL bloodstream infections—all subgroups

Category	Ν		ratio (95% CI)
Overall			
Overall	56	+	1.70 (1.52, 1.90)
Mortality time			
14 day mortality	5		1.77 (1.15, 2.72)
28 day mortality	22	→	1.63 (1.35, 1.97)
Time not defined	27		1.70 (1.47, 1.97)
Pathogen			
Klebsiella pneumoniae	12	→	1.48 (1.17, 1.87)
Escherichia coli	16	→	1.82 (1.50, 2.21)
Escherichia coli & Klebsiella pneumoniae	13		2.08 (1.44, 3.01)
Gram negative bacteria	15		1.66 (1.43, 1.94)
Study design			
Prospective cohort studies	11	→	1.78 (1.45, 2.17)
Retrospective cohort studies	33	→	1.68 (1.46, 1.93)
Case cohort studies	12		1.76 (1.27, 2.45)
Income classification			
High income countries	41	→	1.76 (1.54, 2.00)
Low/middle income countries	15		1.56 (1.25, 1.96)
Study period			
Years: 1991–1999	9		1.56 (1.15, 2.11)
Years: 2000–2009	32		1.74 (1.50, 2.01)
Years: 2010–2018	15		1.72 (1.39, 2.13)
Study population			
All kinds of patients	36		1.65 (1.43, 1.90)
Cancer patients	5	→	1.73 (1.16, 2.57)
Children	7	→	2.09 (1.62, 2.71)
Neonates	3		1.76 (1.27, 2.45)
Appropriateness of therapy			
Reported	44	+	1.75 (1.54, 1.99)
Not reported	12	→	1.55 (1.26, 1.90)
міс			
Reported	33		1.79 (1.56, 2.06)
Not reported	23	→-	1.56 (1.30, 1.88)
Empirical therapy			
Reported	15		2.13 (1.78, 2.55)
Not reported	9	→	1.77 (1.45, 2.15)

Supplementary figure 4: Pooled risk ratios for all-cause mortality in patients with noninvasive ESBL infections compared to patients with noninvasive non-ESBL infections

Category	Ν		risk ratio (95% CI)
Overall			
Overall	7	→	1.58 (1.23, 2.02)
Pathogen			
Escherichia coli	2	↓←	1.30 (0.85, 1.98)
Escherichia coli & Klebsiella pneumoniae	2	•	5.46 (1.00, 29.81)
aram negative bacteria	2	+	2.04 (0.81, 5.16)
Study design			
Prospective cohort studies	2	→	1.58 (1.16, 2.17)
Retrospective cohort studies	4		2.16 (1.26, 3.71)
ncome classification			
ligh income countries	5	 →	1.53 (1.12, 2.09)
ow/middle income countries	2	→	1.81 (1.00, 3.29)
Study period			
Years: 2000–2009	3	↓ →	1.40 (0.87, 2.27)
/ears: 2010–2018	4	- 	1.69 (1.25, 3.39)
Appropriateness of therapy			
Reported	4	 →	1.48 (1.13, 1.95)
Not reported	3		2.05 (1.17, 3.59)
МІС			
Reported	2 -	→	1.49 (0.38, 5.88)
Not reported	5	→	1.69 (1.29, 2.22)
AmpC			
Reported	2	↓ • • • • • • • • • • • • • • • • • • •	1.85 (0.93, 3.71)
Not reported	5	 	1.56 (1.13, 2.14)
			1

Supplementary figure 5: Weighted mean differences in length of hospital stay in patients with noninvasive ESBL infections compared to patients with noninvasive non-ESBL infections

Supplementary table S1: Search terms used in PubMed :

((ESBL[tw] OR ""Extended spectrum beta-lactamase""[tw] OR ESBL[Mesh] OR ""Extended spectrum beta-lactamase"" [Mesh]) OR Extended spectrum ? lactamase[tw] OR Extended spectrum ? lactamase[Mesh])

AND

(Escherichia Coli[Mesh] OR E.coli[Mesh] OR Escherichia Coli[tw] OR E.coli[tw])) OR (Klebsiella pneumoniae[Mesh] OR K.Pneumoniae[Mesh] OR Klebsiella pneumoniae[tw] OR K.Pneumoniae[tw])

Coupled with

(length of stay[mesh] OR (hospitalisation[tw] AND length[tw]) OR length of hospitalisation[tw] OR length of hospitalization[tw] OR duration of hospitalization[tw] duration of hospitalisation[tw] OR LOS[tw] OR ((period[tw] OR length[tw]) AND (hospital stay[tw] OR hospitalisation[tw] OR hospitalization[tw]) OR

(mortality[mesh] OR mortality[tw] OR death rate[tw] OR fatality[tw] OR survival rate[tw] OR death[tw] OR died[tw] OR dead[tw]))) OR

(cost*[Title/Abstract] OR"costs and cost analysis"[MeSH:noexp])

Coupled with

("0001/01/01"[PDat] : "2018/10/01"[PDat]]))

Supplementary table S2: Modified Newcastle Ottawa quality assessment scale for case-control studies and cohort studies.

For case cohort studies, the quality criteria assessed are

		*	
1	Is the case definition adequate?	a*	yes, with independent validation
		b	yes, eg. record linkage or based on self-report
		с	no description
2	Representativeness of the cases	a*	consecutive or obviously representative series of cases
		b	potential for selection biases or not stated
3	Selection of Controls	a*	community controls
		b	hospital controls
		с	no description
4	Definition of Controls	a*	no history of disease (endpoint)
		b	no description of source
5	Comparability of cases and controls on the basis of the design or analysis	a*	study controls for at least one variable (including age, sex and comorbidities)
		b**	study controls for more than one variable (including age, sex and comorbidities)
6	Ascertainment of exposure	a*	secure record (eg surgical records)
		b	structured interview blind to case/control status
		с	interview not blinded to case/control status
		d	written self-report or medical record only
		е	no description
7	Same method of ascertainment for cases and controls	a*	yes
		b	no
		с	unclear
-	Non-Response rate	a	same rate for both groups
8			
8		b	non respondents described
8		b c	non respondents described rate different and no designation
8		b c	non respondents described rate different and no designation
8		b c	non respondents described rate different and no designation
8	For cohort studies, the quality criteria assessed are	b c	non respondents described rate different and no designation
8	For cohort studies, the quality criteria assessed are	b c	non respondents described rate different and no designation
8	For cohort studies, the quality criteria assessed are	b c	non respondents described rate different and no designation truly representative
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort	b c 	non respondents described rate different and no designation truly representative somewhat representative
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort	b c 	non respondents described rate different and no designation truly representative somewhat representative selected group of users
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort	b c a* b* c d	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description
1	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort	b c a* b* c d a*	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort
1	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort	b c a* b* c d a* b	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source
1	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort	b c a* b* c d a* b c	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort
1	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure	b c a* b* c d a* b c c a*	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records)
1	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure	b c a* b* c d a* b c a* a* a*	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview
1	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure	b c b* c d a* b c a* b c a* a* c	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report
8 1 2 3	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure	b c b* c d a* b c a* b c a* a* c d d	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description
1 2 3 4	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure Demonstration that outcome of interest was not present at start of	b c b b c d a* b c a* b c a* a* c d a*	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description ves
8 1 2 3 4	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure Demonstration that outcome of interest was not present at start of study	b c a* b* c d a* b c a* a* c d a*	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description yes
8 1 2 3 4	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure Demonstration that outcome of interest was not present at start of study	b c a* b* c d a* b c a* a* c d a* c d a* b b	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description yes no
8 1 2 3 4	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure Demonstration that outcome of interest was not present at start of study	b c c b c d a * b c a * c d a * c d a * c d a * c c c c c c c c c c c c c c c c c c	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description yes no unclear
8 1 2 3 3 4	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure Demonstration that outcome of interest was not present at start of study Comparability of cohorts on the basis of the design or analysis	b c c b c d a * b c a * c d a * c d a * c d a * c c d a * b c c a * b c c a * c c c c c c c c c c c c c c c c	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description yes no unclear study controls for age or comorbidities
8 1 2 3 4 5	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure Demonstration that outcome of interest was not present at start of study Comparability of cohorts on the basis of the design or analysis	b c c b c d a * b c a * c d a * c d a * c d a * c c d a * b c a * c c d a * b c c a * b * c c c c c c c c c c c c c c c c c	non respondents described rate different and no designation rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description yes no unclear study controls for age or comorbidities study controls for age and comorbidities
8 1 2 3 3 4 5 6	For cohort studies, the quality criteria assessed are For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Selection of the non-exposed cohort Selection of the non-exposed cohort Demonstration that outcome of interest was not present at start of study Comparability of cohorts on the basis of the design or analysis Assessment of outcome:	b c c b c d a * b c a * c d a * c d a * c d a * c d a * c c a * c c a * c c a * b c c a * b * c c a * b * c c a * b * c c a * b * c c a * c a * c c a * c c a * c a * c c a * * c a * c a * * c a * * c a * c a * c a * c a * c a * c a * c a * c a * c a a	non respondents described rate different and no designation rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description yes no unclear study controls for age or comorbidities study controls for age and comorbidities independent blind assessment
8 1 2 3 3 4 5 6	For cohort studies, the quality criteria assessed are For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Selection of the non-exposed cohort Selection of the non-exposed cohort Demonstration that outcome of interest was not present at start of study Comparability of cohorts on the basis of the design or analysis Assessment of outcome:	b c c b c d a * b c a * c d a * c d a * c d a * c c d a * c c a * c c a * c c a * b * c c a * b * c c a * b * c c a * b * c c a * b * c c a * b * c c a * b * c c a * c a * c c a * b * c c a * c c a * c a * c c a * c c a * c a * c a * c a * c a * c c a * c * c	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description yes no unclear study controls for age or comorbidities study controls for age and comorbidities independent blind assessment record linkage
8 1 2 3 4 5 6	For cohort studies, the quality criteria assessed are For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure Demonstration that outcome of interest was not present at start of study Comparability of cohorts on the basis of the design or analysis Assessment of outcome:	b c c b c d a* b c a* d a* c d a* c d a* b c a* c d a* c a* c d a* b c a* c a b c a a* b b c c a a b b c c a c b b c c c c c c	non respondents described rate different and no designation rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description yes no unclear study controls for age or comorbidities study controls for age and comorbidities independent blind assessment record linkage self-report

7	Follow-up long enough for outcomes to occur	a*	yes
		b	no
		С	unclear
8	Adequacy of follow up of cohorts	a*	complete follow up – all that matters subjects accounted for, subjects lost to follow up unlikely to introduce bias - small number
		b*	inadequate numbers but description provided of those lost
		С	inadequate follow up rate and no description of those lost
		d	no statement

Thresholds for converting the Newcastle-Ottawa scales to AHRQ standards (good, fair, and poor):

Good quality: 3 or 4 stars in selection domain AND 1 or 2 stars in comparability domain AND 2

or 3 stars in outcome/exposure domain

Fair quality: 2 stars in selection domain AND 1 or 2 stars in comparability domain AND 2 or 3 stars in outcome/exposure domain

Poor quality: 0 or 1 star in selection domain OR 0 stars in comparability domain OR 0 or 1 stars in outcome/exposure domain

Subgroup	All Studies	Bloodstream infections	Noninvasive infections
	87	57	10
Country			
South Korea 11,12,14,15,29,33,36,40,42,44,49,50,55,57	14	9	2
Thailand 22,24,43,51-53,86	7	3	
USA 8,16,26,30,46,59,67	7	2	1
Spain 34,38,56,60,68,89,92	7	4	2
Taiwan 10,37,62,69,80,82,94	7	5	2
China 58,71,72,75,85	5	4	
Israel ^{21,45,90,91}	4	3	
Germany ^{9,39,41,61}	4	3	
Italy ^{23,31,35}	3	3	
Japan ^{74,79,84}	3	3	
Tanzania ^{17,64,73}	3	3	
India 47,48,78	3	1	1
Canada 63,65,83	3	2	
UK 20,28,87	3	3	
France ^{66,77}	2	1	1
South Africa 13,81	2	1	
Brazil 13,81	2	2	
Greece 88	1	1	
Hungary ⁹³	1	1	
Lebanon ²⁵	1	-	16.
Malaysia ²⁷	1	-	1
Mexico ⁷⁰	1	1	
Saudi Arabia 18	1	1	
Turkey ⁷⁶	1	1	
Continent			
Δsia 10-12,14,15,18,21,22,23,25,27,29,33,36,37,40,42-45,47-53,55,57,58,62,69,71,72,74,74,78-80,82,84-86,90,91.94	46	29	6
Furone 9,20,23,28,31,34,35,38,39,41,56,60,61,66,68,76,77,87-89,92,93	22	17	3
North America 8,16,26,30,46,59,63,65,67,83	10	4	1
Africa ^{13,17,64,73,81}	5	4	-
South America ^{19,32,70}	3	3	-
More than 1 continent ⁵⁴	1	-	-

Income group			
High-income countries 8-12,14-16,18,20,21,23,26,28-31,34-42,44-46,49,50,55-57,59-63,65-69,74,77,79,80,82-84,87-94,	60	41	8
Low- and middle-income countries ^{13,17,19,22,24,25,27,32,43,48,51-53,58,64,70-73,75,76,78,81,85,86}	26	16	2
High-income countries AND Low- and middle-income countries 54	1	-	-
Study design			
Case cohort study 8,10,22-26,29,38,42,44,53,56,59,61-63,65-67,83-85	24	14	
Retrospective cohort study 9,11-15,18,19,21,27,31-36,39-41,43,45,46,48-52,57,58,69,71,72,74-76,79-82,86,87,91,93,94	44	32	
Prospective cohort study 16,17,28,30,37,47,54,60,64,68,70,73,77,78,88-90,92	18	11	
Year group			
1991_1999 8,58,13,14,15,60,19,23,26,34,44,91,92	13	10	-
2000-2009 9-12,16-18,20-22,24,25,27-33,35-43,45,47-50,52,53,55,56,59,61,62,65-67,87-90,93,94	49	31	6
2010_2018 46,51,52,57,63,64,68-86	25	16	4
2010 2010	25	10	-т
Pathogen			
Escherichia coli 9,22,28,31,33-35,38,41,43,50,53,56,57,66,68,69,71,74,84,85,89,92	23	16	3
Klebsiella pneumoniae 13,14,18,19,23,27,30,32,39,41,45,59,60,72,76,81,93,94	17	11	1
E. coli and K. pneumoniae 8,11,12,15,24,26,36,41,42,44,46,48,49,52,55,58,61,67,83,86,87	20	13	2
Gram-negative bacteria ^{10,16,17,20,21,25,29,37,40,47,51,54,62-65,70,73,75,77-80,82,88,90,91}	27	17	4
Study setting			
Entire hospital ^{8,9,14,16,18-25,27,28,31-36,38-44,46-48,50-53,56-58,60,63-67,71,72,74,80,83,84,88-94}	57	40	7
Intensive care unit 30,59,62,73,77-79,86,87	9	5	1
Pediatric ward 15,17,26,49,55,76,81,86	8	7	-
Neonatal ward 13,59,62,69,73	5	3	-
Neonatal intensive care unit 59,62,73	3	2	-
Medical ward 11,37,68	3	-	2
Not provided ^{29,45}	2	-	-
Emergency Department ^{10,82}	2	2	-
Surgical ward ^{30,54}	2	-	-
Burn unit ³⁰	1	-	-
Oncology ⁷⁰	1	1	-
Referral centre for hepatopacreaticobiliary diseases 75	1	-	-
Hematological ¹²	1	1	-
,	1		

Page	37 of	54
------	-------	----

Il kinds of patients 8-11,12,16,18-25,27,28,32,33,37-39,41-44,46-48,50-54,56,58,60,61,63-67,74,80,82-84,88,90-93	55	36	7
ntensive care unit patients ^{30,77-79,85,87}	6	3	1
children 15,17,26,49,55,76,81,86	8	7	-
Jeonates 13,59,62,69,73	5	3	-
Cancer patients ^{31,49,57,70,89}	5	5	-
mmunocompromised patients 49	1	1	-
Diabetic patients 94	1	1	-
Iderly patients 68	1	-	1
'atients with chemotherapy/stem cell transplantation ^{12,89}	2	2	-
Patients after prostatitis biopsy 40	1	-	1
ungs transplantation patients 45	1	-	-
lematological patients 71	1	1	-
Il except cardiothoracic therapy, transplant surgery, burns 72	1	1	
atients with pyogenic liver abscess 75	1	-	-
Data reported			
reatment information 8,10-11,21-24,28-36,38,42-47,49,50,52-63,65,66,68-94	74	50	6
ppropriateness of treatment 8,10-12,14,15,17-19,21-24,28-36,38,42-44,46,47,49,50,52-54,56-58,60-63,65,66,68,70- 2,74,75,77,79,81-84,87-94	62	45	5
mpirical therapy 12,14,15,22,23,31,33-36,38,42,49,50,54,56,57,61,74,79,81,92	22	16	2
reatment outcome 8,10-19,23,24,28-36,38,42-47,49,50,52-55,57-63,65,66,70-72,74,76-79,81-84,86-90,92-94	64	45	3
Ainimum inhibitory concentration results 8,9,11,12,14-17,20-23,25,26,30,31,33-39,41,42,45,48-50,52- 7,60,61,64,66,67,74-76,78,79,81,83-85,87,92,93	52	34	4
AmpC genotyping 8,9,15,30,39,44,48,54,55,63,64,68,84	13	6	2
			Y

+ 	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Lautenbach E ⁸	1997- 1998	USA	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality; LOS	Risk factors for infection with ESBL-producing pathogens, difference in clinical outcomes of infections: resistant vs. susceptible organisms	ЕС, КР
(yim SH ¹² 1 2 2	2007- 2008	South Korea	Cohort study, Retrospective	Non-ESBL-infection	Patients who received either chemotherapy or stem cell transplantation; neutropenic fever	Hematolo gical ward, Others	All-cause mortality (28 day)	Risk factors for acquisition of ESBL, appropriateness of empirical antimicrobial therapy, clinical outcomes in relation to ESBL production	EC, KP
4 fhayakulkeere M ⁵¹	2015- 2015	Thailand	Cohort study, Retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Prevalence & risk factors for infections with & antibiotic susceptibility patterns of & outcomes of patients infected with ESBL-producing-GNB	GNB
Gepisarnthanarak 7 ⁵² 8 9	2003- 2007	Thailand	Cohort study, Retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Predictors for mortality associated with community-onset BSI with ESBL-producing pathogens, initial empirical antimicrobial regimens, associated hospital resource utilisation,costs accrued after diagnosis of BSI	EC, KP
Qpisarnthanarak Å ⁵³ 2	2003- 2004	Thailand	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Mortality associated with community-onset infection due to ESBL- producing pathogens, associated hospital resource use, post-infection hospital cost	EC
3 _{ean SS⁵4} 4 5 6 7	2010- 2011	Portugal, Columbia, the Philippines, Taiwan, Thailand	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Surgical ward	Attributable mortality, LOS	Clinical impact on hospitalised patients with community-acquired complicated intra-abdominal infection: ESBL-producing- vs. non-ESBL- producing pathogens	GNB
8 gee J ⁵⁵ 0 1	1999- 2005	South Korea	interventional studies	Non-ESBL-infection	Children	Pediatric ward	All-cause mortality (28 day)	impact of a change in antibiotic policy on ESBL-prevalence	EC, KP
≇riongos-Figuero	2009- 2010	Spain	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Characteristics & associated risk factors for EBSL-enterobacteria-UTIs	EC
Ha γε⁵7 5 6	2010- 2012	South Korea	Cohort study, retrospective	Non-ESBL-infection	Patients with cancer	Entire hospital	All-cause mortality (28 day)	Clinical &molecular epidemiology of ESBL-EC bacteraemia, clinical impact of ESBLs on patient outcome	EC
7 Du B⁵ ⁸ 8	1997- 1999	China	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Risk factors for nosocomial ESBL-EC- and ESBL-KP- bacteraemia & influence on patient outcome.	EC, KP

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Stone PW ⁵⁹	2001	USA	Case cohort study	Non-ESBL-infection	Neonates at NICU	NICU	LOS	costs of interventions aimed at controlling the outbreak, attributable length of stay associated with infection and colonisation with ESBL-KP	КР
Pillay T ¹³	1995- 1996	South Africa	Cohort study, retrospective	Non-ESBL-infection	Neonates	Neonatal ward	All-cause mortality	Use of piperacillin/tazobactam in treatment of KP- infection	КР
Kim BN ¹⁴	1999- 2000	South Korea	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, LOS	Prevalence & clinical characteristics of ESBL-KP- bacteraemia, impact of ESBL- production on outcome of patients with KP- bacteraemia in endemic situation.	КР
Kim YK ¹⁵	1993- 1998	South Korea	Cohort study, retrospective	Non-ESBL-infection	Children	Pediatric ward	All-cause mortality	Risk factors & clinical outcomes & clinical responses to treatment of ESBL-EC- and ESBL-KP-bacteraemia, prevalence and types of their ESBLs	EC, KP
3 Bhavnani SM ¹⁶ 3 9 0 1 2	2001- 2002	USA	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality	Risk factors for occurrence of invasive ESBL-EC- and ESBL-KP-infections, factors associated with clinical outcome, drug regimens for treatment of infections associated ESBL/non-ESBL strains in real-life clinical practice, clinical response rates for patients treated with cephalosporins/other classes of antimicrobial agents, /carbapenems, clinical response for those patients with infection associated with ESBL and non–ESBL-producing strains with MIC values V8 Ag/mL treated with cephalosporins.	GNB
Blomberg B ¹⁷	2001- 2002	Tanzania	Cohort study, prospective	Non-ESBL-infection	Neonates, children	Pediatric ward	All-cause mortality	Prevalence & clinical implications of ESBL production in EC-,KP-, Salmonellae- septicemia	GNB
9 ena C ⁶⁰ 7 3	1993- 1995	Spain	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality	Clinical epidemiology& outcome of ESBL-KP- bacteraemia, relevance of ESBL strains in mortality of patients with hospital-acquired KP-BSI.	КР
Kola A ⁶¹)	2002- 2004	Germany	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS, ICU-LOS	Outcomes of ESBL-EC- and ESBL-KP-infections	EC, KP
Tsai MH ⁶²	2001- 2012	Taiwan	Case cohort study	Control group: non- ESBL-infection, second control group: all hospitalised patients	Neonates at NICU	NICU	Attributable mortality, all- cause mortality, LOS	Clinical features& risk factors& molecular epidemiology of ESBL-GNB	GNB
Maslikowska JA ⁶³	2010- 2013	Canada	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality,	Differences in clinical & microbiological outcome, mortality, and/or hospital resource use: ESBL-EC- and ESBL-Ks- vs non-ESBL-EC- and non-ESBL-Ks-infections	GNB

Page 40 of 54	
---------------	--

1 2									
3 4	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
6 Onken A ⁶⁴ 7	2012- 2013	Tanzania	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Most common bacterial pathogens causing BSI, antimicrobial susceptibility	GNB
8 Nguyen ML ⁶⁵ 9 10	2005- 2010	Canada	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS, ICU-LOS	Risk factors for & patient outcomes associated with ESBL-EC- and ESBL- Ks- bacteraemia, appropriateness of empiric antibiotic therapy & effect of inappropriate empiric therapy on outcomes	GNB
1 benis B ⁶⁶ 12 13	2005- 2009	France	Case-control study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (28 day), LOS	Prevalence & risk factors for ESBL-EC bacteraemia, impact on length of stay &30day mortality	EC
14 _{thopra T⁶⁷ 15 16 17}	2004- 2009	USA	Case cohort study	Case 2(Control1): non- ESBL-infection, second control group: no infection	All kinds of patients	Entire hospital	All-cause mortality (28 day)	Predictors of ESBL-EC- and ESBL-KP-BSI, focus on cefepime exposure.	EC, KP
1&anhotra BR ¹⁸ 19	2001- 2003	Kingdom of Saudi Arabia	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Risk factors & clinical outcome of ESBL-KP-bacteraemia (hospital acquired)	КР
20 Marra AR ¹⁹ 21 22	1996- 2001	Brazil	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (14 day)	ESBL-KP- associated mortality	КР
23 24 25	2003- 2005	UK	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Risk factors for & outcomes of ESBL-EC- and ESBL-KP-invasive transmission of organism in the healthcare setting	GNB
26chwaber MJ ²¹ 27 28	2000- 2003	Israel	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality	Outcomes of ESBL-production in Enterobacteriaceae-bacteraemia.	GNB
29 Apisarnthanarak 30 ⁶²² 31 32	2003- 2004	Thailand	Case cohort study	Control group: non- ESBL-infection, second control group: no infection	All adult patients	Entire hospital	All-cause mortality, LOS	Clinical & molecular epidemiologic factors associated with community onset ESBL-EC- infections, hospital resource utilisation, estimate costs associated with medical care (hospitalised patients)	EC
33 umbarello M ²³ 34 35 36	1999- 2003	Italy	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality, LOS, ICU-LOS	Factors associated with isolation of ESBL- KP-strains	КР
3 Zeistner R ⁹ 38	2008- 2010	Germany	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital,	All-cause mortality, LOS	Difference in mortality: ESBL-EC-BSIs vs. non-ESBL-EC-BSIs, molecular epidemiology of ESBL-positive isolates	EC

4∠ ⊿2

	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Apisarnthanarak A ²⁴	2003- 2004	Thailand	Case cohort study	Control group: non- ESBL-infection, second control group: no infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Risk factors for & outcomes of ESBL-EC- and ESBL-KP-infections (healthcare associated)	EC, KP
Kanafani ZA ²⁵ 1 2	2003	Lebanon	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Epidemiology of infections with ESBL-EC and ESBL-Ks at AUBMC risk factors & outcomes of infections - focus on effect of prior antibiotic administration & the risks imparted by specific classes of antimicrobial agents	GNB
3 Zaoutis TE ²⁶ 4 5	1999- 2003	USA	Case cohort study	Non-ESBL-infection	Children	Entire hospital	All-cause mortality, LOS	Risk factors & outcomes associated with ESBL-EC-and ESBL-KP-BSI	EC, KP
5 5oh LC ²⁷ 7	2003- 2004	Malaysia	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Impact of ESBL-KP-respiratory tract infections on hospital mortality, requirement for mechanical ventilation & length stay	КР
Melzer M ²⁸ 9 0	2003- 2005	UK	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Differences in mortality & length of hospital stay & time from bacteraemia to death in patients with ESBL-EC- vs. non-ESBL-EC-bacteremic-infection	EC
Song KH ²⁹ 2 3 4 5	2000- 2006	South Korea	Case cohort study	Non-ESBL-infection	Patients with spontaneous bacterial peritonitis	Not provided	All-cause mortality (28 day)	Outcomes of ESBL-EC-and ESBL-Ks- vs non-ESBL-EC-and ESBL-Ks-SBP (based on isolation from ascites), impact of ineffective initial antimicrobial therapy on outcome in patients with ESBL-EC- and ESBL-Ks-SBP, risk factors for infection by ESBL-producing microorganisms.	GNB
®ennett JW³⁰ 7 8 9	2004- 2008	USA	Cohort study, prospective	Non-ESBL-infection	ICU-patients	ICU, Surgical ward, Burn unit	All-cause mortality (28 day)	ESBL types and strain variability, presence of host factors to determine potential role in morbidity and mortality during ESBL-KP-infections	КР
Ĵrecarichi EM ³¹ 1 2	2000- 2007	Italy	Cohort study, retrospective	Non-ESBL-infection	Patients with hematological malignancies	Entire hospital	All-cause mortality (28 day)	Risk factors for mortality in patients suffering from hematological malignancies with concurrent EC-bacteraemia. Focus on impact of ESBL- production & fluoroquinolone resistance by bacterial isolates	EC
fuon FF ³² 4 5	2006- 2009	Brazil	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (28 day), LOS	Risk factors & mortality rate in ESBL-KP-bacteraemia	КР
Kang Cl ³³ 7 3	2008- 2009	South Korea	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (28 day)	Risk factors of ESBL-EC among community-onset bacteraemia, treatment outcomes	EC

	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Pena C ³⁴	1996- 2003	Spain	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (28 day)	Risk factors for mortality among patients with EC- infections	EC
Fumbarello M ³⁵) 2 3	2006	Italy	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	ICU, Medical ward, Entire hospital, surgical wide	All-cause mortality (21 day), LOS	Clinical &economic impacts of ESBL production, inadequate Initial Antibiotic Therapy of EC-BSI	EC
Kang Cl ³⁶ 7 7	2006- 2009	South Korea	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality (28 day)	Impact of ESBL-producing bacteraemia on outcome in patients with hematologic malignancy.	EC, KP
Wu YH ³⁷) 2	2009- 2012	Taiwan	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Medical ward	LOS	Host-related risk factors for community-onset UTI due to levofloxacin- or cefazolin-nonsusceptible isolates or uropathogens with ESBL production, clinical impact of UTIs due to antimicrobial-nonsusceptible pathogens	GNB
kodriguez-Bano J ³⁸ 1 5	2004- 2006	Spain	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (14 day)	Epidemiology& risk factors (focus on previous antimicrobial use) & mortality rate for patients with ESBL-EC-COBSI	EC
Sürtnke S ³⁹	2008- 2011	Germany	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Distribution of ESBL genotypes, hospital mortality in cases of ESBL-KP- BSI	КР
h MM⁴⁰	2006- 2011	South Korea	Cohort study, retrospective	Non-ESBL-infection	Patients after Prostatitis Biopsy	Entire hospital	LOS	Impact of ESBL-positive-strains on clinical course & progression to chronic prostatitis in patients with postbiopsy acute prostatitis.	GNB
eistner R ⁴¹	2008- 2011	Germany	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Financial disease burden attributable to ESBL-positive species in cases of EC-and KP-BSI	EC, KP
in JN ¹⁰	2005- 2009	Taiwan	Case cohort study	Non-ESBL-infection	All kinds of patients	Emergenc y Room	Attributable mortality, all- cause mortality (28 day), LOS, ICU-LOS	Clinical & microbiological characteristics, risk factors for acquisition of infection, prescription of initial empirical antibiotics mortality rate of infection	GNB
(u NS ⁴²	2006- 2010	South Korea	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (28	Clinical usefulness of breakpoints for treatment of Enterobacteriaceae- bacteraemia, (focus on EC- and Ks-bacteraemia): CLSI 2009- vs. CLSI 2010-guidelines	EC, KP

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Anunnatsiri S ⁴³	2005- 2006	Thailand	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Incidence of ESBL-EC-septicemia, factors associated with infection & clinical outcomes	EC
Kang Cl ⁴⁴ D 1	1998- 2002	South Korea	Case cohort study	Non-ESBL-infection	All kinds of patients	Hospital- wide	All-cause mortality (28 day)	Risk factors for mortality & treatment outcome of ESBL-EC- and ESBL- KP-BSI	EC, KP
∙ ⊉aviv Y ⁴⁵ 3 4	2004- 2007	Israel	Cohort study, retrospective	Control group: non- ESBL-infection, second control group: no infection	patients with lung transplantation	Not provided	All-cause mortality (28 day)	Outcomes of lung transplant recipients infected by CRKP and ESBL carbapenem-sensitive KP (referred to MDR-KP)	КР
ƴim HJ ¹¹ 7 8 Ω	2005- 2010	South Korea	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Medical ward	All-cause mortality (28 day), LOS	Clinical outcome of patients with biliary tract infection: ESBL-producing bacterial isolates vs. non-ESBL-producing-bacterial isolates, predictors of poor prognosis, impact of ineffective antimicrobial therapy on clinical outcome	EC, KP
MacVane SH ⁴⁶ 1 2	2011- 2012	USA	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all-cause mortality, LOS	clinical & economic outcomes of patients with ESBL-EC- and ESBL-KP- UTI vs. non-ESBL-EC- and non-ESBL-KP-UTI	EC, KP
5 ∯bhilash KP ⁴⁷ 5	2007	India	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (14 day)	Prevalence & risk factors & outcome of antibiotic treatment among hospitalised patients with ESBL-EC- and ESBL-Ks-BSI	GNB
øhanthi M⁴ ⁸ 8	2006	India	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Prevalence & impact on clinical outcome of ESBL-production among nosocomial isolates of EC & KP	EC, KP
Han SB ⁴⁹) 1 2	2009- 2013	South Korea	Cohort study, retrospective	Non-ESBL-infection	Children (immunocompromised, with cancer, neutropenic fever)	Pediatric ward	Attributable mortality, all- cause mortality (28 day)	Clinical outcomes of ESBL-EC- and ESBL-KP-bacteraemia & their antibiotic susceptibilities	EC, KP
≹ee S⁵º 4 5	2009- 2011	South Korea	Cohort study, retrospective	Non-ESBL-infection	Patients with Acute Pyelonephritis	Entire hospital	All-cause mortality (14 day), LOS	Impact of ESBL on clinical outcomes of Acute Pyelonephritis treated with empirical ceftriaxone (which was inappropriate for ESBL-producing organisms)	EC
Artero A ⁶⁸ 7	2013- 2015	Spain	Cohort study, prospective	Non-ESBL-infection	Elderly	Medical ward	All-cause mortality, LOS	Identify clinical factors to predict ESBL-EC among elderly patients with UTI admitted to hospital in a high rate setting of ESBL-EC	EC

	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Chen IL ⁶⁹	2004- 2015	Taiwan	Cohort study, retrospective	Non-ESBL-infection	Neonates	Neonatal ward	All-cause mortality	Compare the clinical characteristics & laboratory data of preterm babies with EC BSI: survival vs. nonsurvival groups, ESBL vs non-ESBL groups, determine the predictive factors of EC BSI in preterm babies	EC
slas-Munoz B ⁷⁰	2016- 2017	Mexico	Cohort study, prospective	Non-ESBL-infection	Cancer patients	Oncologic al ward	All-cause mortality (28 day)	Evaluate the clinical epidemiological characteristics & risk factors associated with mortality in cancer patients with BSI-special emphasis on MDR bacteria	GNB (and others)
Ma J ⁷¹	2012- 2015		Cohort study, retrospective	Non-ESBL-infection	Patients with hematological diseases	Entire hospital	All-cause mortality (28 day)	Evaluate the antimicrobial resistance & clinical features & risk factors for septic shock & death of nosocomial EC-BSI	EC
/Jan MY ⁷²	2009- 2016	China	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients, except patients from Burn unit, transplant surgery ward or with thoracic therapy	Entire hospital	All-cause mortality (28 day)	Evaluate the incidence & clinical characteristics & outcomes of patients with KP BSI in critical care & general ward settings	КР
Aarando R ⁷³	2016	Tanzania	Cohort study, prospective	Non-ESBL-infection	Neonates	NICU	All-cause mortality	Investigate factors associated with ESBL-PE neonatal sepsis & mortality among neonates, characterise selected isolates to show virulence potential & transmission dynamics	GNB
Jamikawa H ⁷⁴	2011- 2015	Japan	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Investigate clinical characteristics of patients with ESBL-EC-BSI	EC
ihi SH ⁷⁵	2008- 2015	China	Cohort study, retrospective	Non-ESBL-infection	Patients with pyogenic liver abscess	Centre for hepatopa ncreatico biliary diseases	All-cause mortality, LOS	Aetiology & morbidity & clinical characteristics of pyogenic liver abscess caused by ESBL-PE	GN
anir Basaranoglu ⁷⁶	2011- 2015	Turkey	Cohort study, retrospective	Non-ESBL-infection	Children	Pediatric ward	All-cause mortality (28 day)	Assess risk factors for health care associated ESBL-KP-BSI in children, analyze clinical outcomes: ESBL-KP vs. non-ESBL-KP	КР
azazi K ⁷⁷	2009- 2015	France	Cohort study, prospective	Non-ESBL-infection	ICU-patients	ICU	All-cause mortality, LOS, ICU-LOS	Determine, among ESBL-PE carriers, the prevalence & associated factors & clinical impact of ESBL-PE pneumonia, determine factors associated with ICUAP caused by carbapenem-resistant bacteria	GNB

• •	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Ray S ⁷⁸	2014- 2016	India	Cohort study, prospective	Non-ESBL-infection	ICU-patients	ICU	All-cause mortality	Investigate spectrum of microbial resistance pattern in the community and their effects on mortality	GNB
Haruki Y ⁷⁹ O 1	2006- 2016	Japan	Cohort study, retrospective	Non-ESBL-infection	ICU-patients	ICU	All-cause mortality	Compare the clinical characteristics & outcomes of critically ill patients in an ICU, who were hospitalised for BSI caused by ESBL-EC or non- ESBL-EC.	GNB
2 33 in WT ⁸⁰ 4 5	2009- 2014	Taiwan	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Investigate the clinical manifestations & bacteriological features of culture-proven, GNB arthritis	GNB
6 Guys H ⁸¹ 7 8 9	2006- 2011	South Africa	Cohort study, retrospective	Non-ESBL-infection	Children	Pediatric ward	All-cause mortality	Describe the clinical presentation of KPBSI, risk factors associated with ESBL-KPBSI, antibiotic susceptibility patterns of the KP isolates & KPBSI mortality including factors associated with in-patient mortality	КР
00ee CC ⁸²	2008- 2013	Taiwan	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Emergenc y Departme nt	Attributable mortality, all- cause mortality (28 day), LOS, ICU-LOS	Analyse the impact of ESBL-producing isolates on the outcome of bacteremic patient after controlling for baseline patient characteristics & bacteraemia severity by using a propensity-matched analysis (PSM)	GNB
24 5 ^{Huang YY⁸³ 26}	2011- 2013	Canada	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Determine cumulative incidence of ESBL urosepsis, identify major risk factors for ESBL urosepsis, determine impact of international travel on development of ESBL urosepsis	EC, KP
50 Somatsu Y ⁸⁴ SO	2008- 2013	Japan	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (14 day)	Identify risk factors & clinical outcomes in patients with BSI due to ESBL- or carbapenemase-producing EC, determine prevalence & genetic background	EC
52 Jiu MM ⁸⁵ 54 55	2011- 2016	China	Case cohort study	Control group: non- ESBL-infection, second control group: no infection	ICU-patients	ICU	All-cause mortality	Identify risk factors for ESBL-producing ECBSI among carriers at ICU	EC
6 Nivesvivat T ⁸⁶	2010- 2017	Thailand	Cohort study, retrospective	Non-ESBL-infection	Children	Pediatric ward	All-cause mortality, LOS	Determine prevalence, risk factors & clinical outcomes of ESBL- producing EB in paediatric BSI	EC, KP

	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Cordery RJ ⁸⁷	2004- 2006	UK	Cohort study, retrospective	Non-ESBL-infection	ICU-patients	ICU	All-cause mortality	Elucidate specific risk factors for the acquisition of ESBL infection in the ICU; all-cause mortality (in ICU) compared in patients with infections due to ESBL- and non-ESBL-producing organisms	GNB
) Daikos GL ⁸⁸ 2 3	2003- 2005	Greece	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Identify risk factors associated BSI caused by integron-carrying EB; evaluate the consequences of these genetic elements on patient outcome	GNB
ς Gudiol C ⁸⁹ δ 7	2006- 2008	Spain	Cohort study, prospective	Non-ESBL-infection	Cancer patients and hematopoietic stem cell transplant patients	Entire hospital	All-cause mortality	Assess clinical features, risk factors, molecular epidemiology & outcome of ESBLEC BSI in hospitalised cancer patients	EC
Marchaim D ⁹⁰)	2006- 2008	Israel	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Define predictors & outcomes of ESBL BSI among patients with bacteraemia due to EB upon hospital admission	GNB
Menashe G ⁹¹ 2 3 4 5	1997	Israel	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Determine: prevalence of ESBL-P organisms among adult patients with nosocomial EB BSI treated in our institution; association between ESBL production & resistance to other antibiotics; clinical characteristics of patients with nosocomial ESBL-P BSI compared with those infected with non-producing strains; impact of ESBL production on outcome of patients with nosocomial EB BSI	GNB
/ Ortega M ⁹²))	1991- 2007	Spain	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Describe source, resistance rate to fluoroquinolone & beta-lactam antibiotics and mortality of EC BSI episodes in a single institution; identify predictive factors for isolation of fluoroquinolone-resistant or ESBL- producing strains.	EC
sziglyi M ⁹³	2005- 2008	Hungary	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality,	Investigate risk factors for & outcomes of BSI caused by ESBL-producing and ESBL-non-producing KP	КР
sai SS ⁹⁴	2005- 2006	Taiwan	Cohort study, retrospective	Non-ESBL-infection	Diabetic patients	Entire hospital	All-cause mortality	Analyze characteristics, risk factors & outcomes of diabetic patients with community- vs. hospital-acquired KP BSI	КР

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1 2 3 4 5 6 7 8 9 10 11 12 12	EC = Escherichia coli KP = Kilebsiella pneumoniae GNB = Gram-negative bacteria BSI = Bloodstream infection UTI = Urinary tract infection ICU = Intensive care unit NICU = Neonatal intensive care unit ESBL-PE = Extended-spectrum beta-lactamase-producing Enterobacteriaceae EB = Enterobacteriaceae LOS = Length of stay
14	
15	
16	
17	
18	
19	
20	
21	
23	
24	
25	
26	
27	
28	
29	
30	
3) 37	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
+∠ 43	
44	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
45	

Supplementary table S5: Risk of bias assessment of case cohort studies according to Newcastle - Ottawa quality assessment scale:

Accessment criteria / Study author	1. Is the case definition adequate?	2. Representativeness of the cases:	3. Selection of Controls	4. Definition of Controls	5. Comparability of cases and controls on the basis of the design or analysis	6. Ascertainment of exposure	. Same method of ascertainment for cases and controls	8. Non-Response rate
Lautenbach E							~	
Apisarnthanarak A								
Briongos-Figuero, I-S.								
Stone P.W.								
Kola, A.								
Tsai, M.H.								
Maslikowska, J.A.								
Nguyen, M. L.								
Denis, B.								
Chopra, T.								
Skippen, I.								
Apisarnthanarak, A.								
Tumbarello, M.								
Apisarnthanarak, A.								
Kanafani, Z. A.								
Zaoutis, T. E.								
Song, K. H.								
Kang, C. I.								
Rodriguez-Bano, J.								
Lin, J. N.								
Ku, N. S.								
Kang, C. I.								
Huang, Y. Y.								
Komatsu, Y.								
Liu, M. M.								

BMJ Open

Risk of bias assessment of cohort studies according to Newcastle - Ottawa quality assessment scale:

2 3		rt							
4 5		d cohc	ort		of	or		come	rts
6		osec	cohc	0	ne c	sign		out	oho
/ 8		exp	ed c	sure	tcol	n de	e	for	of c
9		s of	sod	odx	t ou		, mo	hgu	dn
10		nes	n-ex	of e	tha	ant a	outc	eno	No
11		tive	inoi	ent	tion	ity t	ofo	Buc	of fo
12		inta	n of	inm	strat	abil	Jent	dn l	c A o
14		rese	ctio	erta	Suor	n dr	sssn	-MC	dua
15		Rep	Sele	Asci	Den		ASSe	Follo	Ade
16 17	Study author / Assessment criteria	1.	2.	З.	4. 54	<u>го</u> с	و .	7.	∞.
18	Jean, S.S.								
19 20	Bhavnani, S. M.								
20	Blomberg, B.								
22	Pena, C.								
23 24	Onken, A.								
24 25	Melzer, M.								
26	Bennet, J.								
27	Wu, Y.								
28 29	Abhilash, K.								
30	Artero, A.								
31	Islas-Munos, B.								
32 33	Marando, R.								
34	Razazi, K.								
35	Ray, S.								
36 27	Panhotra, B.								
37 38	Kim, S.								
39	Chayakulkeeree, M.								
40	Apisarnthanarak, A.								
41 42	Ha, Y.								
43	Du, B								
44	Pillay, T.								
45 46	Kim, B.								
47	Kim, Y								
48	Marra, A.								
49 50	Schwaber, M.								
50	Leistner, R.								
52	Lon, L.C.								
53	Trecarichi, E.								
54 55	Tuon, F.								
56									
57	Pena, C.								
58 59									
60	Gurnike, S.								
	Un, IVI.								
	Leistner, K.								
	For peer review only - http://bmiope	en.bmi	.com/s	ite/abo	out/o	uidelir	nes.xhtn	nl	

Raviv, Y.				
Kim, H.J.				
MacVane, S.				
Shanthi				
Han, S.B.				
Lee, S.				
Chen, I-L.				
Ma, J.				
Man, M.				
Namikawa, H.				
Shi, S.				
Tanir Basarangolu, S.				
Haruki, Y.				
Lin, W.				
Buys, H.				
Lee, C.C.				
Nivesvivat, T.				

Supplementary table S6: Source of heterogeneity among effect estimates in studies on ESBL bloodstream infections in comparison with patients with non-ESBL bloodstream infections assessed using univariate meta-regression:

Subgroups / Outcome	All-cause mortality	Length of Stay
Mortality time	0.85	-
Pathogen	0.45	0.34
Study design	0.51	0.21
Study country	0.22	0.09
Income classification	0.17	0.80
Study period	0.57	0.78
Study setting: ICU ward	0.78	0.97
Study setting: Neonatal ward	0.62	0.97
Study setting: Pediatric ward	0.96	0.96
Study population: ICU patients	1.00	-
Study population: Children	0.96	0.96
Study population: Neonates	0.62	0.97
Information about therapy	0.53	
Appropriatness of therapy reported	0.68	
Information about outcome of therapy	0.74	-
MIC reported	0.28	-

0.28 -

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported
Title	1	Identify the report as a systematic review meta-analysis or both	1
Structured summary	2	participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	6
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	4
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	4
2 Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	5
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	5
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	5
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	5,6

- 46
- 47

Page 53 of 54

2

3

PRISMA 2009 Checklist

BMJ	Open
-----	------

Page 1 of 2				
#	Checklist item	Reported on page #		
15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	6		
16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	6		
17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	6		
18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	suppl.material		
19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	8 and suppl. material		
20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	suppl.material		
21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	6-8		
22	Present results of any assessment of risk of bias across studies (see Item 15).	8 and suppl. material		
23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	7,8		
24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	8		
25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	9-10		
26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	9-10		
27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	11		
	 # 15 16 17 18 19 20 21 20 21 22 23 24 25 26 27 	# Checklist item 15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies). 16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified. 17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram. 18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations. 19 Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12). 20 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot. 21 Present results of each meta-analysis done, including confidence intervals and measures of consistency. 22 Present results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]). 23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]). 24 Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers). 25		

45 doi:10.1371/journal.pmed1000097

- 46
- 47

PRISMA 2009 Checklist

For more information, visit: www.prisma-statement.org.

.smation, visit. Page 2 o.

BMJ Open

Variation of effect estimates in the analysis of mortality and length of hospital stay in patients with infections caused by bacteria producing extended-spectrum beta-lactamases: a systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-030266.R2
Article Type:	Original research
Date Submitted by the Author:	13-Nov-2019
Complete List of Authors:	Shamsrizi, Parichehr; University Hospital Tubingen Department of Internal Medicine I Gastroenterology Hepatology and Infectious Diseases, Division of Infectious Disease Gladstone, Beryl Primrose ; University Hospital Tubingen Department of Internal Medicine I Gastroenterology Hepatology and Infectious Diseases, Division of Infectious Disease Carrara, Elena; Integrated University Hospital of Verona, Division of Infectious Disease, Department of Diagnostic and Public Health Luise, Dora; Integrated University Hospital of Verona, Division of Infectious Disease, Department of Diagnostic and Public Health Cona, Andrea; ASST Santi Paolo e Carlo, Clinic of Infectious and Tropical Diseases, Department of Health Sciences Bovo, Chiara; Integrated University Hospital of Verona, Medical Direction Tacconelli, Evelina; University Hospital Tubingen Department of Internal Medicine I Gastroenterology Hepatology and Infectious Diseases, Division of Infectious Disease; Integrated University Hospital of Verona, Medical Direction Tactonelli, Evelina; University Hospital Tubingen Department of Internal Medicine I Gastroenterology Hepatology and Infectious Diseases, Division of Infectious Disease; Integrated University Hospital of Verona, Medical Direction Health
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Infectious diseases, Epidemiology
Keywords:	Extended-spectrum beta-lactamase, mortality, bloodstream infection, length of stay, meta-analysis, systematic review

BMJ Open

3 1	1	Variation of effect estimates in the analysis of mortality and length of hospital stay in					
5	2	patients with infections caused by bacteria producing extended-spectrum beta-					
6 7	3	lactamases: a systematic review and meta-analysis					
8 9	4						
10	5	AUTHORS:					
11	6	Parichehr Shamsrizi ¹ , Beryl Primrose Gladstone ¹ , Elena Carrara ² , Dora Luise ² , Andrea Cona ³ ,					
13 14	7	Chiara Bovo ⁴ , Evelina Tacconelli ^{1,2}					
15 16	8						
17	9	AFFILIATIONS:					
18 19	10	1) Division of Infectious Disease, Department of Internal Medicine I, DZIF Partner site,					
20 21	11	Tübingen University Hospital, Tübingen, Germany					
22 23	12	2) Division of Infectious Disease, Department of Diagnostic and Public Health, University					
24 25 26 27 28 29 30 31 32 33 34 35	13	Hospital of Verona, Verona, Italy					
	14	3) Clinic of Infectious and Tropical Diseases, Department of Health Sciences, ASST Santi					
	15	Paolo e Carlo, University of Milan, Milan, Italy.					
	16	4) Medical Direction, University Hospital of Verona, Verona, Italy					
	17						
	18	CORRESPONDING AUTHOR: Elena Carrara, MD					
	19	Address: Division of Infectious Disease, Department of Diagnostic and Public Health,					
36 27	20	University Hospital of Verona, Verona, Italy					
37 38	21	Piazzale L.A. Scuro 10, Dipartimento di Malattie Infettive, Policlinico Borgo Roma, 37100					
39 40	22	Verona, Italy.					
41 42	23	Phone number: +39 3339566252					
43	24	Email: elena.carrara@univr.it					
44 45	25						
46 47	26	WORD COUNT: 2827					
48 49							
50							
51 52							
53 54							
55 56							
50 57							
58 59							
60							

- ABSTRACT **Objective** To assess the variation of effect estimates in the analysis of mortality and length of stay (LOS) in patients with infections caused by extended-spectrum beta-lactamase (ESBL)-producing *Enterobacteriaceae*. **Design** Systematic review and meta-analysis Methods Literature search for clinical studies from 1 January 1960 to 1 October 2018 was conducted in PubMed. Primary outcomes were risk ratios (RRs) of all-cause and attributable mortality and weighted mean differences (WMDs) in LOS in patients with bloodstream infections (BSIs) and non-invasive infections. Any change in the effect estimates was assessed by grouping studies according to design, setting, economy-based country classification, reporting period, microbiological aetiology, infection type, and adjustment for appropriateness of empirical treatment. The impact of ESBL production was calculated using random effect meta-analysis and heterogeneity was evaluated by I² statistics and metaregression. **Results** Eighty-four studies including 22,030 patients and 149 outcome measures were included in the meta-analysis. Most studies were retrospective cohorts from high-income countries, providing unadjusted estimates. ESBL production in patients with BSIs (56 studies) increased the RR for all-cause mortality by a factor of 1.70 (95% CI: 1.52-1.90; p<0.001), attributable mortality (16 studies) by 1.75 (95% CI: 1.448-2.108; p<0.001), and WMD in the intensive care unit by 3.07 days (95% CI: 1.61-4.54; p<0.001). WMD in hospital LOS was significantly higher in BSIs (4.41 days; 95% CI: 3.37-5.46; p<0.001) and non-invasive (2.19 days; 95% CI: 1.56-2.81; p<0.001). Subgroup analyses showed variation of estimates by study design, population, strain, and assessment of appropriateness of empiric treatment. High heterogeneity was observed in all analyses. **Conclusions** Current evidence of the clinical burden of infections caused by ESBL-producing
 - 45 25 Conclusions Current evidence of the clinical burden of infections caused by ESBL-producing
 46 47 26 bacteria is highly heterogeneous and based mainly on unadjusted estimates derived from
 48 27 retrospective studies. Despite these limitations, ESBL production in strains causing BSIs
 49 28 seems associated with higher all-cause and attributable mortality and longer hospitalisation.

30 KEYWORDS

31 Extended-spectrum beta-lactamase, mortality, bloodstream infection, length of stay, meta32 analysis, systematic review

1 ว	
$\frac{2}{3}$ 1	STRENGTHS AND LIMITATIONS OF THIS STUDY
⁴ 5 2	• Evidence of the impact of ESBL production on mortality and length of stay in strains
6 7 3	causing bacteremic and non-bacteremic infections was collected systematically.
8 9 4	• Effect of multiple epidemiological and clinical variables was assessed in the calculation of
10 5 11	estimates.
12 6	 Heterogeneity among studies was assessed.
13 14 7	• Only few studies had been performed in high-risk populations or low-income countries.
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	

INTRODUCTION

Infections extended-spectrum caused by beta-lactamase (ESBL)-producing *Enterobacteriaceae* are responsible for high morbidity and mortality worldwide.^{1,2,3} The 2018 World Health Organization list of antibiotic-resistant pathogens identified mortality as the most important criteria to prioritise bacteria for research and development of new, effective antibiotics.¹ In this prioritisation exercise, ESBL-producing Enterobacteriaceae were designated a critical priority because of their high all-cause mortality and high prevalence globally in healthcare-associated and community-acquired infections. The incidence and attributable mortality of multidrug-resistant bacterial infections, including ESBL-producing Enterobacteriaceae, in European countries has been recently estimated using a modelling analysis.⁴ In 2015 ESBL-producing *Escherichia coli* was responsible for almost 300,000 infections in Europe and 9,000 attributable deaths, and ESBL-producing Klebsiella pneumoniae caused around 70,000 infections and more than 3,500 deaths. The major limitation of this analysis is the sparseness of evidence on mortality due to ESBL-producing bacteria, which was limited largely to studies conducted in high-income countries.

Two systematic reviews have been performed to define the impact of ESBL production on mortality due to *Enterobacteriaceae*.^{2,3} Both meta-analyses included studies targeting bloodstream infections (BSIs) and showed doubling all-cause mortality for ESBL-associated bacteraemia compared to non-ESBL Enterobacteriaceae bacteraemia. A major drawback of the analyses, highlighted by the authors, was the lack of control for confounding and limited adjustment for empiric therapy. No systematic review has been performed to assess attributable mortality and other indicators of clinical impact such as length of stay (LOS).

Because estimates of clinical burden drive policy design for antibiotic stewardship and infection control interventions, precise and current estimates are essential. The objective of this systematic review and meta-analysis was to assess the variation of effect estimates in the analysis of mortality and LOS in patients with infections due to ESBL-producing Enterobacteriaceae.

METHODS

Literature search strategy

The search was performed by 2 researchers (BPG and PS) in PubMed on 05 October 2018 using search terms (supplementary table S1) relevant to the following combinations: (ESBL AND Escherichia coli AND mortality) OR (ESBL AND Klebsiella pneumoniae AND

mortality) OR (ESBL AND Escherichia coli AND length of stay OR length of hospitalisation)
 OR (ESBL AND Klebsiella pneumoniae AND length of stay OR length of hospitalisation).

3 Reference lists of retrieved articles were also searched.

4 Eligibility criteria

5 We included all clinical studies with a comparison group assessing all-cause mortality, 6 attributable mortality, and overall LOS and intensive care unit stay (ICU) LOS in hospitalised 7 patients with ESBL infections. Studies published from 1 January 1960 to 1 October 2018 8 irrespective of the clinical setting and study design were included. No language restriction has 9 been applied. Diagnostic studies, reviews, case reports, non-clinical studies, and abstracts of 10 conference presentations were not included.

11 Data extraction

Two reviewers (PS and BPG) independently assessed the eligibility of trials and extracted data. In case of disagreement, a third reviewer (DL) was consulted. Extracted data were collected in an electronic worksheet, using EpiInfo 7.1: authors, journal, country, year of publication, year of study, time of data collection, study design, comparison group, study setting, population, aetiology, type and site of infection, and raw data related to mortality and LOS/ICU-LOS. Countries were classified as high-, middle-, or low-income using the World Bank Atlas method.⁵ Adjusted effect estimates such as odds ratios (ORs) or hazard ratios and quality indicators such as reporting of antibiotic therapy, appropriateness of empirical treatment, resistance mechanisms, and minimum inhibitory concentrations (MICs) were also extracted.

Mortality data were extracted as all-cause mortality or attributable mortality as defined in the studies. Where available, prespecified time periods for mortality assessment (i.e., 14 days, 28 days, in-hospital) were also extracted. LOS and ICU-LOS were extracted as days with mean and standard deviation or median and interquartile range.

26 Data analysis

The primary outcomes for the clinical impact of ESBL infections were RRs of all-cause and attributable mortality and the weighted mean difference (WMD) in LOS and ICU-LOS in patients with ESBL infections compared with those in patients with non-ESBL infections and, where available, with uninfected patients. The impact of ESBL production on attributable and all-cause mortality was calculated with random effect meta-analysis and expressed as RR with
95% confidence interval (CI). WMD in days with 95% CI was calculated to express the excess in LOS and ICU-LOS. Variation of the effect estimate was assessed by grouping the studies according to the following study/outcome characteristics: mortality time assessment (7 vs 14 days), aetiology (E. coli vs K. pneumoniae), infection localisation, clinical setting (paediatric, oncology, ICU), economic country areas (high-income countries [HICs] vs low- and medium-income countries [LMICs]), study design, assessment of empiric therapy, and year. Studies were classified according to the type of infections evaluated. Studies on BSIs were defined as those in which patients had positive blood cultures and were admitted to the hospitals with signs and symptoms of systemic inflammatory response and requiring therapy, similarly to the definition adopted by the most recent cohort studies on ESBL infections.⁶ Non-invasive infections included non-bacteremic patients with only localised signs and symptoms of infection (such as urinary tract infections or superficial surgical site infections). Subgroup analysis was computed only if more than 2 studies were available for each group. Heterogeneity was evaluated by using I^2 statistics and metaregression. Overall significance testing was carried out using Wald tests adjusted using the Bonferroni correction. The unadjusted ORs were compared with the adjusted ORs to estimate the effect of adjustment.

Reporting and publication bias was presented in funnel plots (supplementary figure 1 and 2) and tested by Egger's test. Statistical analyses were performed using Stata version 15. Risk of bias was assessed independently by two authors (PS, DL) using the Newcastle - Ottawa quality assessment scale for cohort studies.⁷ Studies were classified as low, moderate, or high quality according to AHRQ standards (supplementary table S2). All meta-analyses were performed in accordance with the Cochrane Collaboration recommendations⁸ and reported according to the PRISMA statement.9

- ⁴⁶ 25 The protocol is available online.
- 49 26 (https://im1-tuebingen.de/wp-
- 50 27 content/uploads/2019/03/ClinicalImpactAMR_SR_studyprotocol_2018.pdf)
- 28 Patient and Public Involvement

29 There was no patient or public involvement in this systematic review of published literature.

57 30 **RESULTS**

Solution
 Solution<

BMJ Open

evidence base of 87 studies (Figure 1).¹⁰⁻⁹⁶ The 87 studies included in the qualitative analysis were conducted between 1991 and 2017 in 25 countries, mainly in South Korea (14 studies), Thailand (7), USA (7), Taiwan (7), and Spain (7). Sixty (68.9%) studies were performed in HICs, 26 (29.9%) in LMICs, and 1 included both HICs and LMICs.⁵⁶ About half (44, 50.6%) were retrospective cohort studies, 24 (27.6%) case cohort studies, and 18 (20.7%) prospective cohort studies; 1 study had an interventional design.⁵⁷ The comparison group was patients with infections caused by gram-negative non-ESBL producers in 82 (94.3%) studies, non-infected patients in 2 (2.3%), and both control groups in 3 (3.5%). Most (57, 65.5%) studies included data from the entire hospital, while a few focused on specific settings, mainly ICUs (9, 10.3%) and paediatric wards (8, 9.2%). The most common ESBL-producing bacteria were E. coli (23, 26.4%) and K. pneumoniae (17, 19.5%). An overview of study characteristics is provided in online supplementary table S3.

Because data in 3 studies ^{22,61,87} were insufficient for quantitative analysis, 84 (96.6%) studies were included in the meta-analysis analysing data from 22,030 patients and 149 outcome measures. Fifty-seven studies analysed BSIs and 10 non-invasive infections. Study characteristics for all studies are provided in online supplementary table S4. 49 (58.3%) studies were of high quality, 23 (27.3%) were of moderate quality, and 12 (14.3%) were of low quality (supplementary table S5).

2 19 All-cause mortality

All-cause mortality was reported in 81 studies including 21,942 patients (56 on BSIs and 7 on non-invasive infections). ESBL production in patients with BSIs increased all-cause mortality by a factor of 1.70 (95% CI: 1.52-1.90; p<0.001; I²=45.3%; p<0.001) while studies including non-invasive reported a RR of 1.58 (95% CI: 1.23-2.02; p<0.001) (supplementary figure 3). Among the BSI patients, the RR increased over time from 1.56 (95% CI: 1.15-2.11; p=0.004) in 1991-1999 to 1.74 (95% CI: 1.50-2.01; p<0.001) in 2000-2009, and it was stable in 2010-2018 (1.72, 95% CI: 1.39-2.13; p<0.001). The RR was higher in studies assessing appropriateness of empiric therapy (RR=1.75; 95% CI 1.54-1.99; p<0.001) than in those that did not (RR=1.55; 95% CI 1.26-1.90; p<0.001). The subgroup analysis by pathogen showed that ESBL production increased the RR in BSIs due to E. coli (RR=1.82; 95% CI: 1.50-2.21; p<0.001) compared to those due to K. pneumoniae (RR=1.48; 95% CI: 1.17-1.87; p=0.001). Stratification by population age showed a higher RR in paediatric population (RR=2.09; 95% CI: 1.62-2.71; p<0.001). Effect estimates did not vary significantly by study country, mortality time assessment (14 vs 28 days), ESBL molecular resistance mechanisms, or study

design (Figure 2 and online supplementary figure 4). Adjusted estimates for inappropriate empirical antibiotic therapy were provided for 14 studies. The pooled unadjusted OR for allcause mortality was 2.91 (95% CI: 2.23-3.81; p<0.001, I²=27.1%; p=0.164) and the pooled OR after adjusting for receipt of appropriate empirical treatment was 3.22 (95% CI: 1.53-6.76; p=0.002; I²=87.5%; p<0.001). The impact of ESBL production on LOS and mortality varied according to the infection type, with higher effect in intra-abdominal, respiratory and BSIs (supplemental figure 5 and 6).

8 Attributable mortality

Attributable mortality was analysed in 16 studies including 2,885 patients. All studies were performed in HICs. ESBL production in patients with BSIs increased the risk of attributable mortality by a factor of 1.75 (95% CI: 1.45-2.11; p<0.001; $I^{2=0\%}$; p<0.001). The RR increased over time from 1.53 (95% CI: 1.10-2.12; p=0.011) in 1991-1999 to 1.91 (95% CI: 1.43-2.54; p<0.001) in 2000-2009 (Figure 3). Pathogen-specific RR for attributable mortality was 1.60 (95% CI: 1.18-2.15; p=0.002) for K. pneumoniae and 1.76 (95% CI: 1.33-2.34; p < 0.001) when the gram-negative organisms were analysed all together without species differentiation. The subgroup analysis showed the RR was lower in case cohort studies (1.56; 95% CI: 1.09-2.25; p=0.016) than in cohort studies (1.80; 95% CI: 1.37-2.37; p<0.001).

34 18 Length of stay

LOS data were provided in 37 studies (17 on BSIs and 8 on non-invasive) analysing 38 outcome measures. The WMD of LOS in patients with BSIs was 4.41 days (95% CI: 3.37-5.46; p<0.001) and decreased from 5.72 days (95% CI: 2.69-8.75; p<0.001) in 1991-1999 to 4.22 days (95% CI: 3.02-5.43; p<0.001) in 2000-2009 and was stable up to 2018 (4.30 days; 95% CI: 1.38-7.22; p=0,004). Higher WMD (p<0.001) was observed for BSIs due to K. pneumoniae (7.67 days; 4.63-10.71) than for those due to E. coli (6.07 days; 95% CI 3.71-8.43). Retrospective cohort studies reported higher (p<0.001) WMD (6.43 days; 95% CI: 4.66-8.21; p<0.001) than case cohort studies (3.32 days; 95% CI: 2.03-4.61). Studies in HICs showed higher WMD (4.56 days; 95% CI 3.43-5.70; p<0.001) than studies in LMICs (3.55 days; 95% CI 0.84-6.26; p=0.01) (Figure 4).

Studies with non-invasive infections reported a WMD of 2.19 days (95% CI: 1.56-2.81;
p<0.001), which decreased from 7.66 (95% CI: 5.83-9.46; p<0.001) in 2000-2009 to 1.44
(95% CI: 0.77-2.10; p<0.001) in 2010-2018 (online supplementary figure 7).

The data on ICU-LOS were provided in 7 studies and showed that BSIs caused by ESBL
 producers had a WMD of LOS of 3.07 days (95% CI: 1.61-4.54; p<0.001).

Heterogeniety of the studied effect-modifiers did not reach statistical significance when
assessed by metaregression (supplementary table S6). Sensitivity analysis based on the quality
of studies revealed no notable difference in the effect estimates after exclusion of low-quality
studies (data not shown). Egger's test and the funnel plots (online supplementary figure 1 and
showed evidence for small study effects (p<0.001) and publication bias.

8 DISCUSSION

This systematic review shows that ESBL production has a significant impact on the most relevant patient-related clinical outcomes. In the subgroup analyses, all-cause mortality, attributable mortality, and LOS both in hospital and in ICU were higher for patients with BSIs due to ESBL-producing Enterobacteriaceae than for patients with BSIs due to non-ESBL-producing strains. Non-invasive infections caused by ESBL-producing strains were associated with higher all-cause mortality and prolonged LOS. Within the limitation of the low number of studies evaluating specific patient populations, paediatric and cancer patients seemed to suffer a higher impact of ESBL invasive infections than the overall population. Stratifying by pathogen type, the impact of ESBL production was higher for E. coli BSIs than for K. pneumoniae BSIs. No relevant differences in mortality analysis emerged with stratification by study design or country income level. Impact of ESBL infections on mortality became more evident in more recent studies. Studies reporting on appropriateness of empirical therapy, ESBL resistance mechanisms, and MICs showed a higher clinical impact of ESBL infections than studies not assessing these variables. In particular, pooled ORs adjusted for inappropriate empirical treatment, showed a remarkably higher OR for mortality in patients with ESBL infections.

Our findings confirm the results of previous systematic reviews. Schwaber et al. performed a systematic review comparing mortality in ESBL BSIs and non-ESBL BSIs in studies published through 2003.² The authors show a pooled RR for all-cause mortality of 1.85 but, in contrast to our study, they combined *E. coli*, *Klebsiella* spp., and *Proteus* spp. in the analysis because of sample size limitations. Rottier et al. analysed studies published through 2010 and adjusting results for inappropriate empirical treatment found an adjusted OR of 1.37.³ Our study, adding more than 50 studies in 17 years to the Rottier systematic review, confirmed the clinical importance of ESBL production to all-cause mortality and for the first time assessed the role of ESBL production on attributable mortality. We addressed relevant effect-modifiers

 through subgroup analyses and found that population, pathogen, and assessment of empiric therapy all had an impact on estimates. Because we believe that appropriate empirical treatment plays a relevant role in invasive infections, we performed a secondary analysis by pooling only adjusted ORs and confirming the significant impact of antibiotic resistance as already shown in a previously published systematic review.⁹⁷ The lack of consideration of appropriateness of therapy in the studies evaluating mortality seems to underestimate the impact of ESBL production on mortality. However, studies assessing the impact of appropriate therapy did not provide homogeneous definition and could refer either to empirical or definite therapy or a single component irrespective of the dosage, making results difficult to interpret. Especially in infections with different sources and different clinical severity, the sole contribution of empirical therapy remains challenging to measure. For example, patients with UTI receiving inappropriate empirical antibiotic therapy can potentially show a favourable outcome, most probably due to the high concentration of antibiotic reached in the urinary tract.98

Community acquired ESBL infections emerged in the late 1990s and show an increasing trend.^{99,100} Recent study shows that community onset ESBL infections are associated with lower mortality compared with healthcare associated and hospital acquired infections.¹⁰¹ The place of acquisition could not be appropriately addressed in our meta-analysis due to the lack of data in included studies.

Our systematic review contributes to the discussion on the limitation of current evidence for
 the estimation of mortality due to antibiotic-resistant infections. The impact of ESBL
 production on LOS in our study has shown that both BSIs and non-invasive infections lead to
 prolongation of hospitalisation.

Our study has some limitations. Although results of the meta-analyses were significant in all the subgroups, we could analyse only a limited number of studies providing information for subgroups such as haematological patients and low-income countries, making generalizability of results less certain for these specific patient populations. Only a few studies reported MIC data or specific ESBL molecular resistant phenotype (i.e., AmpC). Moreover, publication bias was detected in both the main analyses (all-cause mortality and LOS), thus implying the possibility that results from small studies with non-significant results might have been conducted and not published, resulting in a possible overestimation of our results. The non-homogeneous reporting of some relevant data in published literature (e.g., disease severity,

BMJ Open

underlying comorbidities and resistance mechanism) may also have affected the precision of the estimate. Patients with ESBL are intrinsically at higher risk of mortality and complications because they are often older, have more comorbidities or higher antibiotic exposure, and are at higher risk of receiving inappropriate empirical treatment.¹⁰² Finally, due to resource constraints, we had to limit our search to PubMed database with the chance of missing relevant studies.

In summary, our systematic review emphasises the importance of suspicion and confirmation of ESBL production as soon as possible for invasive infections and demonstrates that ESBL production increases the risk of attributable mortality and LOS in both hospital and ICU for invasive and non-invasive infections. Patients with ESBL infections remain at higher risk of mortality and prolonged LOS even after adjustment for empiric inappropriate treatment. Control for other relevant effect-modifiers is hindered by the sparseness of published data. Individual patient data (IPD) network meta-analyses are needed to define differences in outcomes between severe intravascular infections and bacteremia. Future studies addressing the clinical burden of drug-resistant infections must include ESBL production and should assess both the impact of molecular mechanisms of resistance and effect on specific patient populations such as haematological patients and those in LMIC.

Acknowledgements We thank Anne McDonough, a professional medical writer who
 provided medical writing support funded by the authors.

Author Contributions ET contributed to the study concept. BPG and PS performed data analysis. PS and AC extracted data and wrote the first draft of the manuscript. DL contributed to the first draft of the manuscript. EC and ET wrote the final version of the manuscript. CB reviewed the paper. All authors read, edited, and approved the final manuscript. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Funding This work was supported by the German Center for Infection Research Clinical Research Unit for Health-Care Associated Infections grant number TTU 08.701 and DRIVE-AB (115618). The funder had no involvement in the study design; in the collection, analysis and interpretation of the data; in the writing of the report; or in the decision to submit the paper for publication.

- ⁵⁶₅₇ 31 **Competing interests** The authors report no competing interests.
- ⁵⁸⁵⁹ 32 Patient consent Not required
- ⁶⁰ 33 **Provenance and peer review** Not commissioned; externally peer reviewed.

Data sharing statement Requests for data should be addressed to the corresponding author.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http:// creativecommons.org/licenses/by-nc/4.0/.

for peer teriew only

2			
3 4	1	RI	EFERENCES
5	2	1.	Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new
7	3		antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet
8 9	4		Infect Dis 2018;18:318–27.
10 11	5	2.	Schwaber MJ, Carmeli Y. Mortality and delay in effective therapy associated with
12	6		extended-spectrum beta-lactamase production in Enterobacteriaceae bacteraemia: a
13 14	7		systematic review and meta-analysis. J Antimicrob Chemother 2007;60:913-20.
15 16	8	3.	Rottier WC, Ammerlaan HS, Bonten MJ. Effects of confounders and intermediates on the
17 18	9		association of bacteraemia caused by extended-spectrum beta-lactamase-producing
19	10		Enterobacteriaceae and patient outcome: a meta-analysis. J Antimicrob Chemother
20 21	11		2012;67:1311–20.
22 23	12	4.	Cassini A, Högberg LD, Plachouras D, et al; Attributable deaths and disability-adjusted
24	13		life-years caused by infections with antibiotic-resistant bacteria in the EU and the
25 26	14		European Economic Area in 2015: a population-level modelling analysis. Lancet Infect
27 28	15		Dis 2019;19:56–66.
29 30	16	5.	The World Bank. What is the World Bank Atlas method?
31	17		https://datahelpdesk.worldbank.org/knowledgebase/articles/77933-what-is-the-world-
32 33	18		bank-atlas-method. Accessed January 14, 2019.
34 35	19	6.	Rodriguez-Bano J, Gutierrez-Gutierrez B, Machuca I et al. Treatment of Infections
36 37	20		Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing
38	21		Enterobacteriaceae. Clin Microbiol Rev 2018; 31. doi:10.1128/CMR.00079-17
39 40	22	7.	Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M et al. The Newcastle-
41 42	23		Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses.
43	24		The Ottawa Health Research Institute: Ottawa, Canada.
44 45	25		http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm. Accessed April 14 2015
46 47	26	8.	Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of
48 49	27		Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011.
50	28		Available from http://handbook.cochrane.org.
51 52	29	9.	Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and
53 54	30		meta-analyses: the PRISMA statement. BMJ 2009;339:b2535.
55 56	31	10	. Lautenbach E, Patel JB, Bilker WB, et al. Extended-spectrum beta-lactamase-producing
57	32		Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of
58 59	33		resistance on outcomes. Clin Infect Dis 2001;32:1162-71.
60			

11. Leistner R, Sakellariou C, Gurntke S, et al. Mortality and molecular epidemiology associated with extended-spectrum beta-lactamase production in Escherichia coli from bloodstream infection. Infect Drug Resist 2014;7:57-62. 12. Lin JN, Chen YH, Chang LL, et al. Clinical characteristics and outcomes of patients with extended-spectrum beta-lactamase-producing bacteremias in the emergency department. Intern Emerg Med 2011;6:547-55. 13. Kim HJ, Park JH, Park DI, et al. Clinical impact of extended-spectrum beta-lactamase-producing Enterobacteriaceae in patients with biliary tract infection. Dig Dis Sci 2013;58:841-9. 14. Kim SH, Kwon JC, Choi SM, et al. Escherichia coli and Klebsiella pneumoniae bacteremia in patients with neutropenic fever: factors associated with extended-spectrum beta-lactamase production and its impact on outcome. Ann Hematol 2013;92:533-41. 15. Pillay T, Pillay DG, Adhikari M, et al. Piperacillin/tazobactam in the treatment of Klebsiella pneumoniae infections in neonates. Am J Perinatol 1998;15:47-51. 16. Kim BN, Woo JH, Kim MN, et al. Clinical implications of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae bacteraemia. J Hosp Infect 2002;52:99-106. 17. Kim YK, Pai H, Lee HJ, et al. Bloodstream infections by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in children: epidemiology and clinical outcome. Antimicrob Agents Chemother 2002;46:1481–91. 18. Bhavnani SM, Ambrose PG, Craig WA, et al. Outcomes evaluation of patients with ESBL- and non-ESBL-producing Escherichia coli and Klebsiella species as defined by CLSI reference methods: report from the SENTRY Antimicrobial Surveillance Program. Diagn Microbiol Infect Dis 2006;54:231-6. 19. Blomberg B, Jureen R, Manji KP, et al. High rate of fatal cases of pediatric septicemia caused by gram-negative bacteria with extended-spectrum beta-lactamases in Dar es Salaam, Tanzania. J Clin Microbiol 2005;43:745-9. 20. Panhotra BR, Saxena AK, Al-Ghamdi AM. Extended-spectrum beta-lactamase-producing Klebsiella pneumoniae hospital acquired bacteremia. Risk factors and clinical outcome. Saudi Med J 2004;25:1871-6. 21. Marra AR, Wey SB, Castelo A, et al. Nosocomial bloodstream infections caused by Klebsiella pneumoniae: impact of extended-spectrum beta-lactamase (ESBL) production on clinical outcome in a hospital with high ESBL prevalence. BMC Infect Dis 2006;6:24.

BMJ Open

2		
3 ⊿	1	22. Skippen I, Shemko M, Turton J, et al. Epidemiology of infections caused by extended-
5	2	spectrum beta-lactamase-producing Escherichia coli and Klebsiella spp.: a nested case-
6 7	3	control study from a tertiary hospital in London. J Hosp Infect 2006;64:115-23.
8 9	4	23. Schwaber MJ, Navon-Venezia S, Kaye KS, et al. Clinical and economic impact of
10	5	bacteremia with extended-spectrum-beta-lactamase-producing Enterobacteriaceae.
11 12	6	Antimicrob Agents Chemother 2006;50:1257–62.
13 14	7	24. Apisarnthanarak A, Kiratisin P, Saifon P, et al. Clinical and molecular epidemiology of
15	8	community-onset, extended-spectrum beta-lactamase-producing Escherichia coli
10	9	infections in Thailand: a case-case-control study. Am J Infect Control 2007;35:606-12.
18 19	10	25. Tumbarello M, Spanu T, Sanguinetti M, et al. Bloodstream infections caused by extended-
20 21	11	spectrum-beta-lactamase-producing Klebsiella pneumoniae: risk factors, molecular
22	12	epidemiology, and clinical outcome. Antimicrob Agents Chemother 2006;50:498-504.
23 24	13	26. Apisarnthanarak A, Kiratisin P, Saifon P, et al. Risk factors for and outcomes of
25 26	14	healthcare-associated infection due to extended-spectrum beta-lactamase-producing
27	15	Escherichia coli or Klebsiella pneumoniae in Thailand. Infect Control Hosp Epidemiol
28 29	16	2007;28:873–6. doi: 10.1086/518725
30 31	17	27. Kanafani ZA, Mehio-Sibai A, Araj GF, et al. Epidemiology and risk factors for extended-
32 33	18	spectrum beta-lactamase-producing organisms: a case control study at a tertiary care
34	19	center in Lebanon. Am J Infect Control 2005;33:326-32.
35 36	20	28. Zaoutis TE, Goyal M, Chu JH, et al. Risk factors for and outcomes of bloodstream
37 38	21	infection caused by extended-spectrum beta-lactamase-producing Escherichia coli and
39	22	Klebsiella species in children. <i>Pediatrics</i> 2005;115:942–9.
40 41	23	29. Loh LC, Nor Izran Hanim Bt Abdul S, Rosdara Masayuni Bt Mohd S, et al. Hospital
42 43	24	Outcomes of Adult Respiratory Tract Infections with Extended-Spectrum B-Lactamase
44 45	25	(ESBL) Producing Klebsiella Pneumoniae. Malays J Med Sci 2007;14:36–40.
46	26	30. Melzer M, Petersen I. Mortality following bacteraemic infection caused by extended
47 48	27	spectrum beta-lactamase (ESBL) producing E. coli compared to non-ESBL producing E.
49 50	28	coli. J Infect 2007;55:254–9. doi: 10.1016/j.jinf.2007.04.007
51	29	31. Song KH, Jeon JH, Park WB, et al. Clinical outcomes of spontaneous bacterial peritonitis
52 53	30	due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella
54 55	31	species: a retrospective matched case-control study. <i>BMC Infect Dis</i> 2009;9:41.
56 57	32	32. Bennett JW, Robertson JL, Hospenthal DR, et al. Impact of extended spectrum beta-
58	33	lactamase producing Klebsiella pneumoniae infections in severely burned patients. J Am
59 60	34	<i>Coll Surg</i> 2010:211:391–9.

Page 16 of 57

BMJ Open

33. Trecarichi EM, Tumbarello M, Spanu T, et al. Incidence and clinical impact of extended spectrum-beta-lactamase (ESBL) production and fluoroquinolone resistance in
 bloodstream infections caused by Escherichia coli in patients with hematological
 malignancies. *J Infect* 2009;58:299–307.

- 5 34. Tuon FF, Kruger M, Terreri M, et al. Klebsiella ESBL bacteremia-mortality and risk
 6 factors. *Braz J Infect Dis* 2011;15:594–8.
- 35. Kang CI, Song JH, Chung DR, et al. Risk factors and treatment outcomes of communityonset bacteraemia caused by extended-spectrum beta-lactamase-producing Escherichia
 coli. *Int J Antimicrob Agents* 2010;36:284–7.
- 36. Pena C, Gudiol C, Calatayud L, et al. Infections due to Escherichia coli producing
 extended-spectrum beta-lactamase among hospitalised patients: factors influencing
 mortality. *J Hosp Infect* 2008;68:116–22.
- 13 37. Tumbarello M, Spanu T, Di Bidino R, et al. Costs of bloodstream infections caused by
 14 Escherichia coli and influence of extended-spectrum-beta-lactamase production and
 15 inadequate initial antibiotic therapy. *Antimicrob Agents Chemother* 2010;54:4085–91.
- 16 38. Kang CI, Chung DR, Ko KS, et al. Risk factors for infection and treatment outcome of
 17 extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae
 18 bacteremia in patients with hematologic malignancy. *Ann Hematol* 2012;91:115–21.
- ⁴ 19 39. Wu YH, Chen PL, Hung YP, et al. Risk factors and clinical impact of levofloxacin or cefazolin nonsusceptibility or ESBL production among uropathogens in adults with community-onset urinary tract infections. *J Microbiol Immunol Infect* 2014;47:197–203.
- 40. Rodriguez-Bano J, Picon E, Gijon P, et al. Community-onset bacteremia due to extended spectrum beta-lactamase-producing Escherichia coli: risk factors and prognosis. *Clin Infect Dis* 2010;50:40–8.
- 41. Gurntke S, Kohler C, Steinmetz I, et al. Molecular epidemiology of extended-spectrum
 beta-lactamase (ESBL)-positive Klebsiella pneumoniae from bloodstream infections and
 risk factors for mortality. *J Infect Chemother* 2014;20:817–9.
- 42. Oh MM, Chae JY, Kim JW, et al. Positive culture for extended-spectrum beta-lactamase
 during acute prostatitis after prostate biopsy is a risk factor for progression to chronic
 30 prostatitis. Urology 2013;81:1209–12.
- 31 43. Leistner R, Gurntke S, Sakellariou C, et al. Bloodstream infection due to extended32 spectrum beta-lactamase (ESBL)-positive K. pneumoniae and E. coli: an analysis of the
 33 disease burden in a large cohort. *Infection* 2014;42:991–7.

BMJ Open

17

2		
3 4	1	44. Ku NS, Chung HS, Choi JY, et al. Clinical usefulness of the 2010 clinical and laboratory
5	2	standards institute revised breakpoints for cephalosporin use in the treatment of
6 7	3	bacteremia caused by Escherichia coli or Klebsiella spp. Biomed Res Int
8 9	4	2015;2015:831074.
10	5	45. Anunnatsiri S, Towiwat P, Chaimanee P. Risk factors and clinical outcomes of extended
12	6	spectrum beta-lactamase (ESBL)-producing Escherichia coli septicemia at Srinagarind
13 14	7	University Hospital, Thailand. Southeast Asian J Trop Med Public Health 2012;43:1169-
15 16	8	77.
17	9	46. Kang CI, Kim SH, Kim DM, et al. Risk factors for and clinical outcomes of bloodstream
18 19	10	infections caused by extended-spectrum beta-lactamase-producing Klebsiella
20 21	11	pneumoniae. Infect Control Hosp Epidemiol 2004;25:860–7.
22 23	12	47. Raviv Y, Shitrit D, Amital A, et al. Multidrug-resistant Klebsiella pneumoniae acquisition
24	13	in lung transplant recipients. Clin Transplant 2012;26:E388–94.
25 26	14	48. MacVane SH, Tuttle LO, Nicolau DP. Impact of extended-spectrum beta-lactamase-
27 28	15	producing organisms on clinical and economic outcomes in patients with urinary tract
29 30	16	infection. <i>J Hosp Med</i> 2014;9:232–8.
31	17	49. Abhilash KP, Veeraraghavan B, Abraham OC. Epidemiology and outcome of bacteremia
32 33	18	caused by extended spectrum beta-lactamase (ESBL)-producing Escherichia coli and
34 35	19	Klebsiella spp. in a tertiary care teaching hospital in south India. J Assoc Physicians India
36	20	2010;58 Suppl:13-7.
38	21	50. Shanthi M, Sekar U. Extended spectrum beta lactamase producing Escherichia coli and
39 40	22	Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. J
41 42	23	Assoc Physicians India 2010;58 Suppl:41–4.
43	24	51. Han SB, Jung SW, Bae EY, et al. Extended-spectrum beta-lactamase-producing
44 45	25	Escherichia coli and Klebsiella pneumoniae bacteremia in febrile neutropenic children.
46 47	26	Microb Drug Resist 2015;21:244–51.
48 ⊿q	27	52. Lee S, Song DY, Cho SH, et al. Impact of extended-spectrum beta-lactamase on acute
50	28	pyelonephritis treated with empirical ceftriaxone. Microb Drug Resist 2014;20:39-44.
51 52	29	53. Chayakulkeeree M, Junsriwong P, Keerasuntonpong A, et al. Epidemiology of extended-
53 54	30	spectrum beta-lactamase producing gram-negative bacilli at Siriraj Hospital, Thailand,
55	31	2003. Southeast Asian J Trop Med Public Health 2005;36:1503–9.
50 57	32	54. Apisarnthanarak A, Kiratisin P, Mundy LM. Predictors of mortality from community-
58 59	33	onset bloodstream infections due to extended-spectrum beta-lactamase-producing
60		

1 2		
3	1	Escherichia coli and Klebsiella pneumoniae. Infect Control Hosp Epidemiol 2008;29:671-
4 5	2	4.
6 7 8 9 10 11 12 13 14	3	55. Apisarnthanarak A, Kiratisin P, Saifon P, et al. Predictors of mortality among patients
	4	with community-onset infection due to extended-spectrum beta-lactamase-producing
	5	Escherichia coli in Thailand. Infect Control Hosp Epidemiol 2008;29:80-2.
	6	56. Jean SS, Ko WC, Xie Y, et al. Clinical characteristics of patients with community-
	7	acquired complicated intra-abdominal infections: a prospective, multicentre, observational
15 16	8	study. Int J Antimicrob Agents 2014;44:222-8.
17	9	57. Lee J, Pai H, Kim YK, et al. Control of extended-spectrum beta-lactamase-producing
18 19	10	Escherichia coli and Klebsiella pneumoniae in a children's hospital by changing
20 21	11	antimicrobial agent usage policy. J Antimicrob Chemother 2007;60:629-37.
22 23	12	58. Briongos-Figuero LS, Gomez-Traveso T, Bachiller-Luque P, et al. Epidemiology, risk
24	13	factors and comorbidity for urinary tract infections caused by extended-spectrum beta-
25 26	14	lactamase (ESBL)-producing enterobacteria. Int J Clin Pract 2012;66:891-6.
27 28	15	59. Ha YE, Kang CI, Cha MK, et al. Epidemiology and clinical outcomes of bloodstream
29	16	infections caused by extended-spectrum beta-lactamase-producing Escherichia coli in
30 31	17	patients with cancer. Int J Antimicrob Agents 2013;42:403–9.
32 33	18	60. Du B, Long Y, Liu H, et al. Extended-spectrum beta-lactamase-producing Escherichia
34 35	19	coli and Klebsiella pneumoniae bloodstream infection: risk factors and clinical outcome.
36 27	20	Intensive Care Med 2002;28:1718–23.
37 38	21	61. Stone PW, Gupta A, Loughrey M, et al. Attributable costs and length of stay of an
39 40	22	extended-spectrum beta-lactamase-producing Klebsiella pneumoniae outbreak in a
41	23	neonatal intensive care unit. Infect Control Hosp Epidemiol 2003;24:601-6.
43	24	62. Pena C, Pujol M, Ardanuy C, et al. An outbreak of hospital-acquired Klebsiella
44 45	25	pneumoniae bacteraemia, including strains producing extended-spectrum beta-lactamase.
46 47	26	J Hosp Infect 2001;47:53–9.
48	27	63. Kola A, Maciejewski O, Sohr D, et al. Clinical impact of infections caused by ESBL-
49 50	28	producing E. coli and K. pneumoniae. Scand J Infect Dis 2007;39:975-82.
51 52	29	64. Tsai MH, Lee IT, Chu SM, et al. Clinical and Molecular Characteristics of Neonatal
53 54	30	Extended-Spectrum beta-Lactamase-Producing Gram-Negative Bacteremia: A 12-Year
54 55	31	Case-Control-Control Study of a Referral Center in Taiwan. PLoS One
56 57	32	2016;11(8):e0159744.
58 59 60		

BMJ Open

2		
3 4	1	65. Maslikowska JA, Walker SA, Elligsen M, et al. Impact of infection with extended-
4 5	2	spectrum beta-lactamase-producing Escherichia coli or Klebsiella species on outcome and
6 7	3	hospitalization costs. J Hosp Infect 2016;92:33-41.
8 9	4	66. Onken A, Said AK, Jorstad M, et al. Prevalence and antimicrobial resistance of microbes
10	5	causing bloodstream infections in Unguja, Zanzibar. PLoS One 2015;10:e0145632.
12 13 14	6	67. Nguyen ML, Toye B, Kanji S, et al. Risk factors for and outcomes of bacteremia caused
	7	by extended-spectrum β -lactamase-producing Escherichia coli and Klebsiella species at a
15 16	8	Canadian tertiary care hospital. Can J Hosp Pharm 2015;68(2):136-43. [published Online
17	9	First: 2015/05/13]
18 19	10	68. Denis B, Lafaurie M, Donay JL, et al. Prevalence, risk factors, and impact on clinical
20 21	11	outcome of extended-spectrum beta-lactamase-producing Escherichia coli bacteraemia: a
22 23	12	five-year study. Int J Infect Dis 2015;39:1–6.
24	13	69. Chopra T, Marchaim D, Johnson PC, et al. Risk factors for bloodstream infection caused
25 26	14	by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella
27 28	15	pneumoniae: A focus on antimicrobials including cefepime. Am J Infect Control
29	16	2015;43:719–23.
30 31	17	70. Artero A, Esparcia A, Alberola J, et al. Prospective cohort study of risk factors for
32 33	18	extended-spectrum ss-lactamase-producing Escherichia coli urinary tract infections in
34 35	19	elderly patients admitted to hospital. Int J Clin Pract 2017;71:doi:10.1111/ijcp.13001
36 37	20	71. Chen IL, Huang HC, Wu CT, et al. Analysis of early-onset bloodstream infection due to
37 38	21	Escherichia coli infection in premature babies. Medicine 2017;96:e7748.
39 40	22	72. Islas-Munoz B, Volkow-Fernandez P, Ibanes-Gutierrez C, et al. Bloodstream infections in
41 42	23	cancer patients. Risk factors associated with mortality. Int J Infect Dis 2018;71:59-64.
43	24	73. Ma J, Li N, Liu Y, et al. Antimicrobial resistance patterns, clinical features, and risk
44 45	25	factors for septic shock and death of nosocomial E coli bacteremia in adult patients with
46 47	26	hematological disease: A monocenter retrospective study in China. Medicine
48 ⊿q	27	2017;96:e6959.
50	28	74. Man MY, Shum HP, Chan YH, et al. Clinical predictors and outcomes of Klebsiella
51 52	29	pneumoniae bacteraemia in a regional hospital in Hong Kong. J Hosp Infect 2017;97:35-
53 54	30	41.
55	31	75. Marando R, Seni J, Mirambo MM, et al. Predictors of the extended-spectrum-beta
50 57	32	lactamases producing Enterobacteriaceae neonatal sepsis at a tertiary hospital, Tanzania.
58 59	33	Int J Med Microbiol 2018;308:803–11.
60		

76. Namikawa H, Yamada K, Fujimoto H, et al. Clinical characteristics of bacteremia caused by extended-spectrum beta-lactamase-producing Escherichia coli at a tertiary hospital. *Intern Med* 2017;56:1807–15.
77. Shi GH E - YOL L i MC + 1 Dility - 1.

4 77. Shi SH, Feng XN, Lai MC, et al. Biliary diseases as main causes of pyogenic liver abscess
5 caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae. *Liver Int*6 2017;37:727–34.

7 78. Tanir Basaranoglu S, Ozsurekci Y, Aykac K, et al. A comparison of blood stream
8 infections with extended spectrum beta-lactamase-producing and non-producing
9 Klebsiella pneumoniae in pediatric patients. *Ital J Pediat* 2017;43:79.

- 79. Razazi K, Mekontso Dessap A, Carteaux G, et al. Frequency, associated factors and
 outcome of multi-drug-resistant intensive care unit-acquired pneumonia among patients
 colonized with extended-spectrum beta-lactamase-producing Enterobacteriaceae. *Ann Intensive Care* 2017;7:61.
- 14 80. Ray S, Anand D, Purwar S, et al. Association of high mortality with extended-spectrum
 15 beta-lactamase (ESBL) positive cultures in community acquired infections. *J Crit Care* 9 16 2018;44:255-60.
- 17 81. Haruki Y, Hagiya H, Haruki M, et al. Clinical characteristics and outcome of critically ill
 18 patients with bacteremia caused by extended-spectrum beta-lactamase-producing and non 19 producing Escherichia coli. *J Infect Chemother* 2018;24:944–7.
- 20 82. Lin WT, Tang HJ, Lai CC, et al. Clinical manifestations and bacteriological features of
 21 culture-proven Gram-negative bacterial arthritis. J Microbiol Immunol Infect
 22 2017;50:527–31.
- 23 83. Buys H, Muloiwa R, Bamford C, et al. Klebsiella pneumoniae bloodstream infections at a
 24 South African children's hospital 2006-2011, a cross-sectional study. BMC Infect Dis
 25 2016;16:570.

46 26 84. Lee CC, Lee CH, Hong MY, et al. Propensity-matched analysis of the impact of extended48 27 spectrum beta-lactamase production on adults with community-onset Escherichia coli,
49 28 Klebsiella species, and Proteus mirabilis bacteremia. *J Microbiol Immunol Infect*50 29 2018;51:519–26.

- 30 85. Huang YY, Alleyne A, Leung V, et al. Urosepsis due to extended-ppectrum beta 31 lactamase-producing Escherichia coli: a retrospective, single-centre review of risk Factors
 32 and clinical outcomes. *Can J Hosp Pharm* 2018;71:119-27.

Page 21 of 57

BMJ Open

1 2		
3	1	86. Komatsu Y, Kasahara K, Inoue T, et al. Molecular epidemiology and clinical features of
4 5	2	extended-spectrum beta-lactamase- or carbapenemase-producing Escherichia coli
6 7	3	bacteremia in Japan. PLoS One 2018;13:e0202276.
8 9	4	87. Liu M, Li M, Wu L, et al. Extended-spectrum beta-lactamase-producing E. coli
10 11	5	septicemia among rectal carriers in the ICU. Medicine 2018;97:e12445.
11 12 13	6	88. Nivesvivat T, Piyaraj P, Thunyaharn S, et al. Clinical epidemiology, risk factors and
13 14	7	treatment outcomes of extended-spectrum beta-lactamase producing Enterobacteriaceae
15 16	8	bacteremia among children in a tertiary care hospital, Bangkok, Thailand. BMC Res Notes
17 18	9	2018;11:624.
19	10	89. Cordery RJ, Roberts CH, Cooper SJ, et al. Evaluation of risk factors for the acquisition of
20 21	11	bloodstream infections with extended-spectrum beta-lactamase-producing Escherichia coli
22 23	12	and Klebsiella species in the intensive care unit; antibiotic management and clinical
24 25	13	outcome. J Hosp Infect 2008;68:108–15.
26	14	90. Daikos GL, Kosmidis C, Tassios PT, et al. Enterobacteriaceae bloodstream infections:
27 28	15	presence of integrons, risk factors, and outcome. Antimicrob Agents Chemother
29 30	16	2007;51:2366–72. doi: 10.1128/AAC.00044-07 [published Online First: 2007/04/25]
31 32	17	91. Gudiol C, Calatayud L, Garcia-Vidal C, et al. Bacteraemia due to extended-spectrum beta-
33	18	lactamase-producing Escherichia coli (ESBL-EC) in cancer patients: clinical features, risk
34 35	19	factors, molecular epidemiology and outcome. J Antimicrob Chemother 2010;65(2):333-
36 37	20	41.
38	21	92. Marchaim D, Gottesman T, Schwartz O, et al. National multicenter study of predictors
40	22	and outcomes of bacteremia upon hospital admission caused by Enterobacteriaceae
41 42	23	producing extended-spectrum beta-lactamases. Antimicrob Agents Chemother
43 44	24	2010;54:5099–104.
45	25	93. Menashe G, Borer A, Yagupsky P, et al. Clinical significance and impact on mortality of
40 47	26	extended-spectrum beta lactamase-producing Enterobacteriaceae isolates in nosocomial
48 49	27	bacteremia. Scand J Infect Dis 2001;33:188–93.
50 51	28	94. Ortega M, Marco F, Soriano A, et al. Analysis of 4758 Escherichia coli bacteraemia
52	29	episodes: predictive factors for isolation of an antibiotic-resistant strain and their impact
53 54	30	on the outcome. J Antimicrob Chemother 2009;63:568–74.
55 56	31	95. Szilagyi E, Fuzi M, Borocz K, et al. Risk factors and outcomes for bloodstream infections
57 58	32	with extended-spectrum beta-lactamase-producing Klebsiella pneumoniae ; Findings of
59	33	the nosocomial surveillance system in Hungary. Acta Microbiol Immunol Hung
60	34	2009;56:251–62. doi:

96. Tsai SS, Huang JC, Chen ST, et al. Characteristics of Klebsiella pneumoniae bacteremia in community-acquired and nosocomial infections in diabetic patients. Chang Gung Med J 2010;33:532-9.

- 97. Carrara E, Pfeffer I, Zusman O, et al. Determinants of inappropriate empirical antibiotic treatment: systematic review and meta-analysis. Int J Antimicrob Agents 2018;51:548-53,
- 98. Horcajada JP, Shaw E, Padilla B, et al. Healthcare-associated, community-acquired and hospital-acquired bacteraemic urinary tract infections in hospitalized patients: a prospective multicentre cohort study in the era of antimicrobial resistance. Clin Microbiol Infect. 2013 Oct;19(10):96
- 99. Pitout JD, Nordmann P, Laupland KB et al. Emergence of Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs) in the community. J Antimicrob Chemother 2005; 56: 52-59. doi:10.1093/jac/dki166
- 100. Pitout JD. Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008; 8: 159-166. doi:10.1016/S1473-3099(08)70041-0
 - Palacios-Baena ZR, Gutierrez-Gutierrez B, De Cueto M et al. Development and 101. validation of the INCREMENT-ESBL predictive score for mortality in patients with bloodstream infections due to extended-spectrum-beta-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother 2017; 72: 906-913. doi:10.1093/jac/dkw513 Gandra S, Barter DM, Laxminarayan R. Economic burden of antibiotic resistance: 102.
 - how much do we really know? Clin Microbiol Infect 2014;20:973-80.

FIGURE LEGENDS

Figure 1: Literature search and study inclusion and exclusion

5 Figure 2: Pooled risk ratios for all-cause mortality in patients with ESBL bloodstream

6 infections compared to patients with non-ESBL bloodstream infections— subgroups not

7 included in attributable mortality

9 Figure 3: Pooled risk ratios for attributable mortality in patients with ESBL bloodstream0 infections compared to patients with non-ESBL bloodstream infections

nean Qu..
to patients with .. Figure 4: Weighted mean difference in the length of stay for patients with ESBL bloodstream infections compared to patients with non-ESBL bloodstream infections

Page 2	25 of 57		BMJ Open			
1 2 3 4	Category	Ν			risk ratio (95% CI)	
5 6 7 8 9	Overall					
	Overall	56		~	1.70 (1.52, 1.90)	
10 11 12	Mortality time					
13 14	14 day mortality	5			1.77 (1.15, 2.72)	
15 16	28 day mortality	22		_	1.63 (1.35, 1.97)	
17 18	Time not defined	27		~	1.70 (1.47, 1.97)	
19 20 21	Incomo classification					
22		11			1 76 (1 54 . 2 00)	
24	l ow/middle income countries	15			1.70 (1.34, 2.00)	
25 26 27		10		· ·	1.00 (1.20, 1.00)	
27 28 29	Study population					
30 31	All kinds of patients	36			1.65 (1.43, 1.90)	
32	Cancer patients	5		─ →───	1.73 (1.16, 2.57)	
33	Children	7		─ ◆──	2.09 (1.62, 2.71)	
35 36 37	Neonates	3			1.76 (1.27, 2.45)	
38 39	Appropriatopose of thoropy					
40 41	Reported	11			1 75 (1 54 1 00)	
42 43	Not reported	10			1.75 (1.54, 1.99)	
44 45	Not reported	12			1.55 (1.20, 1.90)	
46 47						
48						
50		F	0.5	1 2 3	4	
52		For peer review only - http://bm	ijopen.bmj.com/site/about/gu	lidelines.xntml		
55						

2 3

Page 26 of 57

Category	Ν		risk ratio (95% CI)
Overall			
Overall	11	—	1.75 (1.45, 2.11)
Pathogen			
Klebsiella pneumoniae	4	_	1.60 (1.18, 2.15)
Escherichia coli & Klebsiella pneumoniae	2	↓	2.84 (1.34, 6.02)
Gram negative bacteria	5	—	1.76 (1.33, 2.34)
Study design			
Retrospective cohort studies	6	→	1.80 (1.37, 2.37)
Case cohort studies	3		1.56 (1.09, 2.25)
Study period			
Years: 1991–1999	3	→	1.53 (1.10, 2.12)
Years: 2000–2009	7	—	1.91 (1.43, 2.54)
MIC			
Reported	7		1.76 (1.37, 2.25)
Not reported	4	—	1.73 (1.20, 2.51)
Empirical therapy			
Reported	4		1.76 (1.17, 2.64)
Not reported	3		1.76 (1.18, 2.63)
Fo	n 0 r peer review only - http://bmjopen.bmj.com/site/abou	1 1 1 1 1 2 3 4 t/guidelines.xhtml	

Page 27 of 57

BMJ Open

Category	Ν		Weighted mean difference (95% CI)				
Setting							
Hospital	17	│	4.41 (3.37, 5.45)				
ICU	4	── ◆──	3.07 (1.61, 4.54)				
Definition							
Post infection	8	←	4.57 (2.95, 6.20)				
Total	11		4.05 (2.89, 5.22)				
Pathogen							
Klebsiella pneumoniae	3	←	→ 7.67 (4.63, 10.71)				
Escherichia coli	4		- 6.07 (3.70, 8.43)				
Escherichia coli & Klebsiella pneumoniae	5	_	- 6.37 (4.22, 8.52)				
Gram negative bacteria	5	│ → ``	1.83 (0.28, 3.38)				
Study design							
Betrospective cohort studies	9	_	6 43 (4 66 8 20)				
Case cohort studies	7	· · · · · ·	3.32 (2.03, 4.61)				
Income classification							
High income countries	13	· · · · · · · · · · · · · · · · · · ·	4.56 (3.43, 5.69)				
Low/middle income countries	4	↓	3.55 (0.84, 6.26)				
Continent							
Europe	6	│ •	7.96 (6.12, 9.80)				
North America	3	· · · · · · · · · · · · · · · · · · ·	→ 6.39 (2.72, 10.05)				
Asia	7	↓	2.08 (0.72, 3.44)				
Study period							
Years: 1991–1999	2	──	5.72 (2.69, 8.75)				
Years: 2000–2009 12 4.22 (3.02, 5.43)							
Years: 2010–2018 3 4.30 (1.38, 7.22)							
	-2	0 2 5	10				
	_						
		Number of days of hospital stay					
For	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml						

Supplementary figure 1: Funnel plot of risk ratios for all-cause mortality in patients with ESBL bloodstream infections compared to patients with non-ESBL bloodstream infections

The y axis se(logRR) is the standard error of the log risk ratio Pseudo 95% confidence limit refers to the 95% confidence limits around the summary treatment effect for each standard error on the vertical axis and to the expected distribution of studies in the absence of heterogeneity or of selection biases.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary figure 2: Funnel plot of weighted mean differences in the length of stay for patients with ESBL bloodstream infections compared to patients with non-ESBL bloodstream infections

The y axis se(WMD) is the standard error of the weighted mean difference. Pseudo 95% confidence limit refers to the 95% confidence limits around the summary treatment effect for each standard error on the vertical axis and to the expected distribution of studies in the absence of heterogeneity or of selection biases.

Supplementary figure 3: Pooled risk ratios for all-cause mortality in patients with noninvasive ESBL infections compared to patients with noninvasive non-ESBL infections

verall 7 + 1.58 (1.23, 2.02) scherchia coll 7 + 1.58 (1.23, 2.02) scherchia coll 5.46 (1.00, 29.81) 2 + 5.46 (1.00, 29.81) scherchia coll 8.Klebslella pneumoniae 2 + 2.04 (0.81, 5.18) scherchia coll 8.Klebslella pneumoniae 2 + 2.04 (0.81, 5.18) scherchia coll 8.Klebslella pneumoniae 2 + 2.16 (1.26, 2.37) scherchia counties 1.58 (1.12, 2.09) + 1.53 (1.12, 2.09) wimidelia income counties 1.53 (1.12, 2.09) + 1.53 (1.12, 2.09) scherchia 1.40 (0.87, 2.27) - 1.58 (1.13, 2.13) scherchia 1.40 (0.87, 2.27) - 1.49 (0.85, 5.89) porportateness of therapy - - 1.49 (0.38, 5.89) scherchia 1.58 (1.13, 2.14) - 1.56 (1.13, 2.14) lot rep	category	N			risk ratio (95% CI)
berall 7 + 1.58 (1.23, 2.02) hathogen 1.30 (0.85, 198) 5.5 (1.02, 2.28) ischerichia coll 2 + 5.6 (1.02, 2.28) ischerichia coll & Kutelsella pneumoniae 2 + 5.6 (1.02, 2.28) ischerichia coll iscules 2 + 1.58 (1.16, 2.17) ischerichia coll iscules 2 + 1.53 (1.16, 2.17) ischerichia coll iscules 2 + 1.53 (1.12, 2.09) ischerichia coll iscome countries 2 1.53 (1.12, 2.09) 1.40 (0.87, 2.27) ischerichia coll iscome countries 2 + 1.84 (1.13, 1.95) 1.98 (1.25, 3.71) ischerichia coll iscome countries 2 + 1.49 (0.87, 5.88) 1.98 (1.25, 2.27) ischerichia 3 + + 1.89 (1.25, 2.28) 1.49 (0.38, 5.88) ischerichia 3 + + 1.49 (0.38, 5.88) 1.98 (1.29, 2.22) ischerichia 3 + + 1.49 (0.38, 5.88) 1.66 (1.13, 2.14) ischerichia 5 + 1.55 (1.13,	Dverall				
Pathogen Sischerika coll & Kelseinle pneumoniae 2 aram negative bacteria 2 aram negative bact	Overall	7			1.58 (1.23, 2.02)
Scherichia coli 2 Scherichia coli & Klebslella pneumoniae 2 Jam negative schort studies 2 Study design 2.4 Trospective cohort studies 2 Jago de St. 186) 2.4 Study design 2.4 Trospective cohort studies 2.4 Jago de St. 186) 2.4 Jago de St. 186) 2.4 Study design 2.4 recome classification 4 Jago income countries 2.5 Study period 1.83 (1.12, 2.09) Rears: 2000-2006 3 Heroprotriateness of therapy 1.89 (1.25, 3.39) Vepropriateness of therapy 1.89 (1.25, 3.39) Reported 2 Heroprided 2 Iot reported 3 Iot reported 2 Iot reported 1.49 (0.38, 5.86) Iot reported 2 Iot reported 5 Iot reported 1.55 (1.13, 2.14) Iot reported 5 Iot reported 1.55 (1.13, 2.14) Iot reported 1.55 (1.13, 2.14	Pathogen				
Escherichica coli & Klabsiella pneumoniae 2 Staram negative bacteria 2 Study design Tropective cohort studies 2 High income countries 5 auvimiddle income countries 5 auvimiddle income countries 2 Study period fears: 2000-2018 4 Appropriateness of therapy Reported 4 lot reported 2 Appropriateness of therapy Reported 3 Appropriateness of therapy Repor	Escherichia coli	2	↓◆		1.30 (0.85, 1.98)
aram negative bacteria 2 2.04 (0.81, 5.16) study design 1.58 (1.16, 2.17) record classification 1.58 (1.16, 2.17) igin income countries 2 study period 1.53 (1.12, 2.09) reary 2000-2009 3 reary 2000-2009 4 reary 2000-2009 5 reary 2000-2009 4 reary 2000-2009 4 reary 2000-2009 4 reary 2000-2009 1.48 (1.13, 1.96) reary 2000-2009 5 reary 2000-2009 1.48 (1.13, 1.96) reary 2000-2009 1.49 (0.38, 5.88) reary 2000-2009 5 reary 2000-2009 1.69 (0.28, 3.27) reary 2000-2009 5 reary 2000-2009 5	Escherichia coli & Klebsiella pneumoniae	2		•	5.46 (1.00, 29.81)
Study design 1.58 (1.16, 2.17) recore classification 2 2 2.16 (1.26, 3.71) ncome classification 1.53 (1.12, 2.09) 1.53 (1.12, 2.09) study period 1.81 (1.00, 3.29) 1.40 (0.87, 2.27) rears: 200-2018 1.69 (1.25, 3.39) 1.69 (1.25, 3.39) Appropriateness of therapy 1.69 (1.13, 1.95) 1.69 (1.29, 2.22) Appropriateness of therapy 1.69 (1.29, 2.22) 1.69 (1.29, 2.22) Appropriateness of therapy 1.69 (1.29, 2.22) 1.69 (1.29, 2.22) Appropriateness of therapy 1.69 (1.29, 2.22) 1.69 (1.29, 2.22) Apported 2 - 1.69 (1.29, 2.22) AmpC 1.69 (1.29, 2.22) 1.69 (1.29, 2.22) Amported 5 - 1.56 (1.13, 2.14) 1 1 1 1 1 1 1 2 5 10	Gram negative bacteria	2	+		2.04 (0.81, 5.16)
Prospective cohort studies 2 Herospective cohort studies 4 Herospective cohort studies 5 Herospective cohort studies 5 H	Study design				
Retrospective cohort studies 4	Prospective cohort studies	2	 →		1.58 (1.16, 2.17)
Income classification 1.53 (1.12, 2.09) igh income countries 2 Study period 1.81 (1.00, 3.29) fears: 2000-2009 3 if errors: 2000-2018 4 if errors: 2010-2018 1.49 (0.87, 5.89) if errors: 2010-2018 1.49 (0.38, 5.89) if errors: 2010-2018 1.55 (1.13, 2.14) if errors: 2010-2018 1.55 (1.13,	Retrospective cohort studies	4	→		2.16 (1.26, 3.71)
iigh income countries 5 iidd le income countries 2 iidd le income countries 2 iidd le income countries 1.81 (1.00, 3.29) 1.81 (1.00, 3.29) iide rears: 2010-2018 iide rears: 2010-2018 iide reported iide rep	ncome classification				
ow/middle income countries 2	High income countries	5	 →		1.53 (1.12, 2.09)
Study period 1.40 (0.87, 2.27) fears: 2010-2018 1.48 (1.13, 1.95) Appropriateness of therapy 1.48 (1.13, 1.95) leported 3 Appropriateness of therapy 1.49 (0.36, 5.86) leported 5 Appropriateness of therapy 1.49 (0.36, 5.86) lot reported 5 Appropriateness of therapy 1.69 (1.29, 2.22) AmpC 1.69 (1.29, 2.22) Appropriateness of therapy 1.69 (1.29, 2.22) AmpC 1.69 (1.29, 2.22) AmpC 1.69 (1.29, 2.21) AmpC 1.56 (1.13, 2.14) 0 1 2 0 1 2	Low/middle income countries	2	├ →───		1.81 (1.00, 3.29)
fears: 2000-2009 3 1.40 (0.87, 2.27) rears: 2010-2018 4 1.69 (1.25, 3.39) Appropriateness of therapy 4 2.05 (1.17, 3.59) Not reported 3 2.05 (1.17, 3.59) NC 1.49 (0.38, 5.88) Not reported 2 1.49 (0.38, 5.88) Not reported 2 1.69 (1.29, 2.22) AmpC 1.89 (1.29, 2.22) AmpC 1.85 (0.93, 3.71) Not reported 2 0 1 2 0 1 2 1.60 (1.13, 2.14) 1.66 (1.13, 2.14)	Study period				
fears: 2010–2018 4 Appropriateness of therapy Reported Ab reported Ab reporte	Years: 2000–2009	3	↓ →		1.40 (0.87, 2.27)
Appropriateness of therapy 4 1.48 (1.13, 1.95) Vierported 3 2.05 (1.17, 3.59) AIC 1.49 (0.38, 5.89) Noreported 5 1.69 (1.29, 2.22) AmpC 1.85 (0.93, 3.71) Not reported 5 1.56 (1.13, 2.14) 1 1 1 0 1 2	Years: 2010–2018	4	 →		1.69 (1.25, 3.39)
Reported 4 ++ 1.48 (1.13, 1.95) MC 2.05 (1.17, 3.59) 2.05 (1.17, 3.59) MC 1.49 (0.38, 5.86) 1.69 (1.29, 2.22) AmpC 1.85 (0.93, 3.71) 1.69 (1.13, 2.14) Not reported 5 + ImpC 1.11, 1.1, 1.15 1.13, 2.14) ImpC 1.11, 1.1, 1.15 1.156 (1.13, 2.14) ImpC 1.11, 1.15 1.10	Appropriateness of therapy				
Not reported 3 205 (1.17, 3.59) NC Reported 2 Reported 5 AmpC Reported 5 AmpC 1.69 (1.29, 2.22) AmpC 1.65 (0.93, 3.71) 1.56 (1.13, 2.14) 1 1 1 1 1 1 0 1 2 5 10 10	Reported	4	→		1.48 (1.13, 1.95)
AIC 1.49 (0.38, 5.88) Not reported 5 AmpC 1.69 (1.29, 2.22) Apported 2 4 aported 5 1.65 (0.53, 3.71) 1.65 (1.13, 2.14) 1 1 1 1 1 1 1 1 1 1	Not reported	3			2.05 (1.17, 3.59)
Aeported 2 1.49 (0.38, 5.86) Joint C 1.69 (1.29, 2.22) AmpC 1.85 (0.93, 3.71) Not reported 5 1 1 1 1 0 1 1 <t< td=""><td>MIC</td><td></td><td></td><td></td><td></td></t<>	MIC				
Not reported 5 1.69 (1.29, 2.22) AmpC Reported 2 1.85 (0.93, 3.71) 1.56 (1.13, 2.14) 1 1 2 5 10 1 0 1 2 5 10 1 0 1 2 5 10 1 0 1 0 1 0 1 0 1 0 1 0 1 0	Reported	2 -	+		1.49 (0.38, 5.88)
AmpC 1.85 (0.93, 3.71) kot reported 5 0 1 0 1	Not reported	5			1.69 (1.29, 2.22)
Reported 2 1.85 (0.93, 3.71) Jot reported 5 1.56 (1.13, 2.14)	AmpC				
Not reported 5	Reported	2			1.85 (0.93, 3.71)
	Not reported	5			1.56 (1.13, 2.14)
		0	1 2	5	10

Supplementary figure 4: Pooled risk ratios for all-cause mortality in patients with ESBL bloodstream infections compared to patients with non-ESBL bloodstream infections—all subgroups

Category	Ν		ratio (95% CI)
Overall			
Overall	56	+	1.70 (1.52, 1.90
Mortality time			
14 day mortality	5	→	1.77 (1.15, 2.72)
28 day mortality	22	→	1.63 (1.35, 1.97
Time not defined	27	-	1.70 (1.47, 1.97
Pathogen			
Klebsiella pneumoniae	12	│ → →	1.48 (1.17, 1.87)
Escherichia coli	16	→	1.82 (1.50, 2.21
Escherichia coli & Klebsiella pneumoniae	13		2.08 (1.44, 3.01)
Gram negative bacteria	15	→	1.66 (1.43, 1.94)
Study design			
Prospective cohort studies	11	→	1.78 (1.45, 2.17)
Retrospective cohort studies	33	→	1.68 (1.46, 1.93)
Case cohort studies	12	│ → ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─	1.76 (1.27, 2.45)
Income classification			
High income countries	41	←	1.76 (1.54, 2.00)
Low/middle income countries	15		1.56 (1.25, 1.96)
Study period			
Years: 1991–1999	9	→	1.56 (1.15, 2.11)
Years: 2000–2009	32	→	1.74 (1.50, 2.01)
Years: 2010-2018	15		1.72 (1.39, 2.13)
Study population			
All kinds of patients	36		1.65 (1.43, 1.90)
Cancer patients	5		1.73 (1.16, 2.57)
Children	7		2.09 (1.62, 2.71)
Neonates	3	→	1.76 (1.27, 2.45)
Appropriateness of therapy			
Reported	44	←	1.75 (1.54, 1.99)
Not reported	12	→	1.55 (1.26, 1.90)
міс			
Reported	33	←	1.79 (1.56, 2.06)
Not reported	23		1.56 (1.30, 1.88)
Empirical therapy			
Reported	15		2.13 (1.78, 2.55)
Not reported	9		1.77 (1.45, 2.15)

1	Supplementary figure 5: Pooled risk ratios for all-cause mortality stratified by type of infection								
2 3									
4									
5		N			Piele ratio (05% CI)				
6		IN							
7									
ð G									
10									
11									
12	Type of infection								
13									
14					\				
15 16	Abdominal infection	3			3.53 (2.20, 5.65)				
17					·				
18									
19	2 or more different infections	14			1.91 (1.52, 2.41)				
20									
21	Ploadstream infection	56			1 70 (1 52 1 00)				
22	Biooustream intection	50		—	1.70 (1.52, 1.90)				
23 24									
24 25	Respiratory tract infection	2			1 59 (1 18 2 15)				
26		-							
27									
28	Urinary tract infection	3	-	↓ →	1.42 (0.83, 2.44)				
29	-								
30									
3 I 3 7									
33									
34									
35									
36									
37									
38									
39 40		For peer review	only - http://bmjopen.bmj.com/sit	te/about/guidelines.	xhtml				
41									
42									

Page	33	of	57
------	----	----	----

1 2	Supplementary figure 6: Weig	hted mean d	lifferences in length	n of hospital stay	y stratifie	ed by type of	infection	
3 4								
5		Ν						Weighted mean difference (95% CI)
6 7								
8								
9								
10								
12	Type of infection							
13								
14	Respiratory tract infection	2					•	- 8.51 (3.50, 13.51)
15 16								
17	Abdominal infaction	0						7 02 (4 12 0 04)
18	Abdominar mection	2						7.03 (4.13, 9.94)
19 20								
21	2 or more different infections	7						4.82 (3.39, 6.24)
22								
23 24	Bloodstream infection	17				—		4 41 (3 37 5 45)
25		.,						
26								
27 28	Urinary tract infection	5						1.78 (1.14, 2.42)
29								
30								
31 22								
33								
34								
35 36								
30 37								
38			_	-2 (0 2	5	10	
39 40			For peer review only	- http://bmjopen.b	omj.com/s	Hiber of ut/guid	eliospital stay	
40 41								

Supplementary table S1: Search terms used in PubMed :

((ESBL[tw] OR ""Extended spectrum beta-lactamase""[tw] OR ESBL[Mesh] OR ""Extended spectrum beta-lactamase"" [Mesh]) OR Extended spectrum ? lactamase[tw] OR Extended spectrum ? lactamase[Mesh])

AND

(Escherichia Coli[Mesh] OR E.coli[Mesh] OR Escherichia Coli[tw] OR E.coli[tw])) OR (Klebsiella pneumoniae[Mesh] OR K.Pneumoniae[Mesh] OR Klebsiella pneumoniae[tw] OR K.Pneumoniae[tw])

Coupled with

(length of stay[mesh] OR (hospitalisation[tw] AND length[tw]) OR length of hospitalisation[tw] OR length of hospitalization[tw] OR duration of hospitalization[tw] duration of hospitalisation[tw] OR LOS[tw] OR ((period[tw] OR length[tw]) AND (hospital stay[tw] OR hospitalisation[tw] OR hospitalization[tw]) OR

(mortality[mesh] OR mortality[tw] OR death rate[tw] OR fatality[tw] OR survival rate[tw] OR death[tw] OR died[tw] OR dead[tw]))) OR

(cost*[Title/Abstract] OR"costs and cost analysis"[MeSH:noexp])

Coupled with

("0001/01/01"[PDat] : "2018/10/01"[PDat]]))

Supplementary table S2: Modified Newcastle Ottawa quality assessment scale for case-control studies and cohort studies.

For case cohort studies, the quality criteria assessed are

		b	yes, eg. record linkage or based on self-report
		С	no description
2	Representativeness of the cases	a*	consecutive or obviously representative series of cases
		b	potential for selection biases or not stated
3	Selection of Controls	a*	community controls
		b	hospital controls
		с	no description
4	Definition of Controls	a*	no history of disease (endpoint)
		b	no description of source
5	Comparability of cases and controls on the basis of the design or analysis	a*	study controls for at least one variable (including age, sex and comorbidities)
		b**	study controls for more than one variable (including age, sex and comorbidities)
6	Ascertainment of exposure	a*	secure record (eg surgical records)
		b	structured interview blind to case/control status
		с	interview not blinded to case/control status
		d	written self-report or medical record only
		е	no description
7	Same method of ascertainment for cases and controls	a*	yes
		b	no
		с	unclear
	Non-Response rate	а	same rate for both groups
8			
8		b	non respondents described
8		b c	non respondents described rate different and no designation
8		b c	non respondents described rate different and no designation
8		b C	non respondents described rate different and no designation
8	For cohort studies, the quality criteria assessed are	b c	non respondents described rate different and no designation
8	For cohort studies, the quality criteria assessed are	b c	non respondents described rate different and no designation
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort	b c	non respondents described rate different and no designation truly representative
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort	b c a* b*	non respondents described rate different and no designation truly representative somewhat representative
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort	b c a* b* c	non respondents described rate different and no designation truly representative somewhat representative selected group of users
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort	b c a* b* c d	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort	b c a* b* c d a*	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort	b c a* b* c d a* b	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort	b c a* b* c d a* b c c	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure	b c a* b* c d a* b c a* b c a*	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records)
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure	b c d b* c d a* b b c a* a* a*	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure	b c a* b* c d a* b c a* a* c c	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure	b c c d a* b c d a* b c a* c a* c c d d	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description
8 1 2 3 4	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure Demonstration that outcome of interest was not present at start of study	b c c b c d a * b c d a * c d a * c d a *	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description yes
8 1 1 3 4	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure Demonstration that outcome of interest was not present at start of study	b c c d a* b c d a* b c a* c d a* c d a* b b c b b b	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description yes no
8 1 1 3 4	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure Demonstration that outcome of interest was not present at start of study	b c c d a* b c d a* b c a* c d a* c d a* b c c d a* b c c a b c c a b c c a c b c c c c c c	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description yes no unclear
8 1 2 3 4 5	For cohort studies, the quality criteria assessed are For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure Demonstration that outcome of interest was not present at start of study Comparability of cohorts on the basis of the design or analysis	b c c d a* b c a* d a* c d a* d a* c d a* b c c a* b c a* c a a a t c c a a t c c a a t c c a t c c a t c c a t c c c c	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description yes no unclear study controls for age or comorbidities
8 1 2 3 3 4	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure Demonstration that outcome of interest was not present at start of study Comparability of cohorts on the basis of the design or analysis	b c c b c d a* b c a* c d a* c d a* b c c a* b c a* b b c c a* b b c c a* b b c c a* b b b c c a b b b c c b b b c c c b c b	non respondents described rate different and no designation rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description yes no unclear study controls for age or comorbidities study controls for age and comorbidities
8 1 2 3 3 4 5 6	For cohort studies, the quality criteria assessed are For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure Demonstration that outcome of interest was not present at start of study Comparability of cohorts on the basis of the design or analysis Assessment of outcome:	b c c d a* b c a* d a* c d a* d a* b c a* d a* b c a* a* b c a* a a* b c a* a a a a a a a a a a a a a a a a a	non respondents described rate different and no designation rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description yes no unclear study controls for age or comorbidities study controls for age and comorbidities independent blind assessment
8 1 2 3 4 5 6	For cohort studies, the quality criteria assessed are For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure Demonstration that outcome of interest was not present at start of study Comparability of cohorts on the basis of the design or analysis Assessment of outcome:	b c c b c d a* b c a* d d a* c d a* c d a* b c a* b c c a* b c c a* b b c c a* b b c c a* b b b c c a* b b c c b c c c c c c c c c c c c c c	non respondents described rate different and no designation rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description yes no unclear study controls for age or comorbidities study controls for age and comorbidities independent blind assessment record linkage
8 1 2 3 4 5 6	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure Demonstration that outcome of interest was not present at start of study Comparability of cohorts on the basis of the design or analysis Assessment of outcome:	b c c b* c d a* b c a* a* c d a* c d a* b c a* b c a* b b c a* b b c a* b b c c a* b c c c c c c c c c c c c c c c c c c	non respondents described rate different and no designation rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description unclear study controls for age or comorbidities study controls for age and comorbidities independent blind assessment record linkage self-report

7	Follow-up long enough for outcomes to occur	a*	yes
		b	no
		С	unclear
8	Adequacy of follow up of cohorts	a*	complete follow up – all that matters subjects accounted for, subjects lost to
			follow up unlikely to introduce bias - small number
		b*	inadequate numbers but description provided of those lost
		С	inadequate follow up rate and no description of those lost
		d	no statement

Thresholds for converting the Newcastle-Ottawa scales to AHRQ standards (good, fair, and poor):

Good quality: 3 or 4 stars in selection domain AND 1 or 2 stars in comparability domain AND 2

or 3 stars in outcome/exposure domain

Fair quality: 2 stars in selection domain AND 1 or 2 stars in comparability domain AND 2 or 3 stars in outcome/exposure domain

Poor quality: 0 or 1 star in selection domain OR 0 stars in comparability domain OR 0 or 1 stars in outcome/exposure domain

Supplementary table S3: Study characteristics overview

Subgroup	All Studies	Bloodstream infections	Noninvasive infections
	87	57	10
Country			
South Korea 13,14,16,17,31,35,38,42,44,46,51,52,57,59	14	9	2
Thailand ^{24,26,45,53-55,88}	7	3	
USA ^{10,18,28,32,48,61,69}	7	2	1
Spain 36,40,58,62,70,91,93	7	4	2
Taiwan ^{12,39,64,71,82,84,96}	7	5	2
China 60,73,74,76,86	5	4	
Israel ^{23,47,92,93}	4	3	
Germany ^{10,40,43,63}	4	3	
Italy 25,33,37	3	3	
Japan ^{76,81,86}	3	3	
Tanzania ^{19,66,75}	3	3	
India 49,50,80	3	1	1
Canada 65,67,85	3	2	
UK 22,30,89	3	3	
France ^{68,79}	2	1	1
South Africa ^{13,81}	2	1	
Brazil ^{21,34}	2	2	
Greece ⁹⁰	1	1	
Hungary ⁹⁵	1	1	
Lebanon ²⁷	1	-	6
Malaysia ²⁹	1	-	1
Mexico 72	1	1	
Saudi Arabia 20	1	1	
Turkey ⁷⁸	1	1	
Continent			
Asia 12-14,16,17,20,23,24,25,27,29,31,35,38,39,42,44-47,49,55,57,59,60,64,71,73,74,76,80-82,84,86-88,92,93,96	46	29	6
Europe 11,22,25,30,33,35,37,40,41,43,58,62,63,68,70,78,79,89-91,94,95	22	17	3
North America 10,18,28,32,48,61,65,67,69,85	10	4	1
Africa 15,19,66,75,83	5	4	-
South America ^{21,34,72}	3	3	-
More than 1 continent ⁵⁶	1	-	-
			•

 BMJ Open

Income group			
High-income countries ^{10-14,16-18,20,22,23,25,28,30-33,35-44,46-48,51,52,57-59,61-65,67-71,76,79,81,82,84-86,89-96,}	60	41	8
Low- and middle-income countries 15,19,21,23,25,27,29,34,45,50,53-55,60,66,72-75,77,78,80,83,87,88	26	16	2
High-income countries AND Low- and middle-income countries 56	1	-	-
Study design			
Case cohort study 10,12,24-28,31,40,44,46,55,58,61,63-65,67-69,85-87	24	14	
Retrospective cohort study 11,13-17,20,21,23,29,33-38,41-43,45,47,48,50-54,59,60,71,73,74,76-78,81-84,88,89,93,95,96	44	32	
Prospective cohort study 18,19,30,32,39,49,56,62,66,70,72,75,79,80,90-92,94	18	11	
Year group			
1991-1999 ^{10,60,15,16,17,62,21,25,28,36,46,93,94}	13	10	-
2000-2009 11-14,18-20,22-24,26,27,29-35,37-45,47,49-52,54,55,57,58,61,63,64,67-69,89-92,95,96	49	31	6
2010-2018 48,53,54,59,65,66,70-88	25	16	4
Pathogen			
Escherichia coli 11,24,30,33,35-37,40,43,45,52,55,58,59,68,70,71,73,76,86,87,91,94	23	16	3
Klebsiella pneumoniae 15,16,20,21,25,29,32,34,41,43,47,61,62,74,78,83,95,96	17	11	1
E. coli and K. pneumoniae 10,13,14,17,26,28,38,43,44,46,48,50,51,54,57,60,63,69,85,88,89	20	13	2
Gram-negative bacteria 12,18,19,22,23,27,31,39,42,49,53,56,64-67,72,75,77,79-82,84,90,92,93	27	17	4
		\mathbf{S}	
Study setting			
Entire hospital ^{1011,16,18,20-27,29,30,33-38,40-46,48-50,52-55,58-60,62,65-69,73,74,76,82,85,86,90-96}	57	40	7
Intensive care unit ^{32,61,64,75,79-81,88,89}	9	5	1
Pediatric ward 17,19,28,51,57,78,83,88	8	7	-h ,
Neonatal ward 15,61,64,71,75	5	3	-
Neonatal intensive care unit 61,64,75	3	2	-
Medical ward 13,39,70	3	-	2
Not provided ^{31,47}	2	-	-
Emergency Department ^{12,84}	2	2	-
Surgical ward ^{32,56}	2	-	-
Burn unit ³²	1	-	-
Oncology 72	1	1	-
Referral centre for hepatopacreaticobiliary diseases 77	1	-	-
Hematological ¹⁴	1	1	-

All line de of metric interiori		20	7
All kinds of patients ^{10-13,14,10,20-27,23,50,34,15,30,34,40,46,50,52-50,58,60,62,63,60,62,64,66,90,92,95}	55	36	/
Intensive care unit patients 32,79-81,87,89	6	3	1
Children ^{17,19,28,51,57,78,83,88}	8	7	-
Neonates 15,61,64,71,75	5	3	-
Cancer patients ^{33,51,59,72,91}	5	5	-
Immunocompromised patients 51	1	1	-
Diabetic patients ⁹⁶	1	1	-
Elderly patients ⁷⁰	1	-	1
Patients with chemotherapy/stem cell transplantation 14,91	2	2	-
Patients after prostatitis biopsy 42	1	-	1
Lungs transplantation patients 47	1	-	-
Hematological patients 73	1	1	-
All except cardiothoracic therapy, transplant surgery, burns 74	1	1	
Patients with pyogenic liver abscess 77	1	-	-
Data reported			
Treatment information 10,12-13,23-25,30-38,40,44-49,51,52,54-65,67,68,70-96	74	50	6
Appropriateness of treatment ^{10,12-14,16,17,19-21,23-26,30-38,40,44-46,48,49,51,52,54-56,58-60,62-65,67,68,70,72-74,76,77,79,81,83-86,89-96}	62	45	5
Empirical therapy 14,16,17,24,25,33,35-38,40,44,51,52,56,58,59,63,76,81,83,94	22	16	2
Treatment outcome 10,12-21,25,26,30-38,40,44-49,51,52,54-57,59-65,67,68,72-74,76,78-81,83-86,88-92,94-96	64	45	3
Minimum inhibitory concentration results 10,11,13,14,16-19,22-25,27,28,32,33,35-41,43,44,47,50-52,54-59,62,63,66,68,69,76-78,80,81,83,85-87,89,94,95	52	34	4
AmpC genotyping 10,11,17,32,41,46,50,56,57,65,66,70,86	13	6	2
	·		Y

Pathogen

EC, KP

EC, KP

GNB

ЕС*,* КР

EC

GNB

EC, KP

EC

EC

EC, KP

Su	Supplementary table S4: Characteristics for each study										
	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective			
Lautenbach E ¹⁰	1997- 1998	USA	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality; LOS	Risk factors for infection with ESBL-producing pathogens, difference in clinical outcomes of infections: resistant vs. susceptible organisms			
0(im SH ¹⁴ 1 2 2	2007- 2008	South Korea	Cohort study, Retrospective	Non-ESBL-infection	Patients who received either chemotherapy or stem cell transplantation; neutropenic fever	Hematolo gical ward, Others	All-cause mortality (28 day)	Risk factors for acquisition of ESBL, appropriateness of empirical antimicrobial therapy, clinical outcomes in relation to ESBL production			
s Æhayakulkeere M⁵³ 5	2015- 2015	Thailand	Cohort study, Retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Prevalence & risk factors for infections with & antibiotic susceptibility patterns of & outcomes of patients infected with ESBL-producing-GNB			
Gpisarnthanarak A ⁵⁴ 8 9	2003- 2007	Thailand	Cohort study, Retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Predictors for mortality associated with community-onset BSI with ESBL-producing pathogens, initial empirical antimicrobial regimens, associated hospital resource utilisation,costs accrued after diagnosis of BSI			
Qpisarnthanarak Å⁵⁵ 2	2003- 2004	Thailand	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Mortality associated with community-onset infection due to ESBL- producing pathogens, associated hospital resource use, post-infection hospital cost			
3 _{ean SS⁵} 4 5 6 7	2010- 2011	Portugal, Columbia, the Philippines, Taiwan, Thailand	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Surgical ward	Attributable mortality, LOS	Clinical impact on hospitalised patients with community-acquired complicated intra-abdominal infection: ESBL-producing- vs. non-ESBL- producing pathogens			
o gee J ⁵⁷ 0 1	1999- 2005	South Korea	interventional studies	Non-ESBL-infection	Children	Pediatric ward	All-cause mortality (28 day)	impact of a change in antibiotic policy on ESBL-prevalence			
⊉riongos-Figuero ≵.S ⁵⁸	2009- 2010	Spain	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Characteristics & associated risk factors for EBSL-enterobacteria-UTIs			
4 _{на ҮЕ⁵⁹ 5 6}	2010- 2012	South Korea	Cohort study, retrospective	Non-ESBL-infection	Patients with cancer	Entire hospital	All-cause mortality (28 day)	Clinical &molecular epidemiology of ESBL-EC bacteraemia, clinical impact of ESBLs on patient outcome			
7 Du B ⁶⁰ 8	1997- 1999	China	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Risk factors for nosocomial ESBL-EC- and ESBL-KP- bacteraemia & influence on patient outcome.			

40

41

42

43

44
Page 42	of 57
---------	-------

	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Stone PW ⁶¹	2001	USA	Case cohort study	Non-ESBL-infection	Neonates at NICU	NICU	LOS	costs of interventions aimed at controlling the outbreak, attributable length of stay associated with infection and colonisation with ESBL-KP	КР
Pillay T ¹⁵	1995- 1996	South Africa	Cohort study, retrospective	Non-ESBL-infection	Neonates	Neonatal ward	All-cause mortality	Use of piperacillin/tazobactam in treatment of KP- infection	КР
Kim BN ¹⁶ 1 2	1999- 2000	South Korea	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, LOS	Prevalence & clinical characteristics of ESBL-KP- bacteraemia, impact of ESBL- production on outcome of patients with KP- bacteraemia in endemic situation.	КР
3 Kim YK ¹⁷ 5	1993- 1998	South Korea	Cohort study, retrospective	Non-ESBL-infection	Children	Pediatric ward	All-cause mortality	Risk factors & clinical outcomes & clinical responses to treatment of ESBL-EC- and ESBL-KP-bacteraemia, prevalence and types of their ESBLs	EC, KP
6 Bhavnani SM ¹⁸ 8 9 0 1 2	2001- 2002	USA	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality	Risk factors for occurrence of invasive ESBL-EC- and ESBL-KP-infections, factors associated with clinical outcome, drug regimens for treatment of infections associated ESBL/non-ESBL strains in real-life clinical practice, clinical response rates for patients treated with cephalosporins/other classes of antimicrobial agents, /carbapenems, clinical response for those patients with infection associated with ESBL and non–ESBL-producing strains with MIC values V8 Ag/mL treated with cephalosporins.	GNB
o ∦βlomberg B ¹⁹ 5	2001- 2002	Tanzania	Cohort study, prospective	Non-ESBL-infection	Neonates, children	Pediatric ward	All-cause mortality	Prevalence & clinical implications of ESBL production in EC-,KP-, Salmonellae- septicemia	GNB
∲ena C ⁶² 7 8	1993- 1995	Spain	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality	Clinical epidemiology& outcome of ESBL-KP- bacteraemia, relevance of ESBL strains in mortality of patients with hospital-acquired KP-BSI.	КР
kola A ⁶³ 0 1	2002- 2004	Germany	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS, ICU-LOS	Outcomes of ESBL-EC- and ESBL-KP-infections	EC, KP
2 Tsai MH ⁶⁴ 3 5	2001- 2012	Taiwan	Case cohort study	Control group: non- ESBL-infection, second control group: all hospitalised patients	Neonates at NICU	NICU	Attributable mortality, all- cause mortality, LOS	Clinical features& risk factors& molecular epidemiology of ESBL-GNB	GNB
Maslikowska JA ⁶⁵	2010- 2013	Canada	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality,	Differences in clinical & microbiological outcome, mortality, and/or hospital resource use: ESBL-EC- and ESBL-Ks- vs non-ESBL-EC- and non-ESBL-Ks-infections	GNB

P 1 -	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
onken A ⁶⁶	2012- 2013	Tanzania	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Most common bacterial pathogens causing BSI, antimicrobial susceptibility	GNB
8 Nguyen ML ⁶⁷ 9 10	2005- 2010	Canada	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS, ICU-LOS	Risk factors for & patient outcomes associated with ESBL-EC- and ESBL- Ks- bacteraemia, appropriateness of empiric antibiotic therapy & effect of inappropriate empiric therapy on outcomes	GNB
1 Denis B ⁶⁸ 1 2 1 3	2005- 2009	France	Case-control study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (28 day), LOS	Prevalence & risk factors for ESBL-EC bacteraemia, impact on length of stay &30day mortality	EC
4 _{Chopra T⁶⁹ 5 6 7}	2004- 2009	USA	Case cohort study	Case 2(Control1): non- ESBL-infection, second control group: no infection	All kinds of patients	Entire hospital	All-cause mortality (28 day)	Predictors of ESBL-EC- and ESBL-KP-BSI, focus on cefepime exposure.	EC, KP
₿anhotra BR ²⁰ 19	2001- 2003	Kingdom of Saudi Arabia	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Risk factors & clinical outcome of ESBL-KP-bacteraemia (hospital acquired)	КР
20 Marra AR ²¹ 21 22	1996- 2001	Brazil	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (14 day)	ESBL-KP- associated mortality	КР
Skippen I ²²	2003- 2005	UK	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Risk factors for & outcomes of ESBL-EC- and ESBL-KP-invasive transmission of organism in the healthcare setting	GNB
2 6 chwaber MJ ²³ 27 28	2000- 2003	Israel	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality	Outcomes of ESBL-production in Enterobacteriaceae-bacteraemia.	GNB
9 Apisarnthanarak 30 ²⁴ 31 32	2003- 2004	Thailand	Case cohort study	Control group: non- ESBL-infection, second control group: no infection	All adult patients	Entire hospital	All-cause mortality, LOS	Clinical & molecular epidemiologic factors associated with community onset ESBL-EC- infections, hospital resource utilisation, estimate costs associated with medical care (hospitalised patients)	EC
3∃umbarello M²⁵ 34 35 86	1999- 2003	Italy	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality, LOS, ICU-LOS	Factors associated with isolation of ESBL- KP-strains	КР
Zeistner R ¹¹	2008- 2010	Germany	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital,	All-cause mortality, LOS	Difference in mortality: ESBL-EC-BSIs vs. non-ESBL-EC-BSIs, molecular epidemiology of ESBL-positive isolates	EC

	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Apisarnthanarak A ²⁶	2003- 2004	Thailand	Case cohort study	Control group: non- ESBL-infection, second control group: no infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Risk factors for & outcomes of ESBL-EC- and ESBL-KP-infections (healthcare associated)	EC, KP
Kanafani ZA ²⁷ I 2	2003	Lebanon	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Epidemiology of infections with ESBL-EC and ESBL-Ks at AUBMC risk factors & outcomes of infections - focus on effect of prior antibiotic administration & the risks imparted by specific classes of antimicrobial agents	GNB
3 Zaoutis TE ²⁸ 5	1999- 2003	USA	Case cohort study	Non-ESBL-infection	Children	Entire hospital	All-cause mortality, LOS	Risk factors & outcomes associated with ESBL-EC-and ESBL-KP-BSI	EC, KP
5 50h LC ²⁹ 7	2003- 2004	Malaysia	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Impact of ESBL-KP-respiratory tract infections on hospital mortality, requirement for mechanical ventilation & length stay	КР
Melzer M ³⁰))	2003- 2005	UK	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Differences in mortality & length of hospital stay & time from bacteraemia to death in patients with ESBL-EC- vs. non-ESBL-EC-bacteremic-infection	EC
Song KH ³¹ 2 3 4 5	2000- 2006	South Korea	Case cohort study	Non-ESBL-infection	Patients with spontaneous bacterial peritonitis	Not provided	All-cause mortality (28 day)	Outcomes of ESBL-EC-and ESBL-Ks- vs non-ESBL-EC-and ESBL-Ks-SBP (based on isolation from ascites), impact of ineffective initial antimicrobial therapy on outcome in patients with ESBL-EC- and ESBL-Ks-SBP, risk factors for infection by ESBL-producing microorganisms.	GNB
Øennett JW ³² 7 3	2004- 2008	USA	Cohort study, prospective	Non-ESBL-infection	ICU-patients	ICU, Surgical ward, Burn unit	All-cause mortality (28 day)	ESBL types and strain variability, presence of host factors to determine potential role in morbidity and mortality during ESBL-KP-infections	KP
)recarichi EM ³³ 2	2000- 2007	Italy	Cohort study, retrospective	Non-ESBL-infection	Patients with hematological malignancies	Entire hospital	All-cause mortality (28 day)	Risk factors for mortality in patients suffering from hematological malignancies with concurrent EC-bacteraemia. Focus on impact of ESBL- production & fluoroquinolone resistance by bacterial isolates	EC
fuon FF ³⁴	2006- 2009	Brazil	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (28 day), LOS	Risk factors & mortality rate in ESBL-KP-bacteraemia	КР
ang Cl ³⁵	2008- 2009	South Korea	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (28 day)	Risk factors of ESBL-EC among community-onset bacteraemia, treatment outcomes	EC

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathoger
Pena C ³⁶	1996- 2003	Spain	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (28 day)	Risk factors for mortality among patients with EC- infections	EC
Tumbarello M ³⁷ 0 1 2 3 4	2006	Italy	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	ICU, Medical ward, Entire hospital, surgical wide	All-cause mortality (21 day), LOS	Clinical &economic impacts of ESBL production, inadequate Initial Antibiotic Therapy of EC-BSI	EC
Frang Cl ³⁸ 6 7 8	2006- 2009	South Korea	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality (28 day)	Impact of ESBL-producing bacteraemia on outcome in patients with hematologic malignancy.	EC, KP
- ₩u YH ³⁹ 0 1 2	2009- 2012	Taiwan	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Medical ward	LOS	Host-related risk factors for community-onset UTI due to levofloxacin- or cefazolin-nonsusceptible isolates or uropathogens with ESBL production, clinical impact of UTIs due to antimicrobial-nonsusceptible pathogens	GNB
≩odriguez-Bano J ⁴⁰ 4 5	2004- 2006	Spain	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (14 day)	Epidemiology& risk factors (focus on previous antimicrobial use) & mortality rate for patients with ESBL-EC-COBSI	EC
Gürtnke S ⁴¹ 7	2008- 2011	Germany	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Distribution of ESBL genotypes, hospital mortality in cases of ESBL-KP- BSI	КР
8 Oh MM ⁴² 9	2006- 2011	South Korea	Cohort study, retrospective	Non-ESBL-infection	Patients after Prostatitis Biopsy	Entire hospital	LOS	Impact of ESBL-positive-strains on clinical course & progression to chronic prostatitis in patients with postbiopsy acute prostatitis.	GNB
1 Leistner R ⁴³ 2	2008- 2011	Germany	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Financial disease burden attributable to ESBL-positive species in cases of EC-and KP-BSI	EC, KP
≹in JN ¹² 4 5 5 7	2005- 2009	Taiwan	Case cohort study	Non-ESBL-infection	All kinds of patients	Emergenc y Room	Attributable mortality, all- cause mortality (28 day), LOS, ICU-LOS	Clinical & microbiological characteristics, risk factors for acquisition of infection, prescription of initial empirical antibiotics mortality rate of infection	GNB
≸ u NS ⁴⁴ €	2006- 2010	South Korea	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (28 day)	Clinical usefulness of breakpoints for treatment of Enterobacteriaceae- bacteraemia, (focus on EC- and Ks-bacteraemia): CLSI 2009- vs. CLSI 2010-guidelines.	EC, KP

	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Anunnatsiri S ⁴⁵	2005- 2006	Thailand	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Incidence of ESBL-EC-septicemia, factors associated with infection & clinical outcomes	EC
Kang Cl ⁴⁶ 0 1	1998- 2002	South Korea	Case cohort study	Non-ESBL-infection	All kinds of patients	Hospital- wide	All-cause mortality (28 day)	Risk factors for mortality & treatment outcome of ESBL-EC- and ESBL- KP-BSI	EC, KP
1 ⊉Raviv Y ⁴⁷ 3 4 5	2004- 2007	Israel	Cohort study, retrospective	Control group: non- ESBL-infection, second control group: no infection	patients with lung transplantation	Not provided	All-cause mortality (28 day)	Outcomes of lung transplant recipients infected by CRKP and ESBL carbapenem-sensitive KP (referred to MDR-KP)	КР
6(im HJ ¹³ 7 8	2005- 2010	South Korea	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Medical ward	All-cause mortality (28 day), LOS	Clinical outcome of patients with biliary tract infection: ESBL-producing bacterial isolates vs. non-ESBL-producing-bacterial isolates, predictors of poor prognosis, impact of ineffective antimicrobial therapy on clinical outcome	EC, KP
or JacVane SH ⁴⁸ 1 2	2011- 2012	USA	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all-cause mortality, LOS	clinical & economic outcomes of patients with ESBL-EC- and ESBL-KP- UTI vs. non-ESBL-EC- and non-ESBL-KP-UTI	EC, KP
3 ∯bhilash KP ⁴⁹ 5	2007	India	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (14 day)	Prevalence & risk factors & outcome of antibiotic treatment among hospitalised patients with ESBL-EC- and ESBL-Ks-BSI	GNB
⊅hanthi M⁵⁰ 8	2006	India	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Prevalence & impact on clinical outcome of ESBL-production among nosocomial isolates of EC & KP	EC, KP
9 _{Han SB⁵¹ 0 1 2}	2009- 2013	South Korea	Cohort study, retrospective	Non-ESBL-infection	Children (immunocompromised, with cancer, neutropenic fever)	Pediatric ward	Attributable mortality, all- cause mortality (28 day)	Clinical outcomes of ESBL-EC- and ESBL-KP-bacteraemia & their antibiotic susceptibilities	EC, KP
3 ee S ⁵² 4 5	2009- 2011	South Korea	Cohort study, retrospective	Non-ESBL-infection	Patients with Acute Pyelonephritis	Entire hospital	All-cause mortality (14 day), LOS	Impact of ESBL on clinical outcomes of Acute Pyelonephritis treated with empirical ceftriaxone (which was inappropriate for ESBL- producing organisms)	EC
Artero A ⁷⁰ 7 8	2013- 2015	Spain	Cohort study, prospective	Non-ESBL-infection	Elderly	Medical ward	All-cause mortality, LOS	Identify clinical factors to predict ESBL-EC among elderly patients with UTI admitted to hospital in a high rate setting of ESBL-EC	EC

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Chen IL ⁷¹	2004- 2015	Taiwan	Cohort study, retrospective	Non-ESBL-infection	Neonates	Neonatal ward	All-cause mortality	Compare the clinical characteristics & laboratory data of preterm babies with EC BSI: survival vs. nonsurvival groups, ESBL vs non-ESBL groups, determine the predictive factors of EC BSI in preterm babies	EC
islas-Munoz B ⁷²	2016- 2017	Mexico	Cohort study, prospective	Non-ESBL-infection	Cancer patients	Oncologic al ward	All-cause mortality (28 day)	Evaluate the clinical epidemiological characteristics & risk factors associated with mortality in cancer patients with BSI-special emphasis on MDR bacteria	GNB (and others)
3 Ma J ⁷³ 5	2012- 2015		Cohort study, retrospective	Non-ESBL-infection	Patients with hematological diseases	Entire hospital	All-cause mortality (28 day)	Evaluate the antimicrobial resistance & clinical features & risk factors for septic shock & death of nosocomial EC-BSI	EC
Man MY ⁷⁴	2009- 2016	China	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients, except patients from Burn unit, transplant surgery ward or with thoracic therapy	Entire hospital	All-cause mortality (28 day)	Evaluate the incidence & clinical characteristics & outcomes of patients with KP BSI in critical care & general ward settings	КР
9 Marando R ⁷⁵ 2 3	2016	Tanzania	Cohort study, prospective	Non-ESBL-infection	Neonates	NICU	All-cause mortality	Investigate factors associated with ESBL-PE neonatal sepsis & mortality among neonates, characterise selected isolates to show virulence potential & transmission dynamics	GNB
Namikawa H ⁷⁶	2011- 2015	Japan	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Investigate clinical characteristics of patients with ESBL-EC-BSI	EC
§hi SH ⁷⁷))	2008- 2015	China	Cohort study, retrospective	Non-ESBL-infection	Patients with pyogenic liver abscess	Centre for hepatopa ncreatico biliary diseases	All-cause mortality, LOS	Aetiology & morbidity & clinical characteristics of pyogenic liver abscess caused by ESBL-PE	GN
2 Janir Basaranoglu 5 ⁷⁸ 4	2011- 2015	Turkey	Cohort study, retrospective	Non-ESBL-infection	Children	Pediatric ward	All-cause mortality (28 day)	Assess risk factors for health care associated ESBL-KP-BSI in children, analyze clinical outcomes: ESBL-KP vs. non-ESBL-KP	КР
Razazi K ⁷⁹	2009- 2015	France	Cohort study, prospective	Non-ESBL-infection	ICU-patients	ICU	All-cause mortality, LOS, ICU-LOS	Determine, among ESBL-PE carriers, the prevalence & associated factors & clinical impact of ESBL-PE pneumonia, determine factors associated with ICUAP caused by carbapenem-resistant bacteria	GNB

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Ray S ⁸⁰	2014- 2016	India	Cohort study, prospective	Non-ESBL-infection	ICU-patients	ICU	All-cause mortality	Investigate spectrum of microbial resistance pattern in the community and their effects on mortality	GNB
Haruki Y ⁸¹)	2006- 2016	Japan	Cohort study, retrospective	Non-ESBL-infection	ICU-patients	ICU	All-cause mortality	Compare the clinical characteristics & outcomes of critically ill patients in an ICU, who were hospitalised for BSI caused by ESBL-EC or non- ESBL-EC.	GNB
<u>y</u> in WT ⁸²	2009- 2014	Taiwan	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Investigate the clinical manifestations & bacteriological features of culture-proven, GNB arthritis	GNB
βuys H ⁸³ 7 3	2006- 2011	South Africa	Cohort study, retrospective	Non-ESBL-infection	Children	Pediatric ward	All-cause mortality	Describe the clinical presentation of KPBSI, risk factors associated with ESBL-KPBSI, antibiotic susceptibility patterns of the KP isolates & KPBSI mortality including factors associated with in-patient mortality	КР
0)ee CC ⁸⁴	2008- 2013	Taiwan	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Emergenc y Departme nt	Attributable mortality, all- cause mortality (28 day), LOS, ICU-LOS	Analyse the impact of ESBL-producing isolates on the outcome of bacteremic patient after controlling for baseline patient characteristics & bacteraemia severity by using a propensity-matched analysis (PSM)	GNB
Huang YY ⁸⁵	2011- 2013	Canada	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Determine cumulative incidence of ESBL urosepsis, identify major risk factors for ESBL urosepsis, determine impact of international travel on development of ESBL urosepsis	EC, KP
Komatsu Y ⁸⁶	2008- 2013	Japan	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (14 day)	Identify risk factors & clinical outcomes in patients with BSI due to ESBL- or carbapenemase-producing EC, determine prevalence & genetic background	EC
iu MM ⁸⁷	2011- 2016	China	Case cohort study	Control group: non- ESBL-infection, second control group: no infection	ICU-patients	ICU	All-cause mortality	Identify risk factors for ESBL-producing ECBSI among carriers at ICU	EC
Nivesvivat T ⁸⁸	2010- 2017	Thailand	Cohort study, retrospective	Non-ESBL-infection	Children	Pediatric ward	All-cause mortality, LOS	Determine prevalence, risk factors & clinical outcomes of ESBL- producing EB in paediatric BSI	EC, KP

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Cordery RJ ⁸⁹	2004- 2006	UK	Cohort study, retrospective	Non-ESBL-infection	ICU-patients	ICU	All-cause mortality	Elucidate specific risk factors for the acquisition of ESBL infection in the ICU; all-cause mortality (in ICU) compared in patients with infections due to ESBL- and non-ESBL-producing organisms	GNB
10 1 Paikos GL ⁹⁰ 12 13 14	2003- 2005	Greece	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Identify risk factors associated BSI caused by integron-carrying EB; evaluate the consequences of these genetic elements on patient outcome	GNB
15 ⁹¹ 16 17	2006- 2008	Spain	Cohort study, prospective	Non-ESBL-infection	Cancer patients and hematopoietic stem cell transplant patients	Entire hospital	All-cause mortality	Assess clinical features, risk factors, molecular epidemiology & outcome of ESBLEC BSI in hospitalised cancer patients	EC
1 8 ⁄larchaim D ⁹² 19 20	2006- 2008	Israel	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Define predictors & outcomes of ESBL BSI among patients with bacteraemia due to EB upon hospital admission	GNB
2 Menashe G ⁹³ 22 23 24 25 26	1997	Israel	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Determine: prevalence of ESBL-P organisms among adult patients with nosocomial EB BSI treated in our institution; association between ESBL production & resistance to other antibiotics; clinical characteristics of patients with nosocomial ESBL-P BSI compared with those infected with non-producing strains; impact of ESBL production on outcome of patients with nosocomial EB BSI	GNB
27 28 29 30 31	1991- 2007	Spain	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Describe source, resistance rate to fluoroquinolone & beta-lactam antibiotics and mortality of EC BSI episodes in a single institution; identify predictive factors for isolation of fluoroquinolone-resistant or ESBL- producing strains.	EC
32 Sziglyi M⁰⁵ 33 34	2005- 2008	Hungary	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality,	Investigate risk factors for & outcomes of BSI caused by ESBL-producing and ESBL-non-producing KP	КР
35 Tsai SS [%] 36 37	2005- 2006	Taiwan	Cohort study, retrospective	Non-ESBL-infection	Diabetic patients	Entire hospital	All-cause mortality	Analyze characteristics, risk factors & outcomes of diabetic patients with community- vs. hospital-acquired KP BSI	КР

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

EC = Escherichia coli
KP = Klebsiella pneumoniae
GNB = Gram-negative bacteria
BSI = Bloodstream infection
UTI = Urinary tract infection
ICU = Intensive care unit
NICU = Neonatal intensive care unit
ESBL-PE = Extended-spectrum beta-lactamase-producing Enterobacteriaceae
EB = Enterobacteriaceae
LOS = Length of stay

 For peer review only

	e ;	es:	slo	slo	he sis	le	nd Slc	Ite
	uat	case	ntro	ntro	on tl Ialy:	nso	es al ntro	e ra
	deq	he	S S	S	ols c r ar	exp	case	ons
	n ac	of t	o c	ן of	n o	of	or (espo
	itio	SSS	tior	tior	cor	ent	nt f	-Re
	efin	ene	elec	fini	e de	ШШ	me	Nor
	e de	ativ	S. Se	De	es a the	rtai	ain	∞ ∞
	case	ent	e co	4.	cas s of	sce	Cert	
	he d	rese			of asi	Ä.	asc	
	ls tl	lepi			lity b	9	l of	
	i-j	2. F			abi		hoc	
					Ibai		net	
					Som		Je r	
					5.0		San	
Assessment criteria / Study author 🦯							7. 3	
Lautenbach, E.								
Apisarnthanarak, A.								
Briongos-Figuero, L-S.								
Stone, P.W.								
Kola, A.								
Tsai, M.H.								
Maslikowska, J.A.								
Nguyen, M. L.								
Denis, B.								
Chopra, T.								
Skippen, I.								
Apisarnthanarak, A.								
Tumbarello, M.								
Apisarnthanarak, A.								
Kanafani, Z. A.								
Zaoutis, T. E.								
Song, K. H.								
Kang, C. I.								
Rodriguez-Bano, J.								
Lin, J. N.								
Ku, N. S.								
Kang, C. I.								
Huang, Y. Y.								
Komatsu, Y.								
Liu, M. M.								
-,								

Risk of bias assessment of cohort studies according to Newcastle - Ottawa quality assessment scale:

	1. Representativeness of exposed cohort	2. Selection of non-exposed cohort	3. Ascertainment of exposure	 Demonstration that outcome of nterest not present at start 	5. Comparability based on design or analysis	5. Assessment of outcome	7. Follow-up long enough for outcome	3. Adequacy of follow up of cohorts
Study author / Assessment criteria			(1)		1, (0		13	~
Jean, S.S.								
Bhavhani, S. M.								
Biomberg, B.								
Pena, C.								
Nielzer, M.								
Bennet, J.								
Wu, Y.								
Abiliasii, K.								
Islas-Munos B								
Marando R								
Ray S								
Panhotra B								
Kim S								
Chavakulkeeree M								
Anisarnthanarak A								
Ha. Y.								
Du. B								
Pillav T								
Kim, B.								
Kim, Y								
Marra, A.								
Schwaber, M.								
Leistner, R.								
Loh, L.C.								
Trecarichi, E.								
Tuon, F.								
Kang, C. I.								
Pena, C.								
Tumbarello, M.								
Gurntke, S.								
Oh, M.								
Leistner, R.								
Anunnatsiri								
			it a la la	a contration of	· · · · · · · ·			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Raviv, Y.				
2 3 4	Kim, H.J.				
	MacVane, S.				
	Shanthi				
5 6	Han, S.B.				
7	Lee, S.				
8 9 10 11	Chen, I-L.				
	Ma, J.				
	Man, M.				
12	Namikawa, H.				
13 14 15 16 17 18 19	Shi, S.				
	Tanir Basarangolu, S.				
	Haruki, Y.				
	Lin, W.				
	Buys, H.				
20	Lee, C.C.				
21	Nivesvivat, T.				
//					

The sector is a se

Supplementary table S6: Source of heterogeneity among effect estimates in studies on ESBL bloodstream infections in comparison with patients with non-ESBL bloodstream infections assessed using univariate meta-regression:

Subgroups / Outcome	All-cause mortality	Length of Stay
		-
Mortality time	0.85	-
Pathogen	0.45	0.34
Study design	0.51	0.21
Study country 🔜	0.22	0.09
Income classification	0.17	0.80
Study period	0.57	0.78
Study setting: ICU ward	0.78	0.97
Study setting: Neonatal ward	0.62	0.97
Study setting: Pediatric ward	0.96	0.96
Study population: ICU patients	1.00	-
Study population: Children	0.96	0.96
Study population: Neonates	0.62	0.97
Information about therapy	0.53	
Appropriatness of therapy reported	0.68	
Information about outcome of therapy	0.74	-
MIC reported	0.28	-

0.28

PRISMA 2009 Checklist

5 Section/topic	#	Checklist item	Reported on page #
TITLE			
³ Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
1 12 13 14	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
8 Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
22 Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	6
24 25 26	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
27 Information sources 28	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	4
29 30 31	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	4
32 Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5
A Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	5
7 Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	5
 ³⁹ Risk of bias in individual ⁴⁰ studies 	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6
¹ 2 Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	5
⁴³ Synthesis of results 44 45	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	5,6

BMJ Open

PRISMA 2009 Checklist

|--|

4,				
5 6 7	Section/topic	#	Checklist item	Reported on page #
/ 8 9	Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	6
10	Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	6
13	RESULTS			
14 15	Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	6
17	Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	suppl.material
19 20 21	Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	8 and suppl. material
22 23	Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	suppl.material
24 24	Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	6-8
26	Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	8 and suppl. material
28 29 30	Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	7,8
31	DISCUSSION			
32 33 34	Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	9
35 36	Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	10
37	Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	11
39 40	FUNDING			
41 42 4	Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	11

. From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Prefetted Reporting Items for Systematic Reviews and Meta Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097.

Page 57 of 57

For more information, visit: www.prisma-statement.org.

BMJ Open

ration, visu. Page 2.

BMJ Open

Variation of effect estimates in the analysis of mortality and length of hospital stay in patients with infections caused by bacteria producing extended-spectrum beta-lactamases: a systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-030266.R3
Article Type:	Original research
Date Submitted by the Author:	10-Dec-2019
Complete List of Authors:	Shamsrizi, Parichehr; University Hospital Tubingen Department of Internal Medicine I Gastroenterology Hepatology and Infectious Diseases, Division of Infectious Disease Gladstone, Beryl Primrose ; University Hospital Tubingen Department of Internal Medicine I Gastroenterology Hepatology and Infectious Diseases, Division of Infectious Disease Carrara, Elena; Integrated University Hospital of Verona, Division of Infectious Disease, Department of Diagnostic and Public Health Luise, Dora; Integrated University Hospital of Verona, Division of Infectious Disease, Department of Diagnostic and Public Health Cona, Andrea; ASST Santi Paolo e Carlo, Clinic of Infectious and Tropical Diseases, Department of Health Sciences Bovo, Chiara; Integrated University Hospital of Verona, Medical Direction Tacconelli, Evelina; University Hospital Tubingen Department of Internal Medicine I Gastroenterology Hepatology and Infectious Diseases, Division of Infectious Disease; Integrated University Hospital of Verona, Medical Direction Tactonelli, Evelina; University Hospital Tubingen Department of Internal Medicine I Gastroenterology Hepatology and Infectious Diseases, Division of Infectious Disease; Integrated University Hospital of Verona, Medical Direction Health
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Infectious diseases, Epidemiology
Keywords:	Extended-spectrum beta-lactamase, mortality, bloodstream infection, length of stay, meta-analysis, systematic review

BMJ Open

3 4	1	Variation of effect estimates in the analysis of mortality and length of hospital stay in
5	2	patients with infections caused by bacteria producing extended-spectrum beta-
6 7	3	lactamases: a systematic review and meta-analysis
8 9	4	
10	5	AUTHORS:
11 12	6	Parichehr Shamsrizi ¹ , Beryl Primrose Gladstone ¹ , Elena Carrara ² , Dora Luise ² , Andrea Cona ³ ,
13 14	7	Chiara Bovo ⁴ , Evelina Tacconelli ^{1,2}
15 16	8	
17	9	AFFILIATIONS:
18 19	10	1) Division of Infectious Disease, Department of Internal Medicine I, DZIF Partner site,
20 21	11	Tübingen University Hospital, Tübingen, Germany
22 23	12	2) Division of Infectious Disease, Department of Diagnostic and Public Health, University
23	13	Hospital of Verona, Verona, Italy
25 26	14	3) Clinic of Infectious and Tropical Diseases, Department of Health Sciences, ASST Santi
27 28	15	Paolo e Carlo, University of Milan, Milan, Italy.
29	16	4) Medical Direction, University Hospital of Verona, Verona, Italy
31	17	
32 33	18	CORRESPONDING AUTHOR: Elena Carrara, MD
34 35	19	Address: Division of Infectious Disease, Department of Diagnostic and Public Health,
36	20	University Hospital of Verona, Verona, Italy
37 38	21	Piazzale L.A. Scuro 10, Dipartimento di Malattie Infettive, Policlinico Borgo Roma, 37100
39 40	22	Verona, Italy.
41 42	23	Phone number: +39 3339566252
43	24	Email: elena.carrara@univr.it
44 45	25	
46 47	26	WORD COUNT: 2921
48 49		
50		
52		
53 54		
55 56		
57		
58 59		
60		

- ABSTRACT **Objective** To assess the variation of effect estimates in the analysis of mortality and length of stay (LOS) in patients with infections caused by extended-spectrum beta-lactamase (ESBL)-producing *Enterobacteriaceae*. **Design** Systematic review and meta-analysis Methods Literature search for clinical studies from 1 January 1960 to 1 October 2018 was conducted in PubMed. Primary outcomes were risk ratios (RRs) of all-cause and attributable mortality and weighted mean differences (WMDs) in LOS in patients with bloodstream infections (BSIs) and non-invasive infections. Any change in the effect estimates was assessed by grouping studies according to design, setting, economy-based country classification, reporting period, microbiological aetiology, infection type, and adjustment for appropriateness of empirical treatment. The impact of ESBL production was calculated using random effect meta-analysis and heterogeneity was evaluated by I² statistics and metaregression. **Results** Eighty-four studies including 22,030 patients and 149 outcome measures were included in the meta-analysis. Most studies were retrospective cohorts from high-income countries, providing unadjusted estimates. ESBL production in patients with BSIs (56 studies) increased the RR for all-cause mortality by a factor of 1.70 (95% CI: 1.52-1.90; p<0.001), attributable mortality (16 studies) by 1.75 (95% CI: 1.448-2.108; p<0.001), and WMD in the intensive care unit by 3.07 days (95% CI: 1.61-4.54; p<0.001). WMD in hospital LOS was significantly higher in BSIs (4.41 days; 95% CI: 3.37-5.46; p<0.001) and non-invasive (2.19 days; 95% CI: 1.56-2.81; p<0.001). Subgroup analyses showed variation of estimates by study design, population, strain, and assessment of appropriateness of empiric treatment. High heterogeneity was observed in all analyses. **Conclusions** Current evidence of the clinical burden of infections caused by ESBL-producing
 - 45 25 Conclusions Current evidence of the clinical burden of infections caused by ESBL-producing
 46 47 26 bacteria is highly heterogeneous and based mainly on unadjusted estimates derived from
 48 27 retrospective studies. Despite these limitations, ESBL production in strains causing BSIs
 49 28 seems associated with higher all-cause and attributable mortality and longer hospitalisation.

30 KEYWORDS

31 Extended-spectrum beta-lactamase, mortality, bloodstream infection, length of stay, meta32 analysis, systematic review

1 ว	
$\frac{2}{3}$ 1	STRENGTHS AND LIMITATIONS OF THIS STUDY
⁴ 5 2	• Evidence of the impact of ESBL production on mortality and length of stay in strains
6 7 3	causing bacteremic and non-bacteremic infections was collected systematically.
8 9 4	• Effect of multiple epidemiological and clinical variables was assessed in the calculation of
10 5 11	estimates.
12 6	 Heterogeneity among studies was assessed.
13 14 7	• Only few studies had been performed in high-risk populations or low-income countries.
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	

INTRODUCTION

Infections extended-spectrum caused by beta-lactamase (ESBL)-producing *Enterobacteriaceae* are responsible for high morbidity and mortality worldwide.^{1,2,3} The 2018 World Health Organization list of antibiotic-resistant pathogens identified mortality as the most important criteria to prioritise bacteria for research and development of new, effective antibiotics.¹ In this prioritisation exercise, ESBL-producing Enterobacteriaceae were designated a critical priority because of their high all-cause mortality and high prevalence globally in healthcare-associated and community-acquired infections. The incidence and attributable mortality of multidrug-resistant bacterial infections, including ESBL-producing Enterobacteriaceae, in European countries has been recently estimated using a modelling analysis.⁴ In 2015 ESBL-producing *Escherichia coli* was responsible for almost 300,000 infections in Europe and 9,000 attributable deaths, and ESBL-producing Klebsiella pneumoniae caused around 70,000 infections and more than 3,500 deaths. The major limitation of this analysis is the sparseness of evidence on mortality due to ESBL-producing bacteria, which was limited largely to studies conducted in high-income countries.

Two systematic reviews have been performed to define the impact of ESBL production on mortality due to *Enterobacteriaceae*.^{2,3} Both meta-analyses included studies targeting bloodstream infections (BSIs) and showed doubling all-cause mortality for ESBL-associated bacteraemia compared to non-ESBL Enterobacteriaceae bacteraemia. A major drawback of the analyses, highlighted by the authors, was the lack of control for confounding and limited adjustment for empiric therapy. No systematic review has been performed to assess attributable mortality and other indicators of clinical impact such as length of stay (LOS).

Because estimates of clinical burden drive policy design for antibiotic stewardship and infection control interventions, precise and current estimates are essential. The objective of this systematic review and meta-analysis was to assess the variation of effect estimates in the analysis of mortality and LOS in patients with infections due to ESBL-producing Enterobacteriaceae.

METHODS

Literature search strategy

The search was performed by 2 researchers (BPG and PS) in PubMed on 05 October 2018 using search terms (supplementary table S1) relevant to the following combinations: (ESBL AND Escherichia coli AND mortality) OR (ESBL AND Klebsiella pneumoniae AND

mortality) OR (ESBL AND Escherichia coli AND length of stay OR length of hospitalisation)
 OR (ESBL AND Klebsiella pneumoniae AND length of stay OR length of hospitalisation).

3 Reference lists of retrieved articles were also searched.

4 Eligibility criteria

5 We included all clinical studies with a comparison group assessing all-cause mortality, 6 attributable mortality, and overall LOS and intensive care unit stay (ICU) LOS in hospitalised 7 patients with ESBL infections. Studies published from 1 January 1960 to 1 October 2018 8 irrespective of the clinical setting and study design were included. No language restriction has 9 been applied. Diagnostic studies, reviews, case reports, non-clinical studies, and abstracts of 10 conference presentations were not included.

11 Data extraction

Two reviewers (PS and BPG) independently assessed the eligibility of trials and extracted data. In case of disagreement, a third reviewer (DL) was consulted. Extracted data were collected in an electronic worksheet, using EpiInfo 7.1: authors, journal, country, year of publication, year of study, time of data collection, study design, comparison group, study setting, population, aetiology, type and site of infection, and raw data related to mortality and LOS/ICU-LOS. Countries were classified as high-, middle-, or low-income using the World Bank Atlas method.⁵ Adjusted effect estimates such as odds ratios (ORs) or hazard ratios and quality indicators such as reporting of antibiotic therapy, appropriateness of empirical treatment, resistance mechanisms, and minimum inhibitory concentrations (MICs) were also extracted.

Mortality data were extracted as all-cause mortality or attributable mortality as defined in the studies. Where available, prespecified time periods for mortality assessment (i.e., 14 days, 28 days, in-hospital) were also extracted. LOS and ICU-LOS were extracted as days with mean and standard deviation or median and interquartile range.

26 Data analysis

The primary outcomes for the clinical impact of ESBL infections were RRs of all-cause and attributable mortality and the weighted mean difference (WMD) in LOS and ICU-LOS in patients with ESBL infections compared with those in patients with non-ESBL infections and, where available, with uninfected patients. The impact of ESBL production on attributable and all-cause mortality was calculated with random effect meta-analysis and expressed as RR with

95% confidence interval (CI). WMD in days with 95% CI was calculated to express the excess in LOS and ICU-LOS. Variation of the effect estimate was assessed by grouping the studies according to the following study/outcome characteristics: mortality time assessment (7 vs 14 days), aetiology (E. coli vs K. pneumoniae), infection localisation, clinical setting (paediatric, oncology, ICU), economic country areas (high-income countries [HICs] vs low- and medium-income countries [LMICs]), study design, assessment of empiric therapy, and year. Studies were classified according to the type of infections evaluated. Studies on BSIs were defined as those in which patients had positive blood cultures and were admitted to the hospitals with signs and symptoms of systemic inflammatory response and requiring therapy, similarly to the definition adopted by the most recent cohort studies on ESBL infections.⁶ Non-invasive infections included non-bacteremic patients with only localised signs and symptoms of infection (such as urinary tract infections or superficial surgical site infections). Subgroup analysis was computed only if more than 2 studies were available for each group. Heterogeneity was evaluated by using I^2 statistics and metaregression. Overall significance testing was carried out using Wald tests adjusted using the Bonferroni correction. The unadjusted ORs were compared with the adjusted ORs to estimate the effect of adjustment.

Reporting and publication bias was presented in funnel plots (supplementary figure 1 and 2) and tested by Egger's test. Statistical analyses were performed using Stata version 15. Risk of bias was assessed independently by two authors (PS, DL) using the Newcastle - Ottawa quality assessment scale for cohort studies.⁷ Studies were classified as low, moderate, or high quality according to AHRQ standards (supplementary table S2). All meta-analyses were performed in accordance with the Cochrane Collaboration recommendations⁸ and reported according to the PRISMA statement.9

- ⁴⁶ 25 The protocol is available online.
- 49 26 (https://im1-tuebingen.de/wp-
- 50 27 content/uploads/2019/03/ClinicalImpactAMR_SR_studyprotocol_2018.pdf)
- 28 Patient and Public Involvement

29 There was no patient or public involvement in this systematic review of published literature.

57 30 **RESULTS**

Solution
 Solution<

BMJ Open

evidence base of 87 studies (Figure 1).¹⁰⁻⁹⁶ The 87 studies included in the qualitative analysis were conducted between 1991 and 2017 in 25 countries, mainly in South Korea (14 studies), Thailand (7), USA (7), Taiwan (7), and Spain (7). Sixty (68.9%) studies were performed in HICs, 26 (29.9%) in LMICs, and 1 included both HICs and LMICs.⁵⁶ About half (44, 50.6%) were retrospective cohort studies, 24 (27.6%) case cohort studies, and 18 (20.7%) prospective cohort studies; 1 study had an interventional design.⁵⁷ The comparison group was patients with infections caused by gram-negative non-ESBL producers in 82 (94.3%) studies, non-infected patients in 2 (2.3%), and both control groups in 3 (3.5%). Most (57, 65.5%) studies included data from the entire hospital, while a few focused on specific settings, mainly ICUs (9, 10.3%) and paediatric wards (8, 9.2%). The most common ESBL-producing bacteria were E. coli (23, 26.4%) and K. pneumoniae (17, 19.5%). An overview of study characteristics is provided in online supplementary table S3.

Because data in 3 studies ^{22,61,87} were insufficient for quantitative analysis, 84 (96.6%) studies were included in the meta-analysis analysing data from 22,030 patients and 149 outcome measures. Fifty-seven studies analysed BSIs and 10 non-invasive infections. Study characteristics for all studies are provided in online supplementary table S4. 49 (58.3%) studies were of high quality, 23 (27.3%) were of moderate quality, and 12 (14.3%) were of low quality (supplementary table S5).

2 19 All-cause mortality

All-cause mortality was reported in 81 studies including 21,942 patients (56 on BSIs and 7 on non-invasive infections). ESBL production in patients with BSIs increased all-cause mortality by a factor of 1.70 (95% CI: 1.52-1.90; p<0.001; I²=45.3%; p<0.001) while studies including non-invasive reported a RR of 1.58 (95% CI: 1.23-2.02; p<0.001) (supplementary figure 3). Among the BSI patients, the RR increased over time from 1.56 (95% CI: 1.15-2.11; p=0.004) in 1991-1999 to 1.74 (95% CI: 1.50-2.01; p<0.001) in 2000-2009, and it was stable in 2010-2018 (1.72, 95% CI: 1.39-2.13; p<0.001). The RR was higher in studies assessing appropriateness of empiric therapy (RR=1.75; 95% CI 1.54-1.99; p<0.001) than in those that did not (RR=1.55; 95% CI 1.26-1.90; p<0.001). The subgroup analysis by pathogen showed that ESBL production increased the RR in BSIs due to E. coli (RR=1.82; 95% CI: 1.50-2.21; p<0.001) compared to those due to K. pneumoniae (RR=1.48; 95% CI: 1.17-1.87; p=0.001). Stratification by population age showed a higher RR in paediatric population (RR=2.09; 95% CI: 1.62-2.71; p<0.001). Effect estimates did not vary significantly by study country, mortality time assessment (14 vs 28 days), ESBL molecular resistance mechanisms, or study

design (Figure 2 and online supplementary figure 4). Adjusted estimates for inappropriate empirical antibiotic therapy were provided for 14 studies. The pooled unadjusted OR for allcause mortality was 2.91 (95% CI: 2.23-3.81; p<0.001, I²=27.1%; p=0.164) and the pooled OR after adjusting for receipt of appropriate empirical treatment was 3.22 (95% CI: 1.53-6.76; p=0.002; I²=87.5%; p<0.001). The impact of ESBL production on LOS and mortality varied according to the infection type, with higher effect in intra-abdominal, respiratory and BSIs (supplemental figure 5 and 6).

8 Attributable mortality

Attributable mortality was analysed in 16 studies including 2,885 patients. All studies were performed in HICs. ESBL production in patients with BSIs increased the risk of attributable mortality by a factor of 1.75 (95% CI: 1.45-2.11; p<0.001; $I^{2=0\%}$; p<0.001). The RR increased over time from 1.53 (95% CI: 1.10-2.12; p=0.011) in 1991-1999 to 1.91 (95% CI: 1.43-2.54; p<0.001) in 2000-2009 (Figure 3). Pathogen-specific RR for attributable mortality was 1.60 (95% CI: 1.18-2.15; p=0.002) for K. pneumoniae and 1.76 (95% CI: 1.33-2.34; p < 0.001) when the gram-negative organisms were analysed all together without species differentiation. The subgroup analysis showed the RR was lower in case cohort studies (1.56; 95% CI: 1.09-2.25; p=0.016) than in cohort studies (1.80; 95% CI: 1.37-2.37; p<0.001).

34 18 Length of stay

LOS data were provided in 37 studies (17 on BSIs and 8 on non-invasive) analysing 38 outcome measures. The WMD of LOS in patients with BSIs was 4.41 days (95% CI: 3.37-5.46; p<0.001) and decreased from 5.72 days (95% CI: 2.69-8.75; p<0.001) in 1991-1999 to 4.22 days (95% CI: 3.02-5.43; p<0.001) in 2000-2009 and was stable up to 2018 (4.30 days; 95% CI: 1.38-7.22; p=0,004). Higher WMD (p<0.001) was observed for BSIs due to K. pneumoniae (7.67 days; 4.63-10.71) than for those due to E. coli (6.07 days; 95% CI 3.71-8.43). Retrospective cohort studies reported higher (p<0.001) WMD (6.43 days; 95% CI: 4.66-8.21; p<0.001) than case cohort studies (3.32 days; 95% CI: 2.03-4.61). Studies in HICs showed higher WMD (4.56 days; 95% CI 3.43-5.70; p<0.001) than studies in LMICs (3.55 days; 95% CI 0.84-6.26; p=0.01) (Figure 4).

Studies with non-invasive infections reported a WMD of 2.19 days (95% CI: 1.56-2.81;
p<0.001), which decreased from 7.66 (95% CI: 5.83-9.46; p<0.001) in 2000-2009 to 1.44
(95% CI: 0.77-2.10; p<0.001) in 2010-2018 (online supplementary figure 7).

The data on ICU-LOS were provided in 7 studies and showed that BSIs caused by ESBL
 producers had a WMD of LOS of 3.07 days (95% CI: 1.61-4.54; p<0.001).

Heterogeniety of the studied effect-modifiers did not reach statistical significance when
assessed by metaregression (supplementary table S6). Sensitivity analysis based on the quality
of studies revealed no notable difference in the effect estimates after exclusion of low-quality
studies (data not shown). Egger's test and the funnel plots (online supplementary figure 1 and
showed evidence for small study effects (p<0.001) and publication bias.

8 DISCUSSION

This systematic review shows that ESBL production has a significant impact on the most relevant patient-related clinical outcomes. In the subgroup analyses, all-cause mortality, attributable mortality, and LOS both in hospital and in ICU were higher for patients with BSIs due to ESBL-producing Enterobacteriaceae than for patients with BSIs due to non-ESBL-producing strains. Non-invasive infections caused by ESBL-producing strains were associated with higher all-cause mortality and prolonged LOS. Within the limitation of the low number of studies evaluating specific patient populations, paediatric and cancer patients seemed to suffer a higher impact of ESBL invasive infections than the overall population. Stratifying by pathogen type, the impact of ESBL production was higher for E. coli BSIs than for K. pneumoniae BSIs. No relevant differences in mortality analysis emerged with stratification by study design or country income level. Impact of ESBL infections on mortality became more evident in more recent studies. Studies reporting on appropriateness of empirical therapy, ESBL resistance mechanisms, and MICs showed a higher clinical impact of ESBL infections than studies not assessing these variables. In particular, pooled ORs adjusted for inappropriate empirical treatment, showed a remarkably higher OR for mortality in patients with ESBL infections.

Our findings confirm the results of previous systematic reviews. Schwaber et al. performed a systematic review comparing mortality in ESBL BSIs and non-ESBL BSIs in studies published through 2003.² The authors show a pooled RR for all-cause mortality of 1.85 but, in contrast to our study, they combined *E. coli*, *Klebsiella* spp., and *Proteus* spp. in the analysis because of sample size limitations. Rottier et al. analysed studies published through 2010 and adjusting results for inappropriate empirical treatment found an adjusted OR of 1.37.³ Our study, adding more than 50 studies in 17 years to the Rottier systematic review, confirmed the clinical importance of ESBL production to all-cause mortality and for the first time assessed the role of ESBL production on attributable mortality. We addressed relevant effect-modifiers

 through subgroup analyses and found that population, pathogen, and assessment of empiric therapy all had an impact on estimates. Because we believe that appropriate empirical treatment plays a relevant role in invasive infections, we performed a secondary analysis by pooling only adjusted ORs and confirming the significant impact of antibiotic resistance as already shown in a previously published systematic review.⁹⁷ The lack of consideration of appropriateness of therapy in the studies evaluating mortality seems to underestimate the impact of ESBL production on mortality. However, studies assessing the impact of appropriate therapy did not provide homogeneous definition and could refer either to empirical or definite therapy or a single component irrespective of the dosage, making results difficult to interpret. Especially in infections with different sources and different clinical severity, the sole contribution of empirical therapy remains challenging to measure. For example, patients with UTI receiving inappropriate empirical antibiotic therapy can potentially show a favourable outcome, most probably due to the high concentration of antibiotic reached in the urinary tract.98

Community acquired ESBL infections emerged in the late 1990s and show an increasing trend.^{99,100} Recent study shows that community onset ESBL infections are associated with lower mortality compared with healthcare associated and hospital acquired infections.¹⁰¹ The place of acquisition could not be appropriately addressed in our meta-analysis due to the lack of data in included studies.

Our systematic review contributes to the discussion on the limitation of current evidence for
 the estimation of mortality due to antibiotic-resistant infections. The impact of ESBL
 production on LOS in our study has shown that both BSIs and non-invasive infections lead to
 prolongation of hospitalisation.

Our study has some limitations. Although results of the meta-analyses were significant in all the subgroups, we could analyse only a limited number of studies providing information for subgroups such as haematological patients and low-income countries, making generalizability of results less certain for these specific patient populations. Only a few studies reported MIC data or specific ESBL molecular resistant phenotype (i.e., AmpC). Moreover, publication bias was detected in both the main analyses (all-cause mortality and LOS), thus implying the possibility that results from small studies with non-significant results might have been conducted and not published, resulting in a possible overestimation of our results. The non-homogeneous reporting of some relevant data in published literature (e.g., infection type,

BMJ Open

presence of bacteremia, disease severity, underlying comorbidities and resistance mechanism) may also have affected the precision of the estimate. A limited number of patients with non-bacteremic infections was included in our systematic review, thus limiting the generalizability of results to this patients' population. Moreover, patients with ESBL are intrinsically at higher risk of mortality and complications because they are often older, have more comorbidities or higher antibiotic exposure, and are at higher risk of receiving inappropriate empirical treatment.¹⁰² Finally, due to resource constraints, we had to limit our search to PubMed database with the chance of missing relevant studies.

In summary, our systematic review emphasises the importance of suspicion and confirmation of ESBL production as soon as possible for invasive infections and demonstrates that ESBL production increases the risk of attributable mortality and LOS in both hospital and ICU for invasive and non-invasive infections. Patients with ESBL infections remain at higher risk of mortality and prolonged LOS even after adjustment for empiric inappropriate treatment. Control for other relevant effect-modifiers is hindered by the sparseness of published data. Individual patient data (IPD) network meta-analyses are needed to define differences in outcomes between severe intravascular infections and bacteremia. Future studies addressing the clinical burden of drug-resistant infections must include ESBL production and should assess both the impact of molecular mechanisms of resistance and effect on specific patient populations such as haematological patients and those in LMIC.

Acknowledgements We thank Anne McDonough, a professional medical writer who
 provided medical writing support funded by the authors.

Author Contributions ET contributed to the study concept. BPG and PS performed data analysis. PS and AC extracted data and wrote the first draft of the manuscript. DL contributed to the first draft of the manuscript. EC and ET wrote the final version of the manuscript. CB reviewed the paper. All authors read, edited, and approved the final manuscript. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Funding This work was supported by the German Center for Infection Research Clinical Research Unit for Health-Care Associated Infections grant number TTU 08.701 and DRIVE-AB (115618). The funder had no involvement in the study design; in the collection, analysis and interpretation of the data; in the writing of the report; or in the decision to submit the paper for publication.

60 33 **Competing interests** The authors report no competing interests.

Patient consent Not required

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement Requests for data should be addressed to the corresponding author.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http:// creativecommons. org/ licenses/ by- nc/ 4. 0/. or occreation on the second

2			
3 4	1	RI	EFERENCES
5	2	1.	Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new
7	3		antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet
8 9	4		Infect Dis 2018;18:318–27.
10 11	5	2.	Schwaber MJ, Carmeli Y. Mortality and delay in effective therapy associated with
12	6		extended-spectrum beta-lactamase production in Enterobacteriaceae bacteraemia: a
13 14	7		systematic review and meta-analysis. J Antimicrob Chemother 2007;60:913-20.
15 16	8	3.	Rottier WC, Ammerlaan HS, Bonten MJ. Effects of confounders and intermediates on the
17 18	9		association of bacteraemia caused by extended-spectrum beta-lactamase-producing
19	10		Enterobacteriaceae and patient outcome: a meta-analysis. J Antimicrob Chemother
20 21	11		2012;67:1311–20.
22 23	12	4.	Cassini A, Högberg LD, Plachouras D, et al; Attributable deaths and disability-adjusted
24	13		life-years caused by infections with antibiotic-resistant bacteria in the EU and the
25 26	14		European Economic Area in 2015: a population-level modelling analysis. Lancet Infect
27 28	15		Dis 2019;19:56–66.
29 30	16	5.	The World Bank. What is the World Bank Atlas method?
31	17		https://datahelpdesk.worldbank.org/knowledgebase/articles/77933-what-is-the-world-
32 33	18		bank-atlas-method. Accessed January 14, 2019.
34 35	19	6.	Rodriguez-Bano J, Gutierrez-Gutierrez B, Machuca I et al. Treatment of Infections
36 37	20		Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing
38	21		Enterobacteriaceae. Clin Microbiol Rev 2018; 31. doi:10.1128/CMR.00079-17
39 40	22	7.	Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M et al. The Newcastle-
41 42	23		Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses.
43	24		The Ottawa Health Research Institute: Ottawa, Canada.
44 45	25		http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm. Accessed April 14 2015
46 47	26	8.	Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of
48 49	27		Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011.
50	28		Available from http://handbook.cochrane.org.
51 52	29	9.	Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and
53 54	30		meta-analyses: the PRISMA statement. BMJ 2009;339:b2535.
55 56	31	10	. Lautenbach E, Patel JB, Bilker WB, et al. Extended-spectrum beta-lactamase-producing
57	32		Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of
58 59	33		resistance on outcomes. Clin Infect Dis 2001;32:1162-71.
60			

11. Leistner R, Sakellariou C, Gurntke S, et al. Mortality and molecular epidemiology associated with extended-spectrum beta-lactamase production in Escherichia coli from bloodstream infection. Infect Drug Resist 2014;7:57-62. 12. Lin JN, Chen YH, Chang LL, et al. Clinical characteristics and outcomes of patients with extended-spectrum beta-lactamase-producing bacteremias in the emergency department. Intern Emerg Med 2011;6:547-55. 13. Kim HJ, Park JH, Park DI, et al. Clinical impact of extended-spectrum beta-lactamase-producing Enterobacteriaceae in patients with biliary tract infection. Dig Dis Sci 2013;58:841-9. 14. Kim SH, Kwon JC, Choi SM, et al. Escherichia coli and Klebsiella pneumoniae bacteremia in patients with neutropenic fever: factors associated with extended-spectrum beta-lactamase production and its impact on outcome. Ann Hematol 2013;92:533-41. 15. Pillay T, Pillay DG, Adhikari M, et al. Piperacillin/tazobactam in the treatment of Klebsiella pneumoniae infections in neonates. Am J Perinatol 1998;15:47-51. 16. Kim BN, Woo JH, Kim MN, et al. Clinical implications of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae bacteraemia. J Hosp Infect 2002;52:99-106. 17. Kim YK, Pai H, Lee HJ, et al. Bloodstream infections by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in children: epidemiology and clinical outcome. Antimicrob Agents Chemother 2002;46:1481–91. 18. Bhavnani SM, Ambrose PG, Craig WA, et al. Outcomes evaluation of patients with ESBL- and non-ESBL-producing Escherichia coli and Klebsiella species as defined by CLSI reference methods: report from the SENTRY Antimicrobial Surveillance Program. Diagn Microbiol Infect Dis 2006;54:231-6. 19. Blomberg B, Jureen R, Manji KP, et al. High rate of fatal cases of pediatric septicemia caused by gram-negative bacteria with extended-spectrum beta-lactamases in Dar es Salaam, Tanzania. J Clin Microbiol 2005;43:745-9. 20. Panhotra BR, Saxena AK, Al-Ghamdi AM. Extended-spectrum beta-lactamase-producing Klebsiella pneumoniae hospital acquired bacteremia. Risk factors and clinical outcome. Saudi Med J 2004;25:1871-6. 21. Marra AR, Wey SB, Castelo A, et al. Nosocomial bloodstream infections caused by Klebsiella pneumoniae: impact of extended-spectrum beta-lactamase (ESBL) production on clinical outcome in a hospital with high ESBL prevalence. BMC Infect Dis 2006;6:24.

BMJ Open

2		
3 ⊿	1	22. Skippen I, Shemko M, Turton J, et al. Epidemiology of infections caused by extended-
5	2	spectrum beta-lactamase-producing Escherichia coli and Klebsiella spp.: a nested case-
6 7	3	control study from a tertiary hospital in London. J Hosp Infect 2006;64:115-23.
8 9	4	23. Schwaber MJ, Navon-Venezia S, Kaye KS, et al. Clinical and economic impact of
10	5	bacteremia with extended-spectrum-beta-lactamase-producing Enterobacteriaceae.
11 12	6	Antimicrob Agents Chemother 2006;50:1257–62.
13 14	7	24. Apisarnthanarak A, Kiratisin P, Saifon P, et al. Clinical and molecular epidemiology of
15	8	community-onset, extended-spectrum beta-lactamase-producing Escherichia coli
10	9	infections in Thailand: a case-case-control study. Am J Infect Control 2007;35:606-12.
18 19	10	25. Tumbarello M, Spanu T, Sanguinetti M, et al. Bloodstream infections caused by extended-
20 21	11	spectrum-beta-lactamase-producing Klebsiella pneumoniae: risk factors, molecular
22	12	epidemiology, and clinical outcome. Antimicrob Agents Chemother 2006;50:498-504.
23 24	13	26. Apisarnthanarak A, Kiratisin P, Saifon P, et al. Risk factors for and outcomes of
25 26	14	healthcare-associated infection due to extended-spectrum beta-lactamase-producing
27	15	Escherichia coli or Klebsiella pneumoniae in Thailand. Infect Control Hosp Epidemiol
28 29	16	2007;28:873–6. doi: 10.1086/518725
30 31	17	27. Kanafani ZA, Mehio-Sibai A, Araj GF, et al. Epidemiology and risk factors for extended-
32 33	18	spectrum beta-lactamase-producing organisms: a case control study at a tertiary care
34	19	center in Lebanon. Am J Infect Control 2005;33:326-32.
35 36	20	28. Zaoutis TE, Goyal M, Chu JH, et al. Risk factors for and outcomes of bloodstream
37 38	21	infection caused by extended-spectrum beta-lactamase-producing Escherichia coli and
39	22	Klebsiella species in children. <i>Pediatrics</i> 2005;115:942–9.
40 41	23	29. Loh LC, Nor Izran Hanim Bt Abdul S, Rosdara Masayuni Bt Mohd S, et al. Hospital
42 43	24	Outcomes of Adult Respiratory Tract Infections with Extended-Spectrum B-Lactamase
44 45	25	(ESBL) Producing Klebsiella Pneumoniae. Malays J Med Sci 2007;14:36–40.
46	26	30. Melzer M, Petersen I. Mortality following bacteraemic infection caused by extended
47 48	27	spectrum beta-lactamase (ESBL) producing E. coli compared to non-ESBL producing E.
49 50	28	coli. J Infect 2007;55:254–9. doi: 10.1016/j.jinf.2007.04.007
51	29	31. Song KH, Jeon JH, Park WB, et al. Clinical outcomes of spontaneous bacterial peritonitis
52 53	30	due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella
54 55	31	species: a retrospective matched case-control study. <i>BMC Infect Dis</i> 2009;9:41.
56 57	32	32. Bennett JW, Robertson JL, Hospenthal DR, et al. Impact of extended spectrum beta-
58	33	lactamase producing Klebsiella pneumoniae infections in severely burned patients. J Am
59 60	34	<i>Coll Surg</i> 2010:211:391–9.

Page 16 of 57

BMJ Open

33. Trecarichi EM, Tumbarello M, Spanu T, et al. Incidence and clinical impact of extended spectrum-beta-lactamase (ESBL) production and fluoroquinolone resistance in
 bloodstream infections caused by Escherichia coli in patients with hematological
 malignancies. *J Infect* 2009;58:299–307.

- 5 34. Tuon FF, Kruger M, Terreri M, et al. Klebsiella ESBL bacteremia-mortality and risk
 6 factors. *Braz J Infect Dis* 2011;15:594–8.
- 35. Kang CI, Song JH, Chung DR, et al. Risk factors and treatment outcomes of communityonset bacteraemia caused by extended-spectrum beta-lactamase-producing Escherichia
 coli. *Int J Antimicrob Agents* 2010;36:284–7.
- 36. Pena C, Gudiol C, Calatayud L, et al. Infections due to Escherichia coli producing
 extended-spectrum beta-lactamase among hospitalised patients: factors influencing
 mortality. *J Hosp Infect* 2008;68:116–22.
- 13 37. Tumbarello M, Spanu T, Di Bidino R, et al. Costs of bloodstream infections caused by
 14 Escherichia coli and influence of extended-spectrum-beta-lactamase production and
 15 inadequate initial antibiotic therapy. *Antimicrob Agents Chemother* 2010;54:4085–91.
- 16 38. Kang CI, Chung DR, Ko KS, et al. Risk factors for infection and treatment outcome of
 17 extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae
 18 bacteremia in patients with hematologic malignancy. *Ann Hematol* 2012;91:115–21.
- ⁴ 19 39. Wu YH, Chen PL, Hung YP, et al. Risk factors and clinical impact of levofloxacin or cefazolin nonsusceptibility or ESBL production among uropathogens in adults with community-onset urinary tract infections. *J Microbiol Immunol Infect* 2014;47:197–203.
- 40. Rodriguez-Bano J, Picon E, Gijon P, et al. Community-onset bacteremia due to extended spectrum beta-lactamase-producing Escherichia coli: risk factors and prognosis. *Clin Infect Dis* 2010;50:40–8.
- 41. Gurntke S, Kohler C, Steinmetz I, et al. Molecular epidemiology of extended-spectrum
 beta-lactamase (ESBL)-positive Klebsiella pneumoniae from bloodstream infections and
 risk factors for mortality. *J Infect Chemother* 2014;20:817–9.
- 42. Oh MM, Chae JY, Kim JW, et al. Positive culture for extended-spectrum beta-lactamase
 during acute prostatitis after prostate biopsy is a risk factor for progression to chronic
 30 prostatitis. Urology 2013;81:1209–12.
- 31 43. Leistner R, Gurntke S, Sakellariou C, et al. Bloodstream infection due to extended32 spectrum beta-lactamase (ESBL)-positive K. pneumoniae and E. coli: an analysis of the
 33 disease burden in a large cohort. *Infection* 2014;42:991–7.

BMJ Open

17

2		
3 4	1	44. Ku NS, Chung HS, Choi JY, et al. Clinical usefulness of the 2010 clinical and laboratory
5	2	standards institute revised breakpoints for cephalosporin use in the treatment of
6 7	3	bacteremia caused by Escherichia coli or Klebsiella spp. Biomed Res Int
8 9	4	2015;2015:831074.
10	5	45. Anunnatsiri S, Towiwat P, Chaimanee P. Risk factors and clinical outcomes of extended
12	6	spectrum beta-lactamase (ESBL)-producing Escherichia coli septicemia at Srinagarind
13 14	7	University Hospital, Thailand. Southeast Asian J Trop Med Public Health 2012;43:1169-
15 16	8	77.
17	9	46. Kang CI, Kim SH, Kim DM, et al. Risk factors for and clinical outcomes of bloodstream
18 19	10	infections caused by extended-spectrum beta-lactamase-producing Klebsiella
20 21	11	pneumoniae. Infect Control Hosp Epidemiol 2004;25:860–7.
22 23	12	47. Raviv Y, Shitrit D, Amital A, et al. Multidrug-resistant Klebsiella pneumoniae acquisition
24	13	in lung transplant recipients. Clin Transplant 2012;26:E388–94.
25 26	14	48. MacVane SH, Tuttle LO, Nicolau DP. Impact of extended-spectrum beta-lactamase-
27 28	15	producing organisms on clinical and economic outcomes in patients with urinary tract
29 30	16	infection. <i>J Hosp Med</i> 2014;9:232–8.
31	17	49. Abhilash KP, Veeraraghavan B, Abraham OC. Epidemiology and outcome of bacteremia
32 33	18	caused by extended spectrum beta-lactamase (ESBL)-producing Escherichia coli and
34 35	19	Klebsiella spp. in a tertiary care teaching hospital in south India. J Assoc Physicians India
36	20	2010;58 Suppl:13-7.
38	21	50. Shanthi M, Sekar U. Extended spectrum beta lactamase producing Escherichia coli and
39 40 41 42 43	22	Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. J
	23	Assoc Physicians India 2010;58 Suppl:41–4.
	24	51. Han SB, Jung SW, Bae EY, et al. Extended-spectrum beta-lactamase-producing
44 45	25	Escherichia coli and Klebsiella pneumoniae bacteremia in febrile neutropenic children.
46 47	26	Microb Drug Resist 2015;21:244–51.
48 ⊿q	27	52. Lee S, Song DY, Cho SH, et al. Impact of extended-spectrum beta-lactamase on acute
50	28	pyelonephritis treated with empirical ceftriaxone. Microb Drug Resist 2014;20:39-44.
51 52	29	53. Chayakulkeeree M, Junsriwong P, Keerasuntonpong A, et al. Epidemiology of extended-
53 54	30	spectrum beta-lactamase producing gram-negative bacilli at Siriraj Hospital, Thailand,
55	31	2003. Southeast Asian J Trop Med Public Health 2005;36:1503–9.
50 57	32	54. Apisarnthanarak A, Kiratisin P, Mundy LM. Predictors of mortality from community-
58 59	33	onset bloodstream infections due to extended-spectrum beta-lactamase-producing
60		

1 2		
3	1	Escherichia coli and Klebsiella pneumoniae. Infect Control Hosp Epidemiol 2008;29:671-
4 5	2	4.
6 7 8 9 10 11 12 13 14	3	55. Apisarnthanarak A, Kiratisin P, Saifon P, et al. Predictors of mortality among patients
	4	with community-onset infection due to extended-spectrum beta-lactamase-producing
	5	Escherichia coli in Thailand. Infect Control Hosp Epidemiol 2008;29:80-2.
	6	56. Jean SS, Ko WC, Xie Y, et al. Clinical characteristics of patients with community-
	7	acquired complicated intra-abdominal infections: a prospective, multicentre, observational
15 16	8	study. Int J Antimicrob Agents 2014;44:222-8.
17 18 19 20 21	9	57. Lee J, Pai H, Kim YK, et al. Control of extended-spectrum beta-lactamase-producing
	10	Escherichia coli and Klebsiella pneumoniae in a children's hospital by changing
	11	antimicrobial agent usage policy. J Antimicrob Chemother 2007;60:629-37.
22 23	12	58. Briongos-Figuero LS, Gomez-Traveso T, Bachiller-Luque P, et al. Epidemiology, risk
24	13	factors and comorbidity for urinary tract infections caused by extended-spectrum beta-
25 26	14	lactamase (ESBL)-producing enterobacteria. Int J Clin Pract 2012;66:891-6.
27 28	15	59. Ha YE, Kang CI, Cha MK, et al. Epidemiology and clinical outcomes of bloodstream
29 30 31 32 33	16	infections caused by extended-spectrum beta-lactamase-producing Escherichia coli in
	17	patients with cancer. Int J Antimicrob Agents 2013;42:403–9.
	18	60. Du B, Long Y, Liu H, et al. Extended-spectrum beta-lactamase-producing Escherichia
34 35	19	coli and Klebsiella pneumoniae bloodstream infection: risk factors and clinical outcome.
36 37	20	Intensive Care Med 2002;28:1718–23.
38	21	61. Stone PW, Gupta A, Loughrey M, et al. Attributable costs and length of stay of an
39 40 41 42	22	extended-spectrum beta-lactamase-producing Klebsiella pneumoniae outbreak in a
	23	neonatal intensive care unit. Infect Control Hosp Epidemiol 2003;24:601–6.
43	24	62. Pena C, Pujol M, Ardanuy C, et al. An outbreak of hospital-acquired Klebsiella
44 45	25	pneumoniae bacteraemia, including strains producing extended-spectrum beta-lactamase.
46 47	26	J Hosp Infect 2001;47:53–9.
48 ⊿q	27	63. Kola A, Maciejewski O, Sohr D, et al. Clinical impact of infections caused by ESBL-
50	28	producing E. coli and K. pneumoniae. Scand J Infect Dis 2007;39:975-82.
51 52	29	64. Tsai MH, Lee IT, Chu SM, et al. Clinical and Molecular Characteristics of Neonatal
53 54	30	Extended-Spectrum beta-Lactamase-Producing Gram-Negative Bacteremia: A 12-Year
55 55	31	Case-Control-Control Study of a Referral Center in Taiwan. PLoS One
50 57	32	2016;11(8):e0159744.
58 59		
60		

BMJ Open

2		
$\begin{array}{c} 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 23\\ 34\\ 35\\ 36\\ 37\\ 38\\ 9\\ 40\\ 41\\ 42\\ 43\\ 44\\ 56\\ 67\\ 8\\ 9\\ 50\\ 51\\ 52\\ 54\\ 54\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56$	1	65. Maslikowska JA, Walker SA, Elligsen M, et al. Impact of infection with extended-
	2	spectrum beta-lactamase-producing Escherichia coli or Klebsiella species on outcome and
	3	hospitalization costs. J Hosp Infect 2016;92:33-41.
	4	66. Onken A, Said AK, Jorstad M, et al. Prevalence and antimicrobial resistance of microbes
	5	causing bloodstream infections in Unguja, Zanzibar. PLoS One 2015;10:e0145632.
	6	67. Nguyen ML, Toye B, Kanji S, et al. Risk factors for and outcomes of bacteremia caused
	7	by extended-spectrum β -lactamase-producing Escherichia coli and Klebsiella species at a
	8	Canadian tertiary care hospital. Can J Hosp Pharm 2015;68(2):136-43. [published Online
	9	First: 2015/05/13]
	10	68. Denis B, Lafaurie M, Donay JL, et al. Prevalence, risk factors, and impact on clinical
	11	outcome of extended-spectrum beta-lactamase-producing Escherichia coli bacteraemia: a
	12	five-year study. Int J Infect Dis 2015;39:1–6.
	13	69. Chopra T, Marchaim D, Johnson PC, et al. Risk factors for bloodstream infection caused
	14	by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella
	15	pneumoniae: A focus on antimicrobials including cefepime. Am J Infect Control
	16	2015;43:719–23.
	17	70. Artero A, Esparcia A, Alberola J, et al. Prospective cohort study of risk factors for
	18	extended-spectrum ss-lactamase-producing Escherichia coli urinary tract infections in
	19	elderly patients admitted to hospital. Int J Clin Pract 2017;71:doi:10.1111/ijcp.13001
	20	71. Chen IL, Huang HC, Wu CT, et al. Analysis of early-onset bloodstream infection due to
	21	Escherichia coli infection in premature babies. Medicine 2017;96:e7748.
	22	72. Islas-Munoz B, Volkow-Fernandez P, Ibanes-Gutierrez C, et al. Bloodstream infections in
	23	cancer patients. Risk factors associated with mortality. Int J Infect Dis 2018;71:59-64.
	24	73. Ma J, Li N, Liu Y, et al. Antimicrobial resistance patterns, clinical features, and risk
	25	factors for septic shock and death of nosocomial E coli bacteremia in adult patients with
	26	hematological disease: A monocenter retrospective study in China. Medicine
	27	2017;96:e6959.
	28	74. Man MY, Shum HP, Chan YH, et al. Clinical predictors and outcomes of Klebsiella
	29	pneumoniae bacteraemia in a regional hospital in Hong Kong. J Hosp Infect 2017;97:35-
	30	41.
55	31	75. Marando R, Seni J, Mirambo MM, et al. Predictors of the extended-spectrum-beta
56 57	32	lactamases producing Enterobacteriaceae neonatal sepsis at a tertiary hospital, Tanzania.
58 59	33	Int J Med Microbiol 2018;308:803–11.
60		
76. Namikawa H, Yamada K, Fujimoto H, et al. Clinical characteristics of bacteremia caused by extended-spectrum beta-lactamase-producing Escherichia coli at a tertiary hospital. *Intern Med* 2017;56:1807–15.
77. Shi GH E - YOL L i MC + 1 Dility - 1.

4 77. Shi SH, Feng XN, Lai MC, et al. Biliary diseases as main causes of pyogenic liver abscess
5 caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae. *Liver Int*6 2017;37:727–34.

7 78. Tanir Basaranoglu S, Ozsurekci Y, Aykac K, et al. A comparison of blood stream
8 infections with extended spectrum beta-lactamase-producing and non-producing
9 Klebsiella pneumoniae in pediatric patients. *Ital J Pediat* 2017;43:79.

- 79. Razazi K, Mekontso Dessap A, Carteaux G, et al. Frequency, associated factors and
 outcome of multi-drug-resistant intensive care unit-acquired pneumonia among patients
 colonized with extended-spectrum beta-lactamase-producing Enterobacteriaceae. *Ann Intensive Care* 2017;7:61.
- 14 80. Ray S, Anand D, Purwar S, et al. Association of high mortality with extended-spectrum
 15 beta-lactamase (ESBL) positive cultures in community acquired infections. *J Crit Care* 9 16 2018;44:255-60.
- 17 81. Haruki Y, Hagiya H, Haruki M, et al. Clinical characteristics and outcome of critically ill
 18 patients with bacteremia caused by extended-spectrum beta-lactamase-producing and non 19 producing Escherichia coli. *J Infect Chemother* 2018;24:944–7.
- 20 82. Lin WT, Tang HJ, Lai CC, et al. Clinical manifestations and bacteriological features of
 21 culture-proven Gram-negative bacterial arthritis. J Microbiol Immunol Infect
 22 2017;50:527–31.
- 23 83. Buys H, Muloiwa R, Bamford C, et al. Klebsiella pneumoniae bloodstream infections at a
 24 South African children's hospital 2006-2011, a cross-sectional study. BMC Infect Dis
 25 2016;16:570.

46 26 84. Lee CC, Lee CH, Hong MY, et al. Propensity-matched analysis of the impact of extended48 27 spectrum beta-lactamase production on adults with community-onset Escherichia coli,
49 28 Klebsiella species, and Proteus mirabilis bacteremia. *J Microbiol Immunol Infect*50 29 2018;51:519–26.

- 30 85. Huang YY, Alleyne A, Leung V, et al. Urosepsis due to extended-ppectrum beta 31 lactamase-producing Escherichia coli: a retrospective, single-centre review of risk Factors
 32 and clinical outcomes. *Can J Hosp Pharm* 2018;71:119-27.

Page 21 of 57

BMJ Open

1 2		
3	1	86. Komatsu Y, Kasahara K, Inoue T, et al. Molecular epidemiology and clinical features of
4 5	2	extended-spectrum beta-lactamase- or carbapenemase-producing Escherichia coli
6 7	3	bacteremia in Japan. PLoS One 2018;13:e0202276.
8 9	4	87. Liu M, Li M, Wu L, et al. Extended-spectrum beta-lactamase-producing E. coli
10 11	5	septicemia among rectal carriers in the ICU. Medicine 2018;97:e12445.
12	6	88. Nivesvivat T, Piyaraj P, Thunyaharn S, et al. Clinical epidemiology, risk factors and
13 14	7	treatment outcomes of extended-spectrum beta-lactamase producing Enterobacteriaceae
15 16	8	bacteremia among children in a tertiary care hospital, Bangkok, Thailand. BMC Res Notes
17 18	9	2018;11:624.
19	10	89. Cordery RJ, Roberts CH, Cooper SJ, et al. Evaluation of risk factors for the acquisition of
20 21	11	bloodstream infections with extended-spectrum beta-lactamase-producing Escherichia coli
22 23	12	and Klebsiella species in the intensive care unit; antibiotic management and clinical
24 25	13	outcome. J Hosp Infect 2008;68:108–15.
26	14	90. Daikos GL, Kosmidis C, Tassios PT, et al. Enterobacteriaceae bloodstream infections:
27 28	15	presence of integrons, risk factors, and outcome. Antimicrob Agents Chemother
29 30	16	2007;51:2366–72. doi: 10.1128/AAC.00044-07 [published Online First: 2007/04/25]
31 32	17	91. Gudiol C, Calatayud L, Garcia-Vidal C, et al. Bacteraemia due to extended-spectrum beta-
33	18	lactamase-producing Escherichia coli (ESBL-EC) in cancer patients: clinical features, risk
34 35	19	factors, molecular epidemiology and outcome. J Antimicrob Chemother 2010;65(2):333-
36 37	20	41.
38	21	92. Marchaim D, Gottesman T, Schwartz O, et al. National multicenter study of predictors
40	22	and outcomes of bacteremia upon hospital admission caused by Enterobacteriaceae
41 42	23	producing extended-spectrum beta-lactamases. Antimicrob Agents Chemother
43 44	24	2010;54:5099–104.
45	25	93. Menashe G, Borer A, Yagupsky P, et al. Clinical significance and impact on mortality of
40 47	26	extended-spectrum beta lactamase-producing Enterobacteriaceae isolates in nosocomial
48 49	27	bacteremia. Scand J Infect Dis 2001;33:188–93.
50 51	28	94. Ortega M, Marco F, Soriano A, et al. Analysis of 4758 Escherichia coli bacteraemia
52	29	episodes: predictive factors for isolation of an antibiotic-resistant strain and their impact
53 54	30	on the outcome. J Antimicrob Chemother 2009;63:568–74.
55 56	31	95. Szilagyi E, Fuzi M, Borocz K, et al. Risk factors and outcomes for bloodstream infections
57 58	32	with extended-spectrum beta-lactamase-producing Klebsiella pneumoniae ; Findings of
59	33	the nosocomial surveillance system in Hungary. Acta Microbiol Immunol Hung
60	34	2009;56:251–62. doi:

96. Tsai SS, Huang JC, Chen ST, et al. Characteristics of Klebsiella pneumoniae bacteremia in community-acquired and nosocomial infections in diabetic patients. Chang Gung Med J 2010;33:532-9.

- 97. Carrara E, Pfeffer I, Zusman O, et al. Determinants of inappropriate empirical antibiotic treatment: systematic review and meta-analysis. Int J Antimicrob Agents 2018;51:548-53,
- 98. Horcajada JP, Shaw E, Padilla B, et al. Healthcare-associated, community-acquired and hospital-acquired bacteraemic urinary tract infections in hospitalized patients: a prospective multicentre cohort study in the era of antimicrobial resistance. Clin Microbiol Infect. 2013 Oct;19(10):96
- 99. Pitout JD, Nordmann P, Laupland KB et al. Emergence of Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs) in the community. J Antimicrob Chemother 2005; 56: 52-59. doi:10.1093/jac/dki166
- 100. Pitout JD. Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008; 8: 159-166. doi:10.1016/S1473-3099(08)70041-0
 - Palacios-Baena ZR, Gutierrez-Gutierrez B, De Cueto M et al. Development and 101. validation of the INCREMENT-ESBL predictive score for mortality in patients with bloodstream infections due to extended-spectrum-beta-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother 2017; 72: 906-913. doi:10.1093/jac/dkw513 Gandra S, Barter DM, Laxminarayan R. Economic burden of antibiotic resistance: 102.
 - how much do we really know? Clin Microbiol Infect 2014;20:973-80.

FIGURE LEGENDS

Figure 1: Literature search and study inclusion and exclusion

5 Figure 2: Pooled risk ratios for all-cause mortality in patients with ESBL bloodstream

6 infections compared to patients with non-ESBL bloodstream infections— subgroups not

7 included in attributable mortality

9 Figure 3: Pooled risk ratios for attributable mortality in patients with ESBL bloodstream0 infections compared to patients with non-ESBL bloodstream infections

nean Qu..
to patients with .. Figure 4: Weighted mean difference in the length of stay for patients with ESBL bloodstream infections compared to patients with non-ESBL bloodstream infections

Page 2	25 of 57		BMJ Open		
1 2 3 4	Category	Ν			risk ratio (95% CI)
5 6 7	Overall				
8 9	Overall	56		~	1.70 (1.52, 1.90)
10 11 12	Mortality time				
13 14	14 day mortality	5			1.77 (1.15, 2.72)
15 16	28 day mortality	22		_	1.63 (1.35, 1.97)
17 18	Time not defined	27		~	1.70 (1.47, 1.97)
19 20 21	Incomo classification				
22		11			1 76 (1 54 . 2 00)
24	l ow/middle income countries	15			1.70 (1.34, 2.00)
25 26 27		10		·	1.00 (1.20, 1.00)
27 28 29	Study population				
30 31	All kinds of patients	36			1.65 (1.43, 1.90)
32	Cancer patients	5		─ →──	1.73 (1.16, 2.57)
33	Children	7		─ ◆──	2.09 (1.62, 2.71)
35 36 37	Neonates	3			1.76 (1.27, 2.45)
38 39	Appropriatopose of thoropy				
40 41	Reported	11			1 75 (1 54 1 00)
42 43	Not reported	10			1.75 (1.54, 1.99)
44 45	Not reported	12			1.55 (1.20, 1.90)
46 47					
48					
50		F	0.5	1 2 3	4
52		For peer review only - http://bm	ijopen.bmj.com/site/about/gu	lidelines.xntml	
55					

2 3

Page 26 of 57

Category	Ν		risk ratio (95% CI)
Overall			
Overall	11	—	1.75 (1.45, 2.11)
Pathogen			
Klebsiella pneumoniae	4	_	1.60 (1.18, 2.15)
Escherichia coli & Klebsiella pneumoniae	2	↓	2.84 (1.34, 6.02)
Gram negative bacteria	5		1.76 (1.33, 2.34)
Study design			
Retrospective cohort studies	6	—	1.80 (1.37, 2.37)
Case cohort studies	3		1.56 (1.09, 2.25)
Study period			
Years: 1991–1999	3	→	1.53 (1.10, 2.12)
Years: 2000–2009	7	—	1.91 (1.43, 2.54)
MIC			
Reported	7		1.76 (1.37, 2.25)
Not reported	4	—	1.73 (1.20, 2.51)
Empirical therapy			
Reported	4		1.76 (1.17, 2.64)
Not reported	3		1.76 (1.18, 2.63)
Fo	n 0 r peer review only - http://bmjopen.bmj.com/site/abou	1 1 1 1 1 2 3 4 t/guidelines.xhtml	

Page 27 of 57

BMJ Open

Category	Ν		Weighted mean difference (95% CI)
Setting			
Hospital	17	│	4.41 (3.37, 5.45)
ICU	4	── ◆──	3.07 (1.61, 4.54)
Definition			
Post infection	8	←	4.57 (2.95, 6.20)
Total	11		4.05 (2.89, 5.22)
Pathogen			
Klebsiella pneumoniae	3	←	→ 7.67 (4.63, 10.71)
Escherichia coli	4		- 6.07 (3.70, 8.43)
Escherichia coli & Klebsiella pneumoniae	5	_	- 6.37 (4.22, 8.52)
Gram negative bacteria	5	│ → ``	1.83 (0.28, 3.38)
Study design			
Betrospective cohort studies	9	_	6 43 (4 66 8 20)
Case cohort studies	7	· · · · · ·	3.32 (2.03, 4.61)
Income classification			
High income countries	13	· · · · · · · · · · · · · · · · · · ·	4.56 (3.43, 5.69)
Low/middle income countries	4	↓	3.55 (0.84, 6.26)
Continent			
Europe	6	│ •	7.96 (6.12, 9.80)
North America	3	· · · · · · · · · · · · · · · · · · ·	→ 6.39 (2.72, 10.05)
Asia	7	↓	2.08 (0.72, 3.44)
Study period			
Years: 1991–1999	2	──	5.72 (2.69, 8.75)
Years: 2000–2009	12	→	4.22 (3.02, 5.43)
Years: 2010–2018	3	→	4.30 (1.38, 7.22)
	-2	0 2 5	10
	_		
		Number of days of hospital stay	
For	peer review only - h	http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Supplementary figure 1: Funnel plot of risk ratios for all-cause mortality in patients with ESBL bloodstream infections compared to patients with non-ESBL bloodstream infections

The y axis se(logRR) is the standard error of the log risk ratio Pseudo 95% confidence limit refers to the 95% confidence limits around the summary treatment effect for each standard error on the vertical axis and to the expected distribution of studies in the absence of heterogeneity or of selection biases.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary figure 2: Funnel plot of weighted mean differences in the length of stay for patients with ESBL bloodstream infections compared to patients with non-ESBL bloodstream infections

The y axis se(WMD) is the standard error of the weighted mean difference. Pseudo 95% confidence limit refers to the 95% confidence limits around the summary treatment effect for each standard error on the vertical axis and to the expected distribution of studies in the absence of heterogeneity or of selection biases.

Supplementary figure 3: Pooled risk ratios for all-cause mortality in patients with noninvasive ESBL infections compared to patients with noninvasive non-ESBL infections

verall 7 + 1.58 (1.23, 2.02) scherchia coll 7 + 1.58 (1.23, 2.02) scherchia coll 5.46 (1.00, 29.81) 2 + 5.46 (1.00, 29.81) scherchia coll 8.Klebslella pneumoniae 2 + 2.04 (0.81, 5.18) scherchia coll 8.Klebslella pneumoniae 2 + 2.04 (0.81, 5.18) scherchia coll 8.Klebslella pneumoniae 2 + 2.16 (1.26, 2.37) scherchia counties 1.58 (1.12, 2.09) + 1.53 (1.12, 2.09) wimidelia income counties 1.53 (1.12, 2.09) + 1.53 (1.12, 2.09) scherchia 1.53 (1.12, 2.09) + 1.53 (1.12, 2.09) wimidelia income counties 2 + 1.53 (1.12, 2.09) scherchia 1.40 (0.87, 2.27) - 1.58 (1.13, 2.39) popropriatemess of therapy - 1.40 (0.87, 2.27) - septed 2 + 1.48 (1.13, 1.95) - septed 2 + 1.49 (0.38, 5.89) - iot reported 5 + 1.56 (1.13, 2.14) - iot re	category	N			risk ratio (95% CI)
berall 7 + 1.58 (1.23, 2.02) hathogen 1.30 (0.85, 198) 5.5 (1.02, 2.28) ischerichia coll 2 + 5.6 (1.02, 2.28) ischerichia coll & Kutelsella pneumoniae 2 + 5.6 (1.02, 2.28) ischerichia coll iscules 2 + 1.58 (1.16, 2.17) ischerichia coll iscules 2 + 1.53 (1.16, 2.17) ischerichia coll iscules 2 + 1.53 (1.12, 2.09) ischerichia coll iscome countries 2 1.53 (1.12, 2.09) 1.40 (0.87, 2.27) ischerichia coll iscome countries 2 + 1.84 (1.13, 1.95) 1.98 (1.25, 3.71) ischerichia coll iscome countries 2 + 1.49 (0.87, 5.88) 1.98 (1.25, 2.27) ischerichia 3 + + 1.89 (1.25, 2.28) 1.49 (0.38, 5.88) ischerichia 3 + + 1.49 (0.38, 5.88) 1.98 (1.29, 2.22) ischerichia 3 + + 1.49 (0.38, 5.88) 1.66 (1.13, 2.14) ischerichia 5 + 1.55 (1.13,	Dverall				
Pathogen Sischerika coll & Kelseinle pneumoniae 2 aram negative bacteria 2 aram negative bact	Overall	7			1.58 (1.23, 2.02)
Scherichia coli 2 Scherichia coli & Klebslella pneumoniae 2 Jam negative schort studies 2 Study design 2.4 Trospective cohort studies 2 Jago de St. 186) 2.4 Study design 2.4 Trospective cohort studies 2.4 Jago de St. 186) 2.4 Jago de St. 186) 2.4 Study design 2.4 recome classification 4 Jago income countries 2.5 Study period 1.83 (1.12, 2.09) Rears: 2000-2006 3 Heroprotriateness of therapy 1.89 (1.25, 3.39) Vepropriateness of therapy 1.89 (1.25, 3.39) Reported 2 Heroprided 2 Iot reported 3 Iot reported 2 Iot reported 1.49 (0.38, 5.86) Iot reported 2 Iot reported 5 Iot reported 1.55 (1.13, 2.14) Iot reported 5 Iot reported 1.55 (1.13, 2.14) Iot reported 1.55 (1.13, 2.14	Pathogen				
Escherichica coli & Klabsiella pneumoniae 2 Staram negative bacteria 2 Study design Tropective cohort studies 2 High income countries 5 auvimiddle income countries 5 auvimiddle income countries 2 Study period fears: 2000-2018 4 Appropriateness of therapy Reported 4 lot reported 2 Appropriateness of therapy Reported 3 Appropriateness of therapy Repor	Escherichia coli	2	↓◆		1.30 (0.85, 1.98)
aram negative bacteria 2 2.04 (0.81, 5.16) study design 1.58 (1.16, 2.17) record classification 1.58 (1.16, 2.17) igin income countries 2 study period 1.53 (1.12, 2.09) reary 2000-2009 3 reary 2000-2009 4 reary 2000-2009 5 reary 2000-2009 4 reary 2000-2009 4 reary 2000-2009 4 reary 2000-2009 1.48 (1.13, 1.96) reary 2000-2009 5 reary 2000-2009 1.48 (1.13, 1.96) reary 2000-2009 1.49 (0.38, 5.88) reary 2000-2009 5 reary 2000-2009 1.49 (0.38, 5.88) reary 2000-2009 5 reary 2000-2009 5	Escherichia coli & Klebsiella pneumoniae	2		•	5.46 (1.00, 29.81)
Study design 1.58 (1.16, 2.17) recore classification 2 2 2.16 (1.26, 3.71) ncome classification 1.53 (1.12, 2.09) 1.53 (1.12, 2.09) study period 1.81 (1.00, 3.29) 1.40 (0.87, 2.27) rears: 200-2018 1.69 (1.25, 3.39) 1.69 (1.25, 3.39) Appropriateness of therapy 1.69 (1.13, 1.95) 1.69 (1.29, 2.22) Appropriateness of therapy 1.69 (1.29, 2.22) 1.69 (1.29, 2.22) Appropriateness of therapy 1.69 (1.29, 2.22) 1.69 (1.29, 2.22) Appropriateness of therapy 1.69 (1.29, 2.22) 1.69 (1.29, 2.22) Apported 2 - 1.69 (1.29, 2.22) AmpC 1.69 (1.29, 2.22) 1.69 (1.29, 2.22) Amported 5 - 1.56 (1.13, 2.14) 1 1 1 1 1 1 1 2 5 10	Gram negative bacteria	2	+		2.04 (0.81, 5.16)
Prospective cohort studies 2 Herospective cohort studies 4 Herospective cohort studies 5 Herospective cohort studies 5 H	Study design				
Retrospective cohort studies 4	Prospective cohort studies	2	 →		1.58 (1.16, 2.17)
Income classification 1.53 (1.12, 2.09) igh income countries 2 Study period 1.81 (1.00, 3.29) fears: 2000-2009 3 if errors: 2000-2018 4 if errors: 2010-2018 1.49 (0.87, 5.89) if errors: 2010-2018 1.49 (0.38, 5.89) if errors: 2010-2018 1.55 (1.13, 2.14) if errors: 2010-2018 1.55 (1.13,	Retrospective cohort studies	4	→		2.16 (1.26, 3.71)
iigh income countries 5 iidd le income countries 2 iidd le income countries 2 iidd le income countries 1.81 (1.00, 3.29) 1.81 (1.00, 3.29) iide rears: 2010-2018 iide rears: 2010-2018 iide reported iide rep	ncome classification				
ow/middle income countries 2	High income countries	5	 →		1.53 (1.12, 2.09)
Study period 1.40 (0.87, 2.27) fears: 2010-2018 1.48 (1.13, 1.95) Appropriateness of therapy 1.48 (1.13, 1.95) leported 3 Appropriateness of therapy 1.49 (0.36, 5.86) leported 5 Appropriateness of therapy 1.49 (0.36, 5.86) lot reported 5 Appropriateness of therapy 1.69 (1.29, 2.22) AmpC 1.69 (1.29, 2.22) Appropriateness of therapy 1.69 (1.29, 2.22) AmpC 1.69 (1.29, 2.22) AmpC 1.69 (1.29, 2.21) AmpC 1.56 (1.13, 2.14) 0 1 2 0 1 2	Low/middle income countries	2	├ →───		1.81 (1.00, 3.29)
fears: 2000-2009 3 1.40 (0.87, 2.27) rears: 2010-2018 4 1.69 (1.25, 3.39) Appropriateness of therapy 4 2.05 (1.17, 3.59) Not reported 3 2.05 (1.17, 3.59) NC 1.49 (0.38, 5.88) Not reported 2 1.49 (0.38, 5.88) Not reported 2 1.69 (1.29, 2.22) AmpC 1.89 (1.29, 2.22) AmpC 1.85 (0.93, 3.71) Not reported 2 0 1 2 0 1 2 1.60 (1.13, 2.14) 1.66 (1.13, 2.14)	Study period				
fears: 2010–2018 4 Appropriateness of therapy Reported Ab reported Ab reporte	Years: 2000–2009	3	↓ →		1.40 (0.87, 2.27)
Appropriateness of therapy 4 1.48 (1.13, 1.95) Vierported 3 2.05 (1.17, 3.59) AIC 1.49 (0.38, 5.89) Noreported 5 1.69 (1.29, 2.22) AmpC 1.85 (0.93, 3.71) Not reported 5 1.56 (1.13, 2.14) 1 1 1 0 1 2	Years: 2010–2018	4	 →		1.69 (1.25, 3.39)
Reported 4 ++ 1.48 (1.13, 1.95) MC 2.05 (1.17, 3.59) 2.05 (1.17, 3.59) MC 1.49 (0.38, 5.86) 1.69 (1.29, 2.22) AmpC 1.85 (0.93, 3.71) 1.69 (1.13, 2.14) Not reported 5 + ImpC 1.11, 1.1, 1.15 1.13, 2.14) ImpC 1.11, 1.1, 1.15 1.156 (1.13, 2.14) ImpC 1.11, 1.15 1.10	Appropriateness of therapy				
Not reported 3 205 (1.17, 3.59) NC Reported 2 Reported 5 AmpC Reported 5 AmpC 1.69 (1.29, 2.22) AmpC 1.65 (0.93, 3.71) 1.56 (1.13, 2.14) 1 1 1 1 1 1 0 1 2 5 10 10	Reported	4	→		1.48 (1.13, 1.95)
AIC 1.49 (0.38, 5.88) Not reported 5 AmpC 1.69 (1.29, 2.22) Apported 2 4 aported 5 1.65 (0.53, 3.71) 1.65 (1.13, 2.14) 1 1 1 1 1 1 1 1 1 1 1 1	Not reported	3			2.05 (1.17, 3.59)
Aeported 2 1.49 (0.38, 5.86) Joint C 1.69 (1.29, 2.22) AmpC 1.85 (0.93, 3.71) Not reported 5 1 1 1 1 0 1 1 <t< td=""><td>MIC</td><td></td><td></td><td></td><td></td></t<>	MIC				
Not reported 5 1.69 (1.29, 2.22) AmpC Reported 2 1.85 (0.93, 3.71) 1.56 (1.13, 2.14) 1 1 2 5 10 1 0 1 2 5 10 1 0 1 2 5 10 1 0 1 0 1 0 1 0 1 0 1 0 1 0	Reported	2 -	+		1.49 (0.38, 5.88)
AmpC 1.85 (0.93, 3.71) kot reported 5 0 1 0 1	Not reported	5			1.69 (1.29, 2.22)
Reported 2 1.85 (0.93, 3.71) Jot reported 5 1.56 (1.13, 2.14)	AmpC				
Not reported 5	Reported	2			1.85 (0.93, 3.71)
	Not reported	5			1.56 (1.13, 2.14)
		0	1 2	5	10

Supplementary figure 4: Pooled risk ratios for all-cause mortality in patients with ESBL bloodstream infections compared to patients with non-ESBL bloodstream infections—all subgroups

Category	Ν		ratio (95% CI)
Overall			
Overall	56	+	1.70 (1.52, 1.90
Mortality time			
14 day mortality	5	→	1.77 (1.15, 2.72)
28 day mortality	22	→	1.63 (1.35, 1.97
Time not defined	27	-	1.70 (1.47, 1.97
Pathogen			
Klebsiella pneumoniae	12	│ → →	1.48 (1.17, 1.87)
Escherichia coli	16	→	1.82 (1.50, 2.21
Escherichia coli & Klebsiella pneumoniae	13		2.08 (1.44, 3.01)
Gram negative bacteria	15	→	1.66 (1.43, 1.94)
Study design			
Prospective cohort studies	11	→	1.78 (1.45, 2.17)
Retrospective cohort studies	33	→	1.68 (1.46, 1.93)
Case cohort studies	12	│ → ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─	1.76 (1.27, 2.45)
Income classification			
High income countries	41	←	1.76 (1.54, 2.00)
Low/middle income countries	15		1.56 (1.25, 1.96)
Study period			
Years: 1991–1999	9	→	1.56 (1.15, 2.11)
Years: 2000–2009	32	→	1.74 (1.50, 2.01)
Years: 2010-2018	15		1.72 (1.39, 2.13)
Study population			
All kinds of patients	36		1.65 (1.43, 1.90)
Cancer patients	5		1.73 (1.16, 2.57)
Children	7		2.09 (1.62, 2.71)
Neonates	3	→	1.76 (1.27, 2.45)
Appropriateness of therapy			
Reported	44	←	1.75 (1.54, 1.99)
Not reported	12	→	1.55 (1.26, 1.90)
міс			
Reported	33	←	1.79 (1.56, 2.06)
Not reported	23		1.56 (1.30, 1.88)
Empirical therapy			
Reported	15		2.13 (1.78, 2.55)
Not reported	9		1.77 (1.45, 2.15)

1	Supplementary figure 5: Pooled risk ratios for all-cause mortality stratified by type of infection							
2 3								
4								
5		N			Piele ratio (05% CI)			
6		IN						
7								
ð G								
10								
11								
12	Type of infection							
13								
14					\			
15 16	Abdominal infection	3			3.53 (2.20, 5.65)			
17					·			
18								
19	2 or more different infections	14			1.91 (1.52, 2.41)			
20								
21	Ploadstream infection	56			1 70 (1 52 1 00)			
22	Biooustream intection	50		—	1.70 (1.52, 1.90)			
23 24								
24 25	Respiratory tract infection	2			1 59 (1 18 2 15)			
26		-						
27								
28	Urinary tract infection	3	-	↓ →	1.42 (0.83, 2.44)			
29	-							
30								
3 I 3 7								
33								
34								
35								
36								
37								
38								
39 40		For peer review	only - http://bmjopen.bmj.com/sit	te/about/guidelines.	xhtml			
41								
42								

Page	33	of	57
------	----	----	----

1 2	Supplementary figure 6: Weighted mean differences in length of hospital stay stratified by type of infection								
3 4									
5		Ν						Weighted mean difference (95% CI)	
6 7									
8									
9									
10									
12	Type of infection								
13									
14	Respiratory tract infection	2					•	— 8.51 (3.50, 13.51)	
15 16									
17		0				•		7.00 (4.40, 0.04)	
18	Abdominal Infection	2						7.03 (4.13, 9.94)	
19 20									
20	2 or more different infections	7						4.82 (3.39, 6.24)	
22									
23 24	Bloodstroom infaction	17				_		4 41 (3 37 5 45)	
24 25	Dioustiean meetion	17				•		4.41 (0.07, 0.40)	
26									
27	Urinary tract infection	5						1.78 (1.14, 2.42)	
28 29									
30									
31									
32 33									
34									
35									
36 37									
38				-2 (D 2	5	10		
39		F	or peer review only - h	ttp://bmjopen.b	omj.co m /s	ite of ut guid	elinepital stay		
40 41									

Supplementary table S1: Search terms used in PubMed :

((ESBL[tw] OR ""Extended spectrum beta-lactamase""[tw] OR ESBL[Mesh] OR ""Extended spectrum beta-lactamase"" [Mesh]) OR Extended spectrum ? lactamase[tw] OR Extended spectrum ? lactamase[Mesh])

AND

(Escherichia Coli[Mesh] OR E.coli[Mesh] OR Escherichia Coli[tw] OR E.coli[tw])) OR (Klebsiella pneumoniae[Mesh] OR K.Pneumoniae[Mesh] OR Klebsiella pneumoniae[tw] OR K.Pneumoniae[tw])

Coupled with

(length of stay[mesh] OR (hospitalisation[tw] AND length[tw]) OR length of hospitalisation[tw] OR length of hospitalization[tw] OR duration of hospitalization[tw] duration of hospitalisation[tw] OR LOS[tw] OR ((period[tw] OR length[tw]) AND (hospital stay[tw] OR hospitalisation[tw] OR hospitalization[tw]) OR

(mortality[mesh] OR mortality[tw] OR death rate[tw] OR fatality[tw] OR survival rate[tw] OR death[tw] OR died[tw] OR dead[tw]))) OR

(cost*[Title/Abstract] OR"costs and cost analysis"[MeSH:noexp])

Coupled with

("0001/01/01"[PDat] : "2018/10/01"[PDat]]))

Supplementary table S2: Modified Newcastle Ottawa quality assessment scale for case-control studies and cohort studies.

For case cohort studies, the quality criteria assessed are

		b	yes, eg. record linkage or based on self-report
		с	no description
2	Representativeness of the cases	a*	consecutive or obviously representative series of cases
		b	potential for selection biases or not stated
3	Selection of Controls	a*	community controls
		b	hospital controls
		с	no description
4	Definition of Controls	a*	no history of disease (endpoint)
		b	no description of source
5	Comparability of cases and controls on the basis of the design or analysis	a*	study controls for at least one variable (including age, sex and comorbidities)
		b**	study controls for more than one variable (including age, sex and comorbidities)
6	Ascertainment of exposure	a*	secure record (eg surgical records)
		b	structured interview blind to case/control status
		с	interview not blinded to case/control status
		d	written self-report or medical record only
		е	no description
7	Same method of ascertainment for cases and controls	a*	yes
		b	no
		с	unclear
	Non-Response rate	a	same rate for both groups
8			
8		b	non respondents described
8		b c	non respondents described rate different and no designation
8		b c	non respondents described rate different and no designation
8		b c	non respondents described rate different and no designation
8	For cohort studies, the quality criteria assessed are	b c	non respondents described rate different and no designation
8	For cohort studies, the quality criteria assessed are	b c	non respondents described rate different and no designation
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort	b c	non respondents described rate different and no designation truly representative
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort	b c a* b*	non respondents described rate different and no designation truly representative somewhat representative
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort	b c a* b* c	non respondents described rate different and no designation truly representative somewhat representative selected group of users
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort	b c a* b* c d	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort	b c a* b* c d a*	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort	b c a* b* c d a* b	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort	b c a* b* c d a* b c c	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure	b c a* b* c d a* b c a* b c a*	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records)
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure	b c a* b* c d a* b c a* a* a*	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure	b c a* b* c d a* b c a* a* c a* c	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report
8	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure	b c c a* b* c d a* b c a* b c a* c d a* d	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description
8 1 2 3 4	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure Demonstration that outcome of interest was not present at start of study	b c c a* b* c d a* b c a* a* c d a* c d a*	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description yes
8 1 1 3 4	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure Demonstration that outcome of interest was not present at start of study	b c c a* b* c d a* b c a* c d a* c d a* b c c a* b b c b b b	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description yes no
8 1 1 3 4	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure Demonstration that outcome of interest was not present at start of study	b c c b c d a* b c d a* c d a* c d a* b c a a* b c c a b c c a b c c a b c c a b b c c a c a	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description yes no unclear
8 1 1 3 4 5	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure Demonstration that outcome of interest was not present at start of study Comparability of cohorts on the basis of the design or analysis	b c c b c d a* b c a* c d a* c d a* c d a* b c a* b c a* b c a a* b c a a a b c a a a b c a a a b a c a a b a c a a b a c a a a b a c a a a b a c a a b a c a a c a a c a a c a a a c a a a a	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description yes no unclear study controls for age or comorbidities
8 1 1 3 4 5	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure Demonstration that outcome of interest was not present at start of study Comparability of cohorts on the basis of the design or analysis	b c c b c d a* b c a* c d a* c d a* b c a* b c a* b c a* b c a a* b c c a a b b c c a a b b c c a b b b c c a b b b c c a b b b c c a b b b c c a b b b c c a b b c c c c	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description yes no unclear study controls for age or comorbidities
8 1 2 3 3 4 5 6	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure Demonstration that outcome of interest was not present at start of study Comparability of cohorts on the basis of the design or analysis Assessment of outcome:	b c c b* c d a* b c a* d a* d a* c d a* b c a* b c a* b c a* b c a* b c a* b b c a a a b b c a a b b b c a b b b c a b b c a b b c a b b b c a b b c a b c a b b c a b b c a b b c a b b c a b b c a b b b c a b b b b	non respondents described rate different and no designation rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description yes no unclear study controls for age or comorbidities study controls for age and comorbidities independent blind assessment
8 1 2 3 3 4 5 6	For cohort studies, the quality criteria assessed are For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure Demonstration that outcome of interest was not present at start of study Comparability of cohorts on the basis of the design or analysis Assessment of outcome:	b c c b* c d a* b c a* d a* c d a* b c a* b c a* b c a* b c a* b c a* b c a* b b c c a* b b c c a* b b c b b c c b c c c c c c c c c c c	non respondents described rate different and no designation rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description yes no unclear study controls for age or comorbidities study controls for age and comorbidities independent blind assessment record linkage
8 1 2 3 4 5 6	For cohort studies, the quality criteria assessed are Representativeness of the exposed cohort Selection of the non-exposed cohort Ascertainment of exposure Demonstration that outcome of interest was not present at start of study Comparability of cohorts on the basis of the design or analysis Assessment of outcome:	b c c b c d a* b c a* d a* d a* d b c a* d b c a* b c c a* b b c c a* b b c c a* b c c c c c c d b c c c c c c c c c c c	non respondents described rate different and no designation truly representative somewhat representative selected group of users no description drawn from the same community as the exposed cohort drawn from a different source no description of the derivation of the non-exposed cohort secure record (eg surgical records) structured interview written self-report no description yes no unclear study controls for age or comorbidities study controls for age and comorbidities independent blind assessment record linkage self-report

7	Follow-up long enough for outcomes to occur	a*	yes
		b	no
		С	unclear
8	Adequacy of follow up of cohorts	a*	complete follow up – all that matters subjects accounted for, subjects lost to
			follow up unlikely to introduce bias - small number
		b*	inadequate numbers but description provided of those lost
		С	inadequate follow up rate and no description of those lost
		d	no statement

Thresholds for converting the Newcastle-Ottawa scales to AHRQ standards (good, fair, and poor):

Good quality: 3 or 4 stars in selection domain AND 1 or 2 stars in comparability domain AND 2

or 3 stars in outcome/exposure domain

Fair quality: 2 stars in selection domain AND 1 or 2 stars in comparability domain AND 2 or 3 stars in outcome/exposure domain

Poor quality: 0 or 1 star in selection domain OR 0 stars in comparability domain OR 0 or 1 stars in outcome/exposure domain

Supplementary table S3: Study characteristics overview

Subgroup	All Studies	Bloodstream infections	Noninvasive infections
	87	57	10
Country			
South Korea 13,14,16,17,31,35,38,42,44,46,51,52,57,59	14	9	2
Thailand ^{24,26,45,53-55,88}	7	3	
USA ^{10,18,28,32,48,61,69}	7	2	1
Spain 36,40,58,62,70,91,93	7	4	2
Taiwan ^{12,39,64,71,82,84,96}	7	5	2
China 60,73,74,76,86	5	4	
Israel ^{23,47,92,93}	4	3	
Germany ^{10,40,43,63}	4	3	
Italy 25,33,37	3	3	
Japan ^{76,81,86}	3	3	
Tanzania ^{19,66,75}	3	3	
India 49,50,80	3	1	1
Canada 65,67,85	3	2	
UK 22,30,89	3	3	
France ^{68,79}	2	1	1
South Africa ^{13,81}	2	1	
Brazil ^{21,34}	2	2	
Greece ⁹⁰	1	1	
Hungary ⁹⁵	1	1	
Lebanon ²⁷	1	-	6
Malaysia ²⁹	1	-	1
Mexico 72	1	1	
Saudi Arabia 20	1	1	
Turkey ⁷⁸	1	1	
Continent			
Asia 12-14,16,17,20,23,24,25,27,29,31,35,38,39,42,44-47,49,55,57,59,60,64,71,73,74,76,80-82,84,86-88,92,93,96	46	29	6
Europe 11,22,25,30,33,35,37,40,41,43,58,62,63,68,70,78,79,89-91,94,95	22	17	3
North America 10,18,28,32,48,61,65,67,69,85	10	4	1
Africa 15,19,66,75,83	5	4	-
South America ^{21,34,72}	3	3	-
More than 1 continent ⁵⁶	1	-	-

 BMJ Open

Income group			
High-income countries ^{10-14,16-18,20,22,23,25,28,30-33,35-44,46-48,51,52,57-59,61-65,67-71,76,79,81,82,84-86,89-96,}	60	41	8
Low- and middle-income countries 15,19,21,23,25,27,29,34,45,50,53-55,60,66,72-75,77,78,80,83,87,88	26	16	2
High-income countries AND Low- and middle-income countries 56	1	-	-
Study design			
Case cohort study 10,12,24-28,31,40,44,46,55,58,61,63-65,67-69,85-87	24	14	
Retrospective cohort study 11,13-17,20,21,23,29,33-38,41-43,45,47,48,50-54,59,60,71,73,74,76-78,81-84,88,89,93,95,96	44	32	
Prospective cohort study 18,19,30,32,39,49,56,62,66,70,72,75,79,80,90-92,94	18	11	
Year group			
1991-1999 ^{10,60,15,16,17,62,21,25,28,36,46,93,94}	13	10	-
2000-2009 11-14,18-20,22-24,26,27,29-35,37-45,47,49-52,54,55,57,58,61,63,64,67-69,89-92,95,96	49	31	6
2010-2018 48,53,54,59,65,66,70-88	25	16	4
VQ.			
Pathogen			
Escherichia coli 11,24,30,33,35-37,40,43,45,52,55,58,59,68,70,71,73,76,86,87,91,94	23	16	3
Klebsiella pneumoniae 15,16,20,21,25,29,32,34,41,43,47,61,62,74,78,83,95,96	17	11	1
E. coli and K. pneumoniae 10,13,14,17,26,28,38,43,44,46,48,50,51,54,57,60,63,69,85,88,89	20	13	2
Gram-negative bacteria ^{12,18,19,22,23,27,31,39,42,49,53,56,64-67,72,75,77,79-82,84,90,92,93}	27	17	4
Study setting			
Entire hospital ^{1011,16,18,20-27,29,30,33-38,40-46,48-50,52-55,58-60,62,65-69,73,74,76,82,85,86,90-96}	57	40	7
Intensive care unit ^{32,61,64,75,79-81,88,89}	9	5	1
Pediatric ward 17,19,28,51,57,78,83,88	8	7	
Neonatal ward ^{15,61,64,71,75}	5	3	-
Neonatal intensive care unit 61,64,75	3	2	-
Medical ward 13,39,70	3	-	2
Not provided ^{31,47}	2	-	-
Emergency Department ^{12,84}	2	2	-
Surgical ward ^{32,56}	2	-	-
Burn unit ³²	1	-	-
Oncology 72	1	1	-
Referral centre for hepatopacreaticobiliary diseases 77	1	-	-
Hematological ¹⁴	1	1	-

All line de of metric 10-13 1/ 18 20-27 20 30 3/ 35 30.41 /3-46 /8-50 52-56 58 60 62 63 65.60 76 82 9/ 86 00 02 05		20	7
All kinds of patients ^{10-13,14,10,20-27,29,30,34,35,39-41,43-40,48-50,32-50,38,60,62,63,65-69,76,82,84-80,90,92-93}	55	36	/
Intensive care unit patients 32,79-81,87,89	6	3	1
Children ^{17,19,28,51,57,78,83,88}	8	7	-
Neonates 15,61,64,71,75	5	3	-
Cancer patients ^{33,51,59,72,91}	5	5	-
Immunocompromised patients 51	1	1	-
Diabetic patients ⁹⁶	1	1	-
Elderly patients ⁷⁰	1	-	1
Patients with chemotherapy/stem cell transplantation 14,91	2	2	-
Patients after prostatitis biopsy 42	1	-	1
Lungs transplantation patients 47	1	-	-
Hematological patients 73	1	1	-
All except cardiothoracic therapy, transplant surgery, burns 74	1	1	
Patients with pyogenic liver abscess 77	1	-	-
Data reported			
Treatment information 10,12-13,23-25,30-38,40,44-49,51,52,54-65,67,68,70-96	74	50	6
Appropriateness of treatment ^{10,12-14,16,17,19-21,23-26,30-38,40,44-46,48,49,51,52,54-56,58-60,62-65,67,68,70,72-74,76,77,79,81,83-86,89-96}	62	45	5
Empirical therapy 14,16,17,24,25,33,35-38,40,44,51,52,56,58,59,63,76,81,83,94	22	16	2
Treatment outcome 10,12-21,25,26,30-38,40,44-49,51,52,54-57,59-65,67,68,72-74,76,78-81,83-86,88-92,94-96	64	45	3
Minimum inhibitory concentration results 10,11,13,14,16-19,22-25,27,28,32,33,35-41,43,44,47,50-52,54-59,62,63,66,68,69,76-78,80,81,83,85-87,89,94,95	52	34	4
AmpC genotyping 10,11,17,32,41,46,50,56,57,65,66,70,86	13	6	2
			Y

Pathogen

EC, KP

EC, KP

GNB

ЕС*,* КР

EC

GNB

EC, KP

EC

EC

EC, KP

Su	pplem	entary table	S4: Characteristics	for each study			I	
	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective
Lautenbach E ¹⁰	1997- 1998	USA	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality; LOS	Risk factors for infection with ESBL-producing pathogens, difference in clinical outcomes of infections: resistant vs. susceptible organisms
0(im SH ¹⁴ 1 2 2	2007- 2008	South Korea	Cohort study, Retrospective	Non-ESBL-infection	Patients who received either chemotherapy or stem cell transplantation; neutropenic fever	Hematolo gical ward, Others	All-cause mortality (28 day)	Risk factors for acquisition of ESBL, appropriateness of empirical antimicrobial therapy, clinical outcomes in relation to ESBL production
5 Æhayakulkeere M⁵³ 5	2015- 2015	Thailand	Cohort study, Retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Prevalence & risk factors for infections with & antibiotic susceptibility patterns of & outcomes of patients infected with ESBL-producing-GNB
Gpisarnthanarak A ⁵⁴ 8 9	2003- 2007	Thailand	Cohort study, Retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Predictors for mortality associated with community-onset BSI with ESBL-producing pathogens, initial empirical antimicrobial regimens, associated hospital resource utilisation,costs accrued after diagnosis of BSI
Qpisarnthanarak Å⁵⁵ 2	2003- 2004	Thailand	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Mortality associated with community-onset infection due to ESBL- producing pathogens, associated hospital resource use, post-infection hospital cost
3 _{ean SS⁵} 4 5 6 7	2010- 2011	Portugal, Columbia, the Philippines, Taiwan, Thailand	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Surgical ward	Attributable mortality, LOS	Clinical impact on hospitalised patients with community-acquired complicated intra-abdominal infection: ESBL-producing- vs. non-ESBL- producing pathogens
o gee J ⁵⁷ 0 1	1999- 2005	South Korea	interventional studies	Non-ESBL-infection	Children	Pediatric ward	All-cause mortality (28 day)	impact of a change in antibiotic policy on ESBL-prevalence
⊉riongos-Figuero ≵.S ⁵⁸	2009- 2010	Spain	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Characteristics & associated risk factors for EBSL-enterobacteria-UTIs
4 _{на ҮЕ⁵⁹ 5 6}	2010- 2012	South Korea	Cohort study, retrospective	Non-ESBL-infection	Patients with cancer	Entire hospital	All-cause mortality (28 day)	Clinical &molecular epidemiology of ESBL-EC bacteraemia, clinical impact of ESBLs on patient outcome
7 Du B ⁶⁰ 8	1997- 1999	China	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Risk factors for nosocomial ESBL-EC- and ESBL-KP- bacteraemia & influence on patient outcome.

40

41

42

43

44

Page 42	of 57
---------	-------

	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Stone PW ⁶¹	2001	USA	Case cohort study	Non-ESBL-infection	Neonates at NICU	NICU	LOS	costs of interventions aimed at controlling the outbreak, attributable length of stay associated with infection and colonisation with ESBL-KP	КР
Pillay T ¹⁵	1995- 1996	South Africa	Cohort study, retrospective	Non-ESBL-infection	Neonates	Neonatal ward	All-cause mortality	Use of piperacillin/tazobactam in treatment of KP- infection	КР
Kim BN ¹⁶ 1 2	1999- 2000	South Korea	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, LOS	Prevalence & clinical characteristics of ESBL-KP- bacteraemia, impact of ESBL- production on outcome of patients with KP- bacteraemia in endemic situation.	КР
3 Kim YK ¹⁷ 5	1993- 1998	South Korea	Cohort study, retrospective	Non-ESBL-infection	Children	Pediatric ward	All-cause mortality	Risk factors & clinical outcomes & clinical responses to treatment of ESBL-EC- and ESBL-KP-bacteraemia, prevalence and types of their ESBLs	EC, KP
6 Bhavnani SM ¹⁸ 8 9 0 1 2	2001- 2002	USA	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality	Risk factors for occurrence of invasive ESBL-EC- and ESBL-KP-infections, factors associated with clinical outcome, drug regimens for treatment of infections associated ESBL/non-ESBL strains in real-life clinical practice, clinical response rates for patients treated with cephalosporins/other classes of antimicrobial agents, /carbapenems, clinical response for those patients with infection associated with ESBL and non–ESBL-producing strains with MIC values V8 Ag/mL treated with cephalosporins.	GNB
o ∦βlomberg B ¹⁹ 5	2001- 2002	Tanzania	Cohort study, prospective	Non-ESBL-infection	Neonates, children	Pediatric ward	All-cause mortality	Prevalence & clinical implications of ESBL production in EC-,KP-, Salmonellae- septicemia	GNB
∲ena C ⁶² 7 8	1993- 1995	Spain	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality	Clinical epidemiology& outcome of ESBL-KP- bacteraemia, relevance of ESBL strains in mortality of patients with hospital-acquired KP-BSI.	КР
kola A ⁶³ 0 1	2002- 2004	Germany	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS, ICU-LOS	Outcomes of ESBL-EC- and ESBL-KP-infections	EC, KP
2 Tsai MH ⁶⁴ 3 5	2001- 2012	Taiwan	Case cohort study	Control group: non- ESBL-infection, second control group: all hospitalised patients	Neonates at NICU	NICU	Attributable mortality, all- cause mortality, LOS	Clinical features& risk factors& molecular epidemiology of ESBL-GNB	GNB
Maslikowska JA ⁶⁵	2010- 2013	Canada	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality,	Differences in clinical & microbiological outcome, mortality, and/or hospital resource use: ESBL-EC- and ESBL-Ks- vs non-ESBL-EC- and non-ESBL-Ks-infections	GNB

P 1 -	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
onken A ⁶⁶	2012- 2013	Tanzania	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Most common bacterial pathogens causing BSI, antimicrobial susceptibility	GNB
8 Nguyen ML ⁶⁷ 9 10	2005- 2010	Canada	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS, ICU-LOS	Risk factors for & patient outcomes associated with ESBL-EC- and ESBL- Ks- bacteraemia, appropriateness of empiric antibiotic therapy & effect of inappropriate empiric therapy on outcomes	GNB
1 Denis B ⁶⁸ 1 2 1 3	2005- 2009	France	Case-control study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (28 day), LOS	Prevalence & risk factors for ESBL-EC bacteraemia, impact on length of stay &30day mortality	EC
4 _{Chopra T⁶⁹ 5 6 7}	2004- 2009	USA	Case cohort study	Case 2(Control1): non- ESBL-infection, second control group: no infection	All kinds of patients	Entire hospital	All-cause mortality (28 day)	Predictors of ESBL-EC- and ESBL-KP-BSI, focus on cefepime exposure.	EC, KP
₿anhotra BR ²⁰ 19	2001- 2003	Kingdom of Saudi Arabia	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Risk factors & clinical outcome of ESBL-KP-bacteraemia (hospital acquired)	КР
20 Marra AR ²¹ 21 22	1996- 2001	Brazil	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (14 day)	ESBL-KP- associated mortality	КР
Skippen I ²²	2003- 2005	UK	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Risk factors for & outcomes of ESBL-EC- and ESBL-KP-invasive transmission of organism in the healthcare setting	GNB
2 6 chwaber MJ ²³ 27 28	2000- 2003	Israel	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality	Outcomes of ESBL-production in Enterobacteriaceae-bacteraemia.	GNB
9 Apisarnthanarak 30 ²⁴ 31 32	2003- 2004	Thailand	Case cohort study	Control group: non- ESBL-infection, second control group: no infection	All adult patients	Entire hospital	All-cause mortality, LOS	Clinical & molecular epidemiologic factors associated with community onset ESBL-EC- infections, hospital resource utilisation, estimate costs associated with medical care (hospitalised patients)	EC
3∃umbarello M²⁵ 34 35 86	1999- 2003	Italy	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality, LOS, ICU-LOS	Factors associated with isolation of ESBL- KP-strains	КР
Zeistner R ¹¹	2008- 2010	Germany	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital,	All-cause mortality, LOS	Difference in mortality: ESBL-EC-BSIs vs. non-ESBL-EC-BSIs, molecular epidemiology of ESBL-positive isolates	EC

	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Apisarnthanarak A ²⁶	2003- 2004	Thailand	Case cohort study	Control group: non- ESBL-infection, second control group: no infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Risk factors for & outcomes of ESBL-EC- and ESBL-KP-infections (healthcare associated)	EC, KP
Kanafani ZA ²⁷ I 2	2003	Lebanon	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Epidemiology of infections with ESBL-EC and ESBL-Ks at AUBMC risk factors & outcomes of infections - focus on effect of prior antibiotic administration & the risks imparted by specific classes of antimicrobial agents	GNB
3 Zaoutis TE ²⁸ 5	1999- 2003	USA	Case cohort study	Non-ESBL-infection	Children	Entire hospital	All-cause mortality, LOS	Risk factors & outcomes associated with ESBL-EC-and ESBL-KP-BSI	EC, KP
5 50h LC ²⁹ 7	2003- 2004	Malaysia	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Impact of ESBL-KP-respiratory tract infections on hospital mortality, requirement for mechanical ventilation & length stay	КР
Melzer M ³⁰))	2003- 2005	UK	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Differences in mortality & length of hospital stay & time from bacteraemia to death in patients with ESBL-EC- vs. non-ESBL-EC-bacteremic-infection	EC
Song KH ³¹ 2 3 4 5	2000- 2006	South Korea	Case cohort study	Non-ESBL-infection	Patients with spontaneous bacterial peritonitis	Not provided	All-cause mortality (28 day)	Outcomes of ESBL-EC-and ESBL-Ks- vs non-ESBL-EC-and ESBL-Ks-SBP (based on isolation from ascites), impact of ineffective initial antimicrobial therapy on outcome in patients with ESBL-EC- and ESBL-Ks-SBP, risk factors for infection by ESBL-producing microorganisms.	GNB
Øennett JW ³² 7 3	2004- 2008	USA	Cohort study, prospective	Non-ESBL-infection	ICU-patients	ICU, Surgical ward, Burn unit	All-cause mortality (28 day)	ESBL types and strain variability, presence of host factors to determine potential role in morbidity and mortality during ESBL-KP-infections	KP
)recarichi EM ³³ 2	2000- 2007	Italy	Cohort study, retrospective	Non-ESBL-infection	Patients with hematological malignancies	Entire hospital	All-cause mortality (28 day)	Risk factors for mortality in patients suffering from hematological malignancies with concurrent EC-bacteraemia. Focus on impact of ESBL- production & fluoroquinolone resistance by bacterial isolates	EC
fuon FF ³⁴	2006- 2009	Brazil	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (28 day), LOS	Risk factors & mortality rate in ESBL-KP-bacteraemia	КР
ang Cl ³⁵	2008- 2009	South Korea	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (28 day)	Risk factors of ESBL-EC among community-onset bacteraemia, treatment outcomes	EC

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathoger
Pena C ³⁶	1996- 2003	Spain	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (28 day)	Risk factors for mortality among patients with EC- infections	EC
Tumbarello M ³⁷ 0 1 2 3 4	2006	Italy	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	ICU, Medical ward, Entire hospital, surgical wide	All-cause mortality (21 day), LOS	Clinical &economic impacts of ESBL production, inadequate Initial Antibiotic Therapy of EC-BSI	EC
Frang Cl ³⁸ 6 7 8	2006- 2009	South Korea	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality (28 day)	Impact of ESBL-producing bacteraemia on outcome in patients with hematologic malignancy.	EC, KP
- ₩u YH ³⁹ 0 1 2	2009- 2012	Taiwan	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Medical ward	LOS	Host-related risk factors for community-onset UTI due to levofloxacin- or cefazolin-nonsusceptible isolates or uropathogens with ESBL production, clinical impact of UTIs due to antimicrobial-nonsusceptible pathogens	GNB
≩odriguez-Bano J ⁴⁰ 4 5	2004- 2006	Spain	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (14 day)	Epidemiology& risk factors (focus on previous antimicrobial use) & mortality rate for patients with ESBL-EC-COBSI	EC
Gürtnke S ⁴¹ 7	2008- 2011	Germany	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Distribution of ESBL genotypes, hospital mortality in cases of ESBL-KP- BSI	КР
8 Oh MM ⁴² 9	2006- 2011	South Korea	Cohort study, retrospective	Non-ESBL-infection	Patients after Prostatitis Biopsy	Entire hospital	LOS	Impact of ESBL-positive-strains on clinical course & progression to chronic prostatitis in patients with postbiopsy acute prostatitis.	GNB
1 Leistner R ⁴³ 2	2008- 2011	Germany	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Financial disease burden attributable to ESBL-positive species in cases of EC-and KP-BSI	EC, KP
≹in JN ¹² 4 5 5 7	2005- 2009	Taiwan	Case cohort study	Non-ESBL-infection	All kinds of patients	Emergenc y Room	Attributable mortality, all- cause mortality (28 day), LOS, ICU-LOS	Clinical & microbiological characteristics, risk factors for acquisition of infection, prescription of initial empirical antibiotics mortality rate of infection	GNB
≸ u NS ⁴⁴ €	2006- 2010	South Korea	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (28 day)	Clinical usefulness of breakpoints for treatment of Enterobacteriaceae- bacteraemia, (focus on EC- and Ks-bacteraemia): CLSI 2009- vs. CLSI 2010-guidelines.	EC, KP

	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Anunnatsiri S ⁴⁵	2005- 2006	Thailand	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Incidence of ESBL-EC-septicemia, factors associated with infection & clinical outcomes	EC
Kang Cl ⁴⁶ 0 1	1998- 2002	South Korea	Case cohort study	Non-ESBL-infection	All kinds of patients	Hospital- wide	All-cause mortality (28 day)	Risk factors for mortality & treatment outcome of ESBL-EC- and ESBL- KP-BSI	EC, KP
1 ⊉Raviv Y ⁴⁷ 3 4 5	2004- 2007	Israel	Cohort study, retrospective	Control group: non- ESBL-infection, second control group: no infection	patients with lung transplantation	Not provided	All-cause mortality (28 day)	Outcomes of lung transplant recipients infected by CRKP and ESBL carbapenem-sensitive KP (referred to MDR-KP)	КР
6(im HJ ¹³ 7 8	2005- 2010	South Korea	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Medical ward	All-cause mortality (28 day), LOS	Clinical outcome of patients with biliary tract infection: ESBL-producing bacterial isolates vs. non-ESBL-producing-bacterial isolates, predictors of poor prognosis, impact of ineffective antimicrobial therapy on clinical outcome	EC, KP
or JacVane SH ⁴⁸ 1 2	2011- 2012	USA	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all-cause mortality, LOS	clinical & economic outcomes of patients with ESBL-EC- and ESBL-KP- UTI vs. non-ESBL-EC- and non-ESBL-KP-UTI	EC, KP
3 ∯bhilash KP ⁴⁹ 5	2007	India	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (14 day)	Prevalence & risk factors & outcome of antibiotic treatment among hospitalised patients with ESBL-EC- and ESBL-Ks-BSI	GNB
⊅hanthi M⁵⁰ 8	2006	India	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Prevalence & impact on clinical outcome of ESBL-production among nosocomial isolates of EC & KP	EC, KP
9 _{Han SB⁵¹ 0 1 2}	2009- 2013	South Korea	Cohort study, retrospective	Non-ESBL-infection	Children (immunocompromised, with cancer, neutropenic fever)	Pediatric ward	Attributable mortality, all- cause mortality (28 day)	Clinical outcomes of ESBL-EC- and ESBL-KP-bacteraemia & their antibiotic susceptibilities	EC, KP
3 ee S ⁵² 4 5	2009- 2011	South Korea	Cohort study, retrospective	Non-ESBL-infection	Patients with Acute Pyelonephritis	Entire hospital	All-cause mortality (14 day), LOS	Impact of ESBL on clinical outcomes of Acute Pyelonephritis treated with empirical ceftriaxone (which was inappropriate for ESBL- producing organisms)	EC
Artero A ⁷⁰ 7 8	2013- 2015	Spain	Cohort study, prospective	Non-ESBL-infection	Elderly	Medical ward	All-cause mortality, LOS	Identify clinical factors to predict ESBL-EC among elderly patients with UTI admitted to hospital in a high rate setting of ESBL-EC	EC

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Chen IL ⁷¹	2004- 2015	Taiwan	Cohort study, retrospective	Non-ESBL-infection	Neonates	Neonatal ward	All-cause mortality	Compare the clinical characteristics & laboratory data of preterm babies with EC BSI: survival vs. nonsurvival groups, ESBL vs non-ESBL groups, determine the predictive factors of EC BSI in preterm babies	EC
islas-Munoz B ⁷²	2016- 2017	Mexico	Cohort study, prospective	Non-ESBL-infection	Cancer patients	Oncologic al ward	All-cause mortality (28 day)	Evaluate the clinical epidemiological characteristics & risk factors associated with mortality in cancer patients with BSI-special emphasis on MDR bacteria	GNB (and others)
3 Ma J ⁷³ 5	2012- 2015		Cohort study, retrospective	Non-ESBL-infection	Patients with hematological diseases	Entire hospital	All-cause mortality (28 day)	Evaluate the antimicrobial resistance & clinical features & risk factors for septic shock & death of nosocomial EC-BSI	EC
Man MY ⁷⁴	2009- 2016	China	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients, except patients from Burn unit, transplant surgery ward or with thoracic therapy	Entire hospital	All-cause mortality (28 day)	Evaluate the incidence & clinical characteristics & outcomes of patients with KP BSI in critical care & general ward settings	КР
9 Marando R ⁷⁵ 2 3	2016	Tanzania	Cohort study, prospective	Non-ESBL-infection	Neonates	NICU	All-cause mortality	Investigate factors associated with ESBL-PE neonatal sepsis & mortality among neonates, characterise selected isolates to show virulence potential & transmission dynamics	GNB
Namikawa H ⁷⁶	2011- 2015	Japan	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Investigate clinical characteristics of patients with ESBL-EC-BSI	EC
§hi SH ⁷⁷))	2008- 2015	China	Cohort study, retrospective	Non-ESBL-infection	Patients with pyogenic liver abscess	Centre for hepatopa ncreatico biliary diseases	All-cause mortality, LOS	Aetiology & morbidity & clinical characteristics of pyogenic liver abscess caused by ESBL-PE	GN
2 Janir Basaranoglu 5 ⁷⁸ 4	2011- 2015	Turkey	Cohort study, retrospective	Non-ESBL-infection	Children	Pediatric ward	All-cause mortality (28 day)	Assess risk factors for health care associated ESBL-KP-BSI in children, analyze clinical outcomes: ESBL-KP vs. non-ESBL-KP	КР
Razazi K ⁷⁹	2009- 2015	France	Cohort study, prospective	Non-ESBL-infection	ICU-patients	ICU	All-cause mortality, LOS, ICU-LOS	Determine, among ESBL-PE carriers, the prevalence & associated factors & clinical impact of ESBL-PE pneumonia, determine factors associated with ICUAP caused by carbapenem-resistant bacteria	GNB

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Ray S ⁸⁰	2014- 2016	India	Cohort study, prospective	Non-ESBL-infection	ICU-patients	ICU	All-cause mortality	Investigate spectrum of microbial resistance pattern in the community and their effects on mortality	GNB
Haruki Y ⁸¹)	2006- 2016	Japan	Cohort study, retrospective	Non-ESBL-infection	ICU-patients	ICU	All-cause mortality	Compare the clinical characteristics & outcomes of critically ill patients in an ICU, who were hospitalised for BSI caused by ESBL-EC or non- ESBL-EC.	GNB
<u>y</u> in WT ⁸²	2009- 2014	Taiwan	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Investigate the clinical manifestations & bacteriological features of culture-proven, GNB arthritis	GNB
βuys H ⁸³ 7 3	2006- 2011	South Africa	Cohort study, retrospective	Non-ESBL-infection	Children	Pediatric ward	All-cause mortality	Describe the clinical presentation of KPBSI, risk factors associated with ESBL-KPBSI, antibiotic susceptibility patterns of the KP isolates & KPBSI mortality including factors associated with in-patient mortality	КР
0)ee CC ⁸⁴	2008- 2013	Taiwan	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Emergenc y Departme nt	Attributable mortality, all- cause mortality (28 day), LOS, ICU-LOS	Analyse the impact of ESBL-producing isolates on the outcome of bacteremic patient after controlling for baseline patient characteristics & bacteraemia severity by using a propensity-matched analysis (PSM)	GNB
Huang YY ⁸⁵	2011- 2013	Canada	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Determine cumulative incidence of ESBL urosepsis, identify major risk factors for ESBL urosepsis, determine impact of international travel on development of ESBL urosepsis	EC, KP
Komatsu Y ⁸⁶	2008- 2013	Japan	Case cohort study	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality (14 day)	Identify risk factors & clinical outcomes in patients with BSI due to ESBL- or carbapenemase-producing EC, determine prevalence & genetic background	EC
iu MM ⁸⁷	2011- 2016	China	Case cohort study	Control group: non- ESBL-infection, second control group: no infection	ICU-patients	ICU	All-cause mortality	Identify risk factors for ESBL-producing ECBSI among carriers at ICU	EC
Nivesvivat T ⁸⁸	2010- 2017	Thailand	Cohort study, retrospective	Non-ESBL-infection	Children	Pediatric ward	All-cause mortality, LOS	Determine prevalence, risk factors & clinical outcomes of ESBL- producing EB in paediatric BSI	EC, KP

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	Years	Country	Study design	Control group	Study population	Setting	Outcome definition	Main objective	Pathogen
Cordery RJ ⁸⁹	2004- 2006	UK	Cohort study, retrospective	Non-ESBL-infection	ICU-patients	ICU	All-cause mortality	Elucidate specific risk factors for the acquisition of ESBL infection in the ICU; all-cause mortality (in ICU) compared in patients with infections due to ESBL- and non-ESBL-producing organisms	GNB
10 1 Paikos GL ⁹⁰ 12 13 14	2003- 2005	Greece	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Identify risk factors associated BSI caused by integron-carrying EB; evaluate the consequences of these genetic elements on patient outcome	GNB
յ 55udiol C ⁹¹ 16 17	2006- 2008	Spain	Cohort study, prospective	Non-ESBL-infection	Cancer patients and hematopoietic stem cell transplant patients	Entire hospital	All-cause mortality	Assess clinical features, risk factors, molecular epidemiology & outcome of ESBLEC BSI in hospitalised cancer patients	EC
1 8 ⁄larchaim D ⁹² 19 20	2006- 2008	Israel	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality, LOS	Define predictors & outcomes of ESBL BSI among patients with bacteraemia due to EB upon hospital admission	GNB
2 Menashe G ⁹³ 22 23 24 25 26	1997	Israel	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Determine: prevalence of ESBL-P organisms among adult patients with nosocomial EB BSI treated in our institution; association between ESBL production & resistance to other antibiotics; clinical characteristics of patients with nosocomial ESBL-P BSI compared with those infected with non-producing strains; impact of ESBL production on outcome of patients with nosocomial EB BSI	GNB
27 28 29 30 31	1991- 2007	Spain	Cohort study, prospective	Non-ESBL-infection	All kinds of patients	Entire hospital	All-cause mortality	Describe source, resistance rate to fluoroquinolone & beta-lactam antibiotics and mortality of EC BSI episodes in a single institution; identify predictive factors for isolation of fluoroquinolone-resistant or ESBL- producing strains.	EC
32 Sziglyi M⁰⁵ 33 34	2005- 2008	Hungary	Cohort study, retrospective	Non-ESBL-infection	All kinds of patients	Entire hospital	Attributable mortality, all- cause mortality,	Investigate risk factors for & outcomes of BSI caused by ESBL-producing and ESBL-non-producing KP	КР
35 Tsai SS [%] 36 37	2005- 2006	Taiwan	Cohort study, retrospective	Non-ESBL-infection	Diabetic patients	Entire hospital	All-cause mortality	Analyze characteristics, risk factors & outcomes of diabetic patients with community- vs. hospital-acquired KP BSI	КР

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

EC = Escherichia coli
KP = Klebsiella pneumoniae
GNB = Gram-negative bacteria
BSI = Bloodstream infection
UTI = Urinary tract infection
ICU = Intensive care unit
NICU = Neonatal intensive care unit
ESBL-PE = Extended-spectrum beta-lactamase-producing Enterobacteriaceae
EB = Enterobacteriaceae
LOS = Length of stay

 For peer review only

	e ?	es:	slo	slo	he sis	le	nd Slc	Ite
	uat	case	ntro	ntro	on tl aly:	nso	es al ntro	e ra
	deq	he	S S	S	ols c r ar	exp	case	ons
	n a	of t	o c	ן of	n o	of	or (espo
	itio	SSS	tior	tior	sig	ent	nt f	-Re
	efin	ene	elec	fini	e de	ШШ	me	Nor
	e de	ativ	S. Se	De	es a the	rtai	ain	∞ ~
	case	ent	e co	4.	cas s of	sce	Cert	
	hei	rese			of asi	Ä.	asc	
	ls tl	lepi			lity b	9	l of	
	÷	2. F			abi		hoc	
					Ibai		net	
					Som		Je r	
					ъ.		San	
Assessment criteria / Study author 🦯							7. 3	
Lautenbach, E.								
Apisarnthanarak, A.								
Briongos-Figuero, L-S.								
Stone, P.W.								
Kola, A.								
Tsai, M.H.								
Maslikowska, J.A.								
Nguyen, M. L.								
Denis, B.								
Chopra, T.								
Skippen, I.								
Apisarnthanarak, A.								
Tumbarello, M.								
Apisarnthanarak, A.								
Kanafani, Z. A.								
Zaoutis, T. E.								
Song, K. H.								
Kang, C. I.								
Rodriguez-Bano, J.								
Lin, J. N.								
Ku, N. S.								
Kang, C. I.								
Huang, Y. Y.								
Komatsu, Y.								
Liu, M. M.								
-,								

Risk of bias assessment of cohort studies according to Newcastle - Ottawa quality assessment scale:

	1. Representativeness of exposed cohort	2. Selection of non-exposed cohort	3. Ascertainment of exposure	 Demonstration that outcome of nterest not present at start 	5. Comparability based on design or analysis	5. Assessment of outcome	7. Follow-up long enough for outcome	3. Adequacy of follow up of cohorts
Study author / Assessment criteria			(1)		1, (0		14	~~~
Jean, S.S.								
Bhavhani, S. M.								
Biomberg, B.								
Pena, C.								
Molzor M								
Neizer, M.								
Bennet, J.								
Wu, Y.								
Abhilash, K.								
Islas Munos R								
Islas-Mullos, B.								
RdZdZI, N.								
Ray, S.								
Kim S								
Chavakulkeeree M								
Anisarnthanarak A								
Dillay T								
Kim B								
Kim, V								
Marra A								
Schwaber M								
Trecarichi F								
Kang C I								
Pena C								
Tumbarello, M.								
Gurntke S								
Oh. M.								
Leistner R								
Anunnatsiri								
					Ļ.,		_	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Raviv, Y.				
2	Kim, H.J.				
3	MacVane, S.				
4	Shanthi				
5 6	Han, S.B.				
7	Lee, S.				
8	Chen, I-L.				
9 10	Ma, J.				
11	Man, M.				
12	Namikawa, H.				
13 14	Shi, S.				
15	Tanir Basarangolu, S.				
16	Haruki, Y.				
17	Lin, W.				
18 19	Buys, H.				
20	Lee, C.C.				
21	Nivesvivat, T.				
//					

The sector is a se

Supplementary table S6: Source of heterogeneity among effect estimates in studies on ESBL bloodstream infections in comparison with patients with non-ESBL bloodstream infections assessed using univariate meta-regression:

Subgroups / Outcome	All-cause mortality	Length of Stay		
Mortality time	0.85	-		
Pathogen	0.45	0.34		
Study design	0.51	0.21		
Study country 🔜	0.22	0.09		
Income classification	0.17	0.80		
Study period	0.57	0.78		
Study setting: ICU ward	0.78	0.97		
Study setting: Neonatal ward	0.62	0.97		
Study setting: Pediatric ward	0.96	0.96		
Study population: ICU patients	1.00	-		
Study population: Children	0.96	0.96		
Study population: Neonates	0.62	0.97		
Information about therapy	0.53			
Appropriatness of therapy reported	0.68			
Information about outcome of therapy	0.74	-		
MIC reported	0.28	-		

0.28

PRISMA 2009 Checklist

4 5 Section/topic	#	Checklist item	Reported on page #
TITLE			
⁸ Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
1 12 13 14	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
8 Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
22 Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	6
24 25 26	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
27 Information sources 28	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	4
29 30 31	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	4
32 Study selection 33	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5
A Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	5
7 Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	5
 ³⁹ Risk of bias in individual ⁴⁰ studies 	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6
42 Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	5
⁴³ Synthesis of results 44 45	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	5,6

BMJ Open

PRISMA 2009 Checklist

|--|

4				
5 6 7	Section/topic	#	Checklist item	Reported on page #
/ 8 9	Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	6
10 11 12 13 14 15 16 17 18 19 20 21	Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	6
	RESULTS			
	Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	6
	Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	suppl.material
	Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	8 and suppl. material
22 23	Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	suppl.material
24 24	Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	6-8
26 27 28	Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	8 and suppl. material
28 29 30	Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	7,8
31	DISCUSSION			
32 33 34	Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	9
35 36	Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	10
37	Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	11
39 40	FUNDING			
41 42 4	Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	11

. From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred Reporting Items for Systematic Reviews and Meta Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097.

Page 57 of 57

For more information, visit: www.prisma-statement.org.

BMJ Open

ration, visu. Page 2.