

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Is hemoglobin below 7.0 g/dl an optimal trigger for allogenic red blood cell transfusion in patients admitted to intensive care units? A meta-analysis and systematic review

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-030854
Article Type:	Research
Date Submitted by the Author:	03-Apr-2019
Complete List of Authors:	Yao, Ren Ren, Chao; Chinese PLA General Hospital, Zhang, Zi Zhu, Yibing; Beijing Fuxing Hospital, ICU Xia, Zhao Fan; Changhai Hospital, Department of Burns YAO, Yongming; Fourth Medical Center of the Chinese PLA General Hospital
Keywords:	Red blood cells, Transfusion, Hemoglobin, Intensive care units, Septic shock

BMJ Open

Is hemoglobin below 7.0 g/dl an optimal trigger for allogenic red blood cell transfusion in patients admitted to intensive care units? A meta-analysis and systematic review

Ren-qi Yao¹, Chao Ren², Zi-cheng Zhang³, Yi-bing Zhu⁴, Zhao-fan Xia¹, Yong-ming Yao²

¹Department of Burn Surgery, Changhai Hospital, the Second Military Medical University, Shanghai 200433, People's Republic of China.

²Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, People's Republic of China.

³Department of Orthopedics, Changhai Hospital, the Second Military Medical University, Shanghai 200433, People's Republic of China.

⁴Department of Critical Care Medicine, Fuxing Hospital, Capital Medical University, Beijing 100038, People's Republic of China.

Corresponding Authors: Zhao-fan Xia, MD, PhD, Department of Burn Surgery, Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai 200433, People's Republic of China. Tel: (+86) 2131161821; Email: xiazhaofan@163.com. Yong-ming Yao, MD, PhD, Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, People's Republic of China. Tel: (+86) 1066867394; Fax: (+86) 1068989955; Email: c_ff@sina.com.

Ren-qi Yao and Chao Ren contributed equally to this manuscript.

for oper terien only

Abstract

Objectives To determine if hemoglobin level below 7g/dl is a priority trigger for blood transfusion for ICU patients, and even patients with septic shock by conducting a comprehensive system review and meta-analysis, underlying impacts on short-term mortality and adverse effects.

Data sources We performed systematical searches for relevant randomized controlled studies in the Cochrane Library, EMBASE, and PubMed databases up to May 1, 2018. The clinical outcomes, including short-term mortality, length of hospital stay, length of ICU stay, myocardial infarction(MI), and ischemic events, were screened and analyzed after data collection. We applied odds ratios (ORs) to analyze dichotomous outcomes and mean differences to analyze continuous outcomes with a random effects model.

Results Nine RCTs with 3551 patients were included. Compared with a more liberal threshold, an RBC transfusion threshold < 7 g/dl hemoglobin showed no significant difference in short-term mortality (OR: 0.92, 95% CI: 0.70-1.20; P=0.52; I²=47%), length of ICU stay (MD: -0.05, 95% CI: -0.70-0.61, P=0.89, I²=0%), MI (OR: 0.56, 95% CI: 0.30-1.04, P=0.07; I²=0%), or ischemic events (OR, 0.80; 95% CI, 0.43-1.48; P=0.48; I²=51%). However, the length of hospital stay was shorter in the group with the threshold < 7 g/dl than that with the more liberal threshold.

Conclusions A RBC transfusion threshold < 7 g/dl hemoglobin is incapable of decreasing short-term mortality in ICU patients according to currently published evidence. Further studies are needed to for determine the optimal RBC transfusion strategy.

Keywords: Red blood cells, Transfusion, Hemoglobin, Intensive care units, Septic shock

Strengths and limitations of this study

1. This meta-analysis focused on the feasibility of a transfusion threshold of hemoglobin < 7 g/dl with regard to short-term mortality in critically ill patients through only including RCTs that specified the restrictive RBC transfusion threshold as a pretransfusion hemoglobin concentration less than 7 g/dl.

2. In this meta-analysis, we performed an updated and comprehensive analysis that focused on ICU patients with septic shock.

3. The number of studies we enrolled was not large enough due to the strict inclusion criteria of a restrictive transfusion threshold of hemoglobin < 7 g/dl.

4. There was imperfect blinding of the study participants in the trials mainly owing to the nature of the interventions.

Introduction

Allogenic red blood cell (RBC) transfusion remains a commonly used and crucial treatment among patients admitted to the intensive care unit (ICU). Undoubtedly, appropriate blood transfusion can benefit critical ill patients by increasing oxygen delivery and reducing oxygen debt, protecting against multiple organ dysfunction [1]. Every year, approximately 75 million units of blood are reportedly obtained worldwide, with higher levels of consumption in the UK, Canada, and US [2, 3]. These data urge the cautious use of RBCs because of the substantial cost and supply shortage. Additionally, the risk of complications, such as volume overload, infection, transfusion reactions, and even increased mortality, also raises concerns about the threshold for RBC transfusion in ICU patients [4-6]. However, the optimal thresholds for RBC transfusion in diverse critical care settings remain controversial.

The results of the Transfusion Requirements in Critical Care (TRICC) study have confirmed the superiority of a restrictive transfusion strategy in controlling the 30-day mortality of critical ill patients with younger age and lower Acute Physiology and Chronic Health Evaluation (APACHE II) score. Indeed, conservative blood transfusion could result in a marked decline in the use of RBCs, which further decreases the in-hospital cost of ICU patients [2, 7]. Recently, various studies have extensively discussed transfusion strategies to optimize the outcomes. For instance, no significance was shown between restrictive and liberal transfusion strategies in terms of adverse effects, as reported by some studies [8, 9]. However, other researchers

found that blood transfusions triggered at a threshold of 7 g/dl are much safer in critically ill patients with cardiovascular diseases [7, 10]. Therefore, the thresholds for blood transfusion should be different for patients with various diseases and need to be carefully evaluated.

Though the benefits of blood transfusions have been discussed by many systematic reviews and meta-analyses, the results remain controversial [6, 8, 9, 11-13]. Different clinical settings, participants, methods, and study designs all account for the diversity of outcomes. In addition, no studies have reported the impact of the transfusion threshold of 7 g/dl on the short-term outcomes of critically ill patients or the financial value of a different transfusion strategy. Therefore, we performed a systematic review and meta-analysis in which we investigated differences between the 7 g/dl transfusion threshold and a lower threshold.

Septic shock is commonly recognized as a substantial threat to ICU, and it is related to high hospital costs and poor outcomes [14]. It presents with insufficient tissue perfusion, like hypovolemic shock, followed by the disruption and dysfunction of cellular metabolism, but it cannot be reversed by prompt fluid resuscitation and the administration of vasoactive drugs. Blood transfusion is frequently administered as a treatment for patients with septic shock, but the protocol for transfusion is different in patients with septic shock than in patients with other critical illnesses [15-17]. In fact, there is still a lack of conclusive data regarding the rational transfusion threshold for patients with septic shock [17, 18]. Thus, in the present study, a subgroup analysis was further performed with patients with or without septic shock.

Materials and methods

This systematic review and meta-analysis was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement[19].

Search strategy and information sources

Online databases, including Cochrane Library, EMBASE, and PubMed, were systematically searched. Relevant studies up to May 1, 2018, were searched for with the terms 'red blood cell', 'RBC', 'restrictive', 'liberal', 'trigger', 'threshold', 'blood transfusion'. In addition, ongoing trials and conference abstracts were identified to obtain additional evidence. We also obtained references by searching the reference lists of reviews and trial registries. There was no language restriction for the search process.

Eligibility and exclusion criteria

This meta-analysis included randomized controlled trials (RCTs) among adult ICU patients (age>18 years) who underwent allogenic RBC transfusion. The recruited studies had to compare two distinct blood transfusion thresholds, a restrictive threshold and a liberal one. The definition of transfusion thresholds in this systematic review was based on hemoglobin or hematocrit levels. Blood transfusion initiated at hemoglobin thresholds below 7 g/dl were termed restrictive strategies, while the

liberal transfusions were conducted at hemoglobin thresholds between 8.5 and 10 g/dl. Other types of studies, including observational, cohort and case-control, were excluded. Trials with pretransfusion hemoglobin concentrations higher than 7 g/dl were eliminated as well. Only ICU patients were considered, while participants in other hospital departments with critical illnesses were not eligible.

Study selection

Two reviewers (RQY and CR) independently screened the titles and abstracts of the relevant trials. If the abstract of a potentially eligible article failed to provide adequate information, the full-text version was then screened to determine its eligibility. Differing opinions between the two authors were settled by discussion and consensus. If a consensus could not be reached, a consulting group including two experts (ZFX and YMY) resolved the disagreements.

Data collection

Two reviewers (RQY and CR) extracted the data from all eligible trials with a standardized and predesigned form. First author, year of publication, baseline characteristics, the total number of included patients and the clinical settings were recorded. The clinical outcomes (short-term mortality, length of hospital stay, length of ICU stay, myocardial infarction, and ischemic events) and study design were also obtained.

Risk of bias assessment

The Cochrane Collaboration tool was used to evaluate the risk of bias of the RCTs. The randomization sequence, allocation concealment, blinding of personnel and participants, risk of incomplete outcome data, selective reporting bias and other sources of bias were assessed independently by two authors. Each clause was rated as 'low', 'high' or 'unclear' bias. The summarized risk of bias of each RCT was ranked as low, moderate or high.

Grading quality of evidence

The quality of evidence of each outcome was evaluated in accordance with the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) methods. This procedure was conducted with GRADE Pro software 3.6 (McMaster University 2014, Hamilton, Canada).

Outcomes

The primary endpoint was all-cause short-term mortality, which was preferentially analyzed by 28-day or 30-day mortality. In the case of unreported short-term mortality, we contacted the authors for the original data or considered the closest available mortality data. Secondary outcomes included the following indicators: length of hospital stay, length of ICU stay, myocardial infarction, and ischemic events.

Data synthesis and analysis

The statistical analysis was conducted with ReviewManager (RevMan 5.3, Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014). We applied odds ratios (ORs) to analyze dichotomous outcomes and mean differences for continuous outcomes. The pooled results were calculated with 95% confidence intervals (CIs). A random effects model combined with the Mantel-Haenszel (M-H) method was used. For the publication bias, the funnel plot of the pooled short-term mortality data was scanned visually by reviewers. Besides, by using Stata software, version 12, we performed Begg's and Egger's tests to further assess the possible publication bias. A sensitivity analysis was also performed by means of excluding each study one at a time from the pooled effect. Additionally, we performed a subgroup analysis based on the M-H model to determine the difference between septic shock and nonsepsis groups.

Results

Search results and the characteristics of the included studies

This systematic review and meta-analysis identified 4385 relevant citations; we removed duplicates and then scanned the titles and abstracts of 4346 studies. Eventually, the full-text articles for 39 trials were reviewed, and 9 RCTs met the inclusion criteria, with ICU patients older than 18 years who received RBC transfusions at hemoglobin thresholds below 7 g/dl (**Fig. 1**).

BMJ Open

The nine included RCTs ranged in publication year from 1999 to 2017 and contained a total of 3551 patients[20-23]. The patient population sizes of the included trials were very diverse, ranging from 44 to 998. Three studies enrolled more than 800 patients, while four trials enrolled fewer than 200 eligible patients. Four studies enrolled 1480 patients with septic shock, including two studies complicated by cancer diagnoses. In addition, four trials were multicenter studies (**Table 1**)

Risk of bias

Most of the RCTs met the randomization requirements and used rational distribution methods. In some of the included trials, however, it was challenging to blind the attending physicians and nurses to the outcome assessment based on the intervention, which resulted in high risk of performance bias. Two trials that were reported in conference abstracts had high percentages of unclear risks (Supplementary Fig. 1).

Quality of evidence

The summary of findings for the outcomes of interest and the levels of evidence are provided (**Supplementary Table 1**). The qualities of the primary outcome data and some secondary outcome data, including myocardial infarction and ischemic events, were all ranked as moderate. However, the lengths of hospital and ICU stays displayed low and very low quality, respectively.

Table 1 Characteristics of the included studies

,									
8 9 10 11 12Author 13	Year of Publication	No. of sites	Clinical	Population	Transfusion T		Mortality Data	References	
14 15			Settings	Details	Number of Participants	Restrictive	Liberal		
16 Bergamin 17 et al. 18 19	2014	Single	Critical illness	Patients with cancer with septic shock	136	Hb 7	Hb 9	28-day mortality 30-day mortality	[20]
20 Hebert 21 ^{et al.}	1999	25	Critical illness	Euvolemic critically ill patients	838	Hb 7	Hb 10	60-day mortality ICU mortality Hospital mortality	[7]
22 23 Holst 23 et al. 24	2014	32	Critical illness	Patients with septic shock	998	Hb 7	Hb 9	90-day mortality	[17]
25 Mazza 26 et al.	2015	Single	Critical illness	Patients with septic shock	46	Hb 7	Hb 9	Hospital mortality	[18]
²⁷ Robertson ²⁸ et al. 29	2014	2	Traumatic brain injury	Patients with closed head injuries	200	Hb 7	Hb 10	Six-month mortality	[21]
₃₀ ∕illanueva 31 ^{et al.}	2013	Single	Upper UGIB	Patients with hematemesis, melena or both	889	Hb 7	Hb 9	45-day mortality	[22]
32 33 Walsh 34 et al. 35	2013	6	Critical illness	Older critically ill patients receiving mechanical ventilation	100	Hb 7	Hb 9	30-day mortality 60-day mortality 180-day mortality ICU mortality Hospital mortality	[23]
36 Bergamin 37 et al. 38	2017	Single	Critical illness	Patients with cancer with septic shock	300	Hb 7	Hb 9	28-day mortality 60-day mortality 90-day mortality	[27]
39 Gobatto 40 et al.	2017	Single	Traumatic brain injury	Patients with moderate or severe traumatic brain injury 12	44 2	Hb 7	Hb 9	Hospital mortality	[26]
41 42									

BMJ Open

Primary outcome: short-term mortality

Within this meta-analysis, there were four RCTs that reported 28-day or 30-day mortality, and two that reported in-hospital mortality only. After generating the forest plot, we found no significant difference in short-term mortality between the transfusion threshold of hemoglobin < 7 g/dl and the more liberal strategy (OR: 0.92; 95% CI: 0.70-1.20; P=0.52; I²=47%). Meanwhile, we noticed that the RCT reported by Bergamin et al. (19) was the main resource of heterogeneity, and removing that study resulted in a marked reduction in heterogeneity (I²=24%, P=0.24) (**Fig. 2**).

Secondary outcome: length of hospital stay, length of ICU stay, myocardial infarction, and ischemic events

Four included studies documented the length of hospital stay, which revealed shorter hospital stays when the threshold of hemoglobin < 7 g/dl was used compared with the more liberal threshold (MD: -1.57, 95% CI: -2.65-0.50, P=0.004, I²=29%, **Fig. 3**). The outcome of length of ICU stay was reported by three trials, and there was no significant difference between the two thresholds (MD: -0.05, 95% CI: -0.70-0.61, P=0.89, I²=0%, **Fig. 4**). Likewise, no significant differences were noted between the two transfusion thresholds for critically ill patients for myocardial infarction (OR: 0.56, 95% CI: 0.30-1.04, P=0.07; I²=0%, **Fig. 5**) or ischemic/thromboembolic events (OR, 0.80; 95% CI, 0.43-1.48; P=0.48; I²=51%, **Fig. 6**).

Publication bias

We constructed a funnel plot to assess the possible publication bias. After inspecting the funnel plot, we found no evidence of publication bias. Furthermore, we used Begg's test (P=0.63) and Egger's test (P=0.65) to evaluate the funnel plot asymmetry, which also showed no statistically significant evidence of publication bias (Supplementary Fig. 2).

Subgroup analysis

The subgroup analysis of the septic shock and nonsepsis groups investigated short-term mortality. From the forest plot, there were no significant differences in short-term mortality between two thresholds in either the septic shock group or the nonsepsis group (Fig. 7). ORC.

Discussion

Major findings

The current study demonstrated that restricting the transfusion threshold to a hemoglobin concentration less than 7 g/dl did not result in significant differences in short-term mortality, length of ICU, myocardial infarction, or ischemic events, when compared with more liberal thresholds. The length of hospital stay was shortened in the restrictive group than in the liberal group. Within the primary outcome analysis, the heterogeneity of enrolled trials was moderate, with an I² of 47% according to the heterogeneity test; this finding was assumed to be due to different clinical settings, especially for patients with septic shock. We further performed a subgroup analysis after classifying the studies into a septic shock group and a non-sepsis group, as septic shock was recognized as one of the major causes of death in critical ill patients. In septic shock group, patients with a transfusion threshold < 7 g/dl showed no significant difference in short-term mortality compared to those with a more liberal transfusion threshold, while the heterogeneity was markedly decreased ($I^2=20\%$). In Page 15 of 41

BMJ Open

non-sepsis group, no significant difference in short-term mortality was noted between the two thresholds with only five trials included. Additionally, the highly disparate sample size of included studies could be another resource of heterogeneity. Given the fact that several studies came from conference abstracts, we were unable to evaluate their methodology and data quality in detail.

Relations to other meta-analysis

Carefully designed meta-analyses on RBC transfusions in critically ill patients have been published recently. In 2014, the first time Salpeter and colleagues reported the benefits of restrictive blood transfusion at hemoglobin trigger of <7 g/dL in critical ill patients via conducting meta-analysis, which presented with significant reductions in total mortality (RR: 0.80; 95% CI, 0.65-0.98), in-hospital mortality (RR: 0.74; 95% CI, 0.60-0.92), 30-day mortality (RR: 0.77; 95% CI, 0.61-0.96), acute coronary syndrome (RR: 0.44; 95% CI, 0.22-0.89), pulmonary edema (RR: 0.48; 95% CI, 0.33-0.72), rebleeding (RR: 0.64; 95% CI, 0.45-0.90) and bacterial infections (RR: 0.86; 95% CI, 0.73-1.00) when compared with the liberal transfusion threshold group[11]. However, this meta-analysis did not provide a convincing conclusion with only three RCTs included, and also failed to separate adult and pediatric participants, as each population shared different transfusion protocols.

Recently, in a review by Fominskiy E et al. [12], the restrictive and liberal RBC transfusion thresholds in critically ill patients resulted in no significant difference in all-cause 90-day mortality (OR: 1.10; 95% CI: 0.99-1.23; P=0.07; I²=34%). In fact, this study was the first comprehensive meta-analysis to address different transfusion thresholds among critically ill and perioperative patients, but it lacked a valid analysis of secondary outcomes which were noteworthy factors for the effects of RBC

transfusions. Furthermore, Chong and colleagues also conducted an updated analysis on the effects of RBC transfusion, which included two more RCTs other than the same 10 trials included in the Fominskiy's study[12, 13, 18, 24]. These results suggested that RBC transfusion with restrictive threshold significantly reduced the risk of overall 30-day mortality (OR: 0.82; 95% CI: 0.70-0.97; P=0.019) when compared with that with liberal threshold, accompanied with declining rsik of stroke/transient ischemic attack (TIA) (OR: 0.63; 95% CI, 0.40-0.99; P=0.04), transfusion reactions (OR: 0.48; 95% CI, 0.29-0.80; P=0.005), allogenic blood exposure (OR: 0.04; 95% CI: 0.01-0.14; P=0.001), and length of hospital stay (95% CI: 0.42-1.64; P=0.001), hinting the safety of using restrictive transfusion protocol. Actually, above two studies focused on different primary outcomes, 30-day and 90-day mortality for each study, and further drew different conclusions even though both included similar RCTs, indicating that the effects of RBC transfusion varied with the stage of critical settings. However, Hovaguimian F et al. [25] performed a context-specific systematic review and meta-analysis comparing the restrictive and liberal transfusion thresholds and found no significant differences in early mortality (OR: 0.94; 95% CI: 0.73-1.20; P=0.09; $I^2=45\%$) between the two thresholds, indicating that the specific types and severity of critical illness might be in need of different strategies of RBC transfusion, especially for patients with major surgery.

In the present study, we specifically concentrated on the restrictive transfusion threshold of hemoglobin < 7 g/dl in ICU patients. We included data from the newly published Transfusion Requirements after Head Trauma (TRAHT) trial and the Transfusion Requirements in Critically Ill Oncological Patients (TRICOP) trial, which showed with increased mortality rate in the group with restrictive transfusion thresholds than that with liberal transfusion threshold [26, 27]. This study showed that

Page 17 of 41

BMJ Open

RBC transfusion with restrictive threshold of < 7 g/dl did not result in significant improvement in short-term mortality, myocardial infarction, as well as ischemic events, when compared with those using liberal thresholds.

Subgroup analysis

The first review with regard to the impact of blood transfusion on the prognosis of septic shock patients was conducted by Dupuis and colleagues [28]. They showed no association between RBC transfusion and mortality rate in patients with septic shock, and also failed to determine correlations between the two different transfusion thresholds or to infer the optimal transfusion threshold for septic shock patients because of a shortage of high-quality RCTs [28]. In fact, a 10 g/dl hemoglobin threshold has been universally proposed for treatment of septic shock as the crucial role of RBC transfusions in early goal-directed therapy [29]. Nonetheless, severe adverse events caused by extensive blood transfusion have been reported as a great threat for septic shock patients by several studies [30-32]. The restrictive strategy, as reported previously, was beneficial for the improvement of microcirculation, while also saving blood products [7, 33]. The landmark TRISS trial that was conducted by Holst L et al. [17] revealed no significant differences in 90-day mortality between patients in the group with the transfusion thresholds of 7 g/dl and those with the more liberal thresholds. In addition, the number of patients experiencing ischemic events and severe adverse reactions was also similar between the two groups. The TRISS trial demonstrated the safety and economic efficiency of the restrictive blood transfusion threshold, with a well-controlled risk of bias. Mazza BF et al. [18] performed a randomized physiological study of septic shock patients with the endpoint of abnormal lactate and ScvO₂ under distinct pretransfusion hemoglobin

concentrations. However, they failed to provide valid data on mortality with a relatively small sample size provided. Recently, Bergamin and colleagues focused on cancer patients who developed septic shock in the ICU through a single-center RCT [27]. Indeed, tumor patients that were complicated by septic shock were in urgent need of blood transfusion as high risk of anemia[17, 34]. Ideally, the more restrictive threshold for transfusion might reduce the occurrence of multiple transfusion-related complications. In this study, we conducted a comprehensive meta-analysis after enrolled all recently published RCTs that covered septic shock cases. No marked difference in mortality was observed between the transfusion threshold of hemoglobin < 7 g/dl and the more liberal transfusion threshold (OR: 1.08; 95% CI, 0.82-1.41; P=0.54; I²=20%). We assumed that this results might be, at least in part, due to the overwhelming weight that the TRISS trial carried and the relatively low quality of the other three studies. Moreover, the study by Mazza BF et al. [18] enrolled participants with a diagnosis of malignant tumoral, which might generate heterogeneity. Taken together, we can't determine that blood transfusion at thresholds of 7 g/dl is the optimal transfusion threshold for patients with septic shock based on current evidences, which urges more as well as large clinical trials.

Strengths and limitations

Our meta-analysis is the first report concerning the feasibility of a transfusion threshold of hemoglobin < 7 g/dl with regard to short-term mortality in critically ill patients. Unlike the previously published meta-analyses, which enrolled studies with different restrictive transfusion thresholds, we only included RCTs that specified the restrictive RBC transfusion threshold as a pretransfusion hemoglobin concentration less than 7 g/dl. Simultaneously, we performed an updated and comprehensive Page 19 of 41

BMJ Open

analysis that focused on ICU patients with septic shock. Meanwhile, this analysis revealed no evidence of significant publication bias according to visual inspection of the funnel plot, Begg's test and Egger's test.

Some limitations are also noted in the current systematic review and meta-analysis. Firstly, the number of studies we enrolled was not large enough due to the strict inclusion criteria of a restrictive transfusion threshold of hemoglobin < 7g/dl. Five relevant studies that discussed the two different transfusion thresholds among critically ill patients were excluded because of their different definition of restrictive RBC transfusion thresholds [24, 35-38]. Secondly, the heterogeneity in our meta-analysis was relatively high, which was caused by different outcome measurements and clinical settings. Some trials with low quality evidence and insufficient participants might be another source of heterogeneity. Correspondingly, we tried to eliminate the heterogeneity by conducting a subgroup analysis and analyzing the effects. Thirdly, there was imperfect blinding of the study participants in the trials mainly owing to the nature of the interventions. Fourthly, the sample sizes of all incorporated RCTs were varied. We applied the Mantel-Haenszel method to address this diversity in sample sizes and to avoid our results from being dominated by the larger studies. Finally, we failed to testify if hemoglobin level less than 7 g/dl is the optimal threshold for the blood transfusions in critically ill patients and in those with septic shock basing on a lack of sufficient evidence.

Conclusions

The present meta-analysis of RCTs focused on the effect of RBC transfusions at the threshold of hemoglobin < 7 g/dl on the survival and prognosis of ICU patients. RBC transfusions at the threshold of hemoglobin < 7 g/dl did not result in significantly different in short-term mortality when compared with transfusions administered at a more liberal threshold; there were also no differences in the length of ICU stay or the rates of myocardial infarctions and ischemic events. Within the ICU patient population with septic shock, RBC transfusions at the restrictive threshold did not improve short-term mortality compared with transfusions at the more liberal threshold.

Acknowledgements

 This work was supported by grants from the National Natural Science Foundation (No. 81730057) and the National Key Research and Development Program of China (No. 2017YFC1103302).

Conflicts of Interest

The authors have no conflicts of interest to declare.

Abbreviations

RBCs: Red blood cell; ICUs: Intensive care units; MI: Myocardial infarction; ORs: Odds ratios; RCTs: Randomized controlled trials; TRICC: Transfusion requirements in critical care; PRISMA: Preferred items for systematic reviews and meta-analyses; GRADE: Grading of recommendations, assessment, development and evaluation; CIs: Confidence intervals; M-H: Mantel-Haenszel; TIA: Transient ischemic attack; TRAHT: Transfusion requirements after head trauma; TRICOP: Transfusion requirements in critically ill oncological patients.

Author contributions

YMY and ZFX conceived the meta-analysis. RQY and CR extracted all data. YBZ and ZCZ undertook and refined the searches. RQY and CR co-wrote the paper. RQY undertook the statistical analyses. All authors contributed to and revised the final manuscript.

References

1. Russell JA, Phang PT. The oxygen delivery/consumption controversy. Approaches to management of the critically ill. *American journal of respiratory and critical care medicine*. 1994; 149: 533-7.

2. Klein HG, Spahn DR, Carson JL. Red blood cell transfusion in clinical practice. *Lancet* (*London, England*). 2007; 370: 415-26.

3. Amin M, Fergusson D, Aziz A, Wilson K, Coyle D, Hebert P. The cost of allogeneic red blood cells--a systematic review. *Transfusion medicine (Oxford, England)*. 2003; 13: 275-85.

4. Madjdpour C, Spahn DR. Allogeneic red blood cell transfusions: efficacy, risks, alternatives and indications. *British journal of anaesthesia*. 2005; 95: 33-42.

5. Marik PE, Corwin HL. Efficacy of red blood cell transfusion in the critically ill: a systematic review of the literature. *Critical care medicine*. 2008; 36: 2667-74.

6. Hopewell S, Omar O, Hyde C, Yu LM, Doree C, Murphy MF. A systematic review of the effect of red blood cell transfusion on mortality: evidence from large-scale observational studies published between 2006 and 2010. *BMJ open.* 2013; 3.

7. Hebert PC, Wells G, Blajchman MA, Marshall J, Martin C, Pagliarello G, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. *The New England journal of medicine*. 1999; 340: 409-17.

8. Holst LB, Petersen MW, Haase N, Perner A, Wetterslev J. Restrictive versus liberal transfusion strategy for red blood cell transfusion: systematic review of randomised trials with meta-analysis and trial sequential analysis. *BMJ (Clinical research ed)*. 2015; 350: h1354.

9. Carson JL, Carless PA, Hebert PC. Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion. *The Cochrane database of systematic reviews*. 2012; Cd002042.

10. Hebert PC, Yetisir E, Martin C, Blajchman MA, Wells G, Marshall J, et al. Is a low transfusion threshold safe in critically ill patients with cardiovascular diseases? *Critical care medicine*. 2001; 29: 227-34.

11. Salpeter SR, Buckley JS, Chatterjee S. Impact of more restrictive blood transfusion

strategies on clinical outcomes: a meta-analysis and systematic review. *The American journal of medicine*. 2014; 127: 124-31.e3.

12. Fominskiy E, Putzu A, Monaco F, Scandroglio AM, Karaskov A, Galas FR, et al. Liberal transfusion strategy improves survival in perioperative but not in critically ill patients. A meta-analysis of randomised trials. *British journal of anaesthesia*. 2015; 115: 511-9.

13. Chong MA, Krishnan R, Cheng D, Martin J. Should Transfusion Trigger Thresholds Differ for Critical Care Versus Perioperative Patients? A Meta-Analysis of Randomized Trials. *Critical care medicine*. 2018; 46: 252-63.

14. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). *Jama*. 2016; 315: 801-10.

15. Zarychanski R, Doucette S, Fergusson D, Roberts D, Houston DS, Sharma S, et al. Early intravenous unfractionated heparin and mortality in septic shock. *Critical care medicine*. 2008; 36: 2973-9.

16. Rosland R, Hagen M, Haase N, Holst L, Plambech M, Madsen K, et al. Red blood cell transfusion in septic shock - clinical characteristics and outcome of unselected patients in a prospective, multicentre cohort. In: Scandinavian journal of trauma, resuscitation and emergency medicine: 142014.

17. Holst L, Haase N, Wetterslev J, Wernerman J, Guttormsen A, Karlsson S, et al. Lower versus higher hemoglobin threshold for transfusion in septic shock. In: New England journal of medicine: 1381-912014.

18. Mazza BF, Freitas FG, Barros MM, Azevedo LC, Machado FR. Blood transfusions in septic shock: is 7.0 g/dL really the appropriate threshold? *Revista Brasileira de terapia intensiva*. 2015; 27: 36-43.

19. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Annals of internal medicine.* 2009; 151: 264-9, w64.

20. Bergamin F AJ, Park C, Osawa E, Silva J, Galas F, Nagaoka D, Fukushima J, Vieira S, Candido L, Oshiro CO, Vincent JL, Hajjar L. Transfusion requirements in septic shock patients: a randomized controlled trial. *Critical Care.* 2014; 18: P112.

21. Robertson CS, Hannay HJ, Yamal JM, Gopinath S, Goodman JC, Tilley BC, et al. Effect of erythropoietin and transfusion threshold on neurological recovery after traumatic brain injury: a randomized clinical trial. *Jama*. 2014; 312: 36-47.

22. Villanueva C, Colomo A, Bosch A, Concepcion M, Hernandez-Gea V, Aracil C, et al. Transfusion strategies for acute upper gastrointestinal bleeding. *The New England journal of medicine*. 2013; 368: 11-21.

23. Walsh TS, Boyd JA, Watson D, Hope D, Lewis S, Krishan A, et al. Restrictive versus liberal transfusion strategies for older mechanically ventilated critically ill patients: a randomized pilot trial. *Critical care medicine*. 2013; 41: 2354-63.

24. Jairath V, Kahan BC, Gray A, Dore CJ, Mora A, James MW, et al. Restrictive versus liberal blood transfusion for acute upper gastrointestinal bleeding (TRIGGER): a pragmatic, open-label, cluster randomised feasibility trial. *Lancet (London, England)*. 2015; 386: 137-44.

25. Hovaguimian F, Myles PS. Restrictive versus Liberal Transfusion Strategy in the Perioperative and Acute Care Settings: A Context-specific Systematic Review and Meta-analysis of Randomized Controlled Trials. *Anesthesiology*. 2016; 125: 46-61.

26. Gobatto A, Azevedo M, Solla D, Paiva W, Malbouisson L, Shu E. Transfusion requirements after head trauma (TRAHT): a randomized clinical trial. In: Intensive care medicine experimental Conference: 30th annual congress of the european society of intensive care medicine, ESICM 2017 Austria: 2017.

27. Bergamin FS, Almeida JP, Landoni G, Galas F, Fukushima JT, Fominskiy E, et al. Liberal Versus Restrictive Transfusion Strategy in Critically III Oncologic Patients: The Transfusion Requirements in Critically III Oncologic Patients Randomized Controlled Trial. *Critical care medicine*. 2017; 45: 766-73.

28. Dupuis C, Sonneville R, Adrie C, Gros A, Darmon M, Bouadma L, et al. Impact of transfusion on patients with sepsis admitted in intensive care unit: a systematic review and meta-analysis. *Annals of intensive care*. 2017; 7: 5.

29. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. In: New England journal of medicine: 1368-772001.

30. Cata JP, Wang H, Gottumukkala V, Reuben J, Sessler DI. Inflammatory response, immunosuppression, and cancer recurrence after perioperative blood transfusions. *British journal of anaesthesia*. 2013; 110: 690-701.

31. Amato A, Pescatori M. Perioperative blood transfusions for the recurrence of colorectal cancer. *The Cochrane database of systematic reviews.* 2006; Cd005033.

32. Mynster T, Christensen IJ, Moesgaard F, Nielsen HJ. Effects of the combination of blood transfusion and postoperative infectious complications on prognosis after surgery for colorectal cancer. Danish RANX05 Colorectal Cancer Study Group. *The British journal of surgery*. 2000; 87: 1553-62.

33. den Uil CA, Lagrand WK, Spronk PE, Simoons ML. Does red blood cell transfusion result in a variate microvascular response in sepsis? *Critical care medicine*. 2007; 35: 2464-5; author reply 5.

34. Soares M, Caruso P, Silva E, Teles JM, Lobo SM, Friedman G, et al. Characteristics and outcomes of patients with cancer requiring admission to intensive care units: a prospective multicenter study. *Critical care medicine*. 2010; 38: 9-15.

35. Carson J, Brooks M, Abbott J, Chaitman B, Kelsey S, Triulzi D, et al. Liberal versus restrictive transfusion thresholds for patients with symptomatic coronary artery disease. In: American heart journal: 964-71.e12013.

36. Cooper HA, Rao SV, Greenberg MD, Rumsey MP, McKenzie M, Alcorn KW, et al.

Conservative versus liberal red cell transfusion in acute myocardial infarction (the CRIT Randomized Pilot Study). *The American journal of cardiology*. 2011; 108: 1108-11.

37. Hebert PC, Wells G, Marshall J, Martin C, Tweeddale M, Pagliarello G, et al. Transfusion requirements in critical care. A pilot study. Canadian Critical Care Trials Group. *Jama*. 1995; 273: 1439-44.

38. Blair SD, Janvrin SB, McCollum CN, Greenhalgh RM. Effect of early blood transfusion on gastrointestinal haemorrhage. *The British journal of surgery*. 1986; 73: 783-5.

for occr review only

Figure legends

Figure 1. Flow chart for study selection. Online databases, including Cochrane Library, EMBASE, and PubMed, were systematically searched. Finally, nine RCTs with 3551 patients were included in the meta-analysis.

Figure 2. Forest plot of all-cause short-term mortality in ICU patients. The odds ratio and 95% CI for short-term mortality between the restrictive and liberal transfusion thresholds are presented in the forest plot. The threshold of hemoglobin < 7 g/dl showed no obvious improvement in short-term mortality when compared with the liberal threshold.

Figure 3. Forest plot of the length of hospital stay. The forest plot shows the mean difference and 95% CI for the length of hospital stay between the two groups. Blood transfusion at the restrictive threshold resulted in shorter hospital stays than blood transfusion at the more liberal threshold.

Figure 4. Forest plot of the length of ICU stay. The difference in the length of ICU stay in the groups with different transfusion thresholds is shown by the mean difference and 95% CI in the forest plot. No marked improvement was seen in the length of ICU stay with a transfusion threshold of hemoglobin < 7 g/dl.

Figure 5. Forest plot of myocardial infarction in ICU patients after RBCs transfusion. The forest plot shows the odds ratios and 95% CI for myocardial infarction in the groups of ICU patients with different transfusion thresholds. Blood transfusion at a threshold of hemoglobin < 7 g/dl displayed no significant decrease in

the rate of myocardial infarction compared with the more liberal threshold.

Figure 6. Forest plot of ischemic events/thromboembolic events in ICU patients after RBC transfusions. The odds ratios and 95% CI for ischemic/thromboembolic events are presented in the forest plot. No significant difference was noted in ischemic/thromboembolic events between the group with the threshold of 7 g/dl hemoglobin compared with the group with the more liberal threshold.

Figure 7. Forest plot for short-term mortality following subgroup analysis. The forest plot shows the odds ratios and 95% CI for the all-cause short-term mortality of patients receiving RBC transfusions at various thresholds according to the subgroup analysis of the septic shock and nonsepsis groups. Restrictive transfusion was incapable of decreasing short-term mortality in septic ICU patients.

L.C.Z.O.J.L

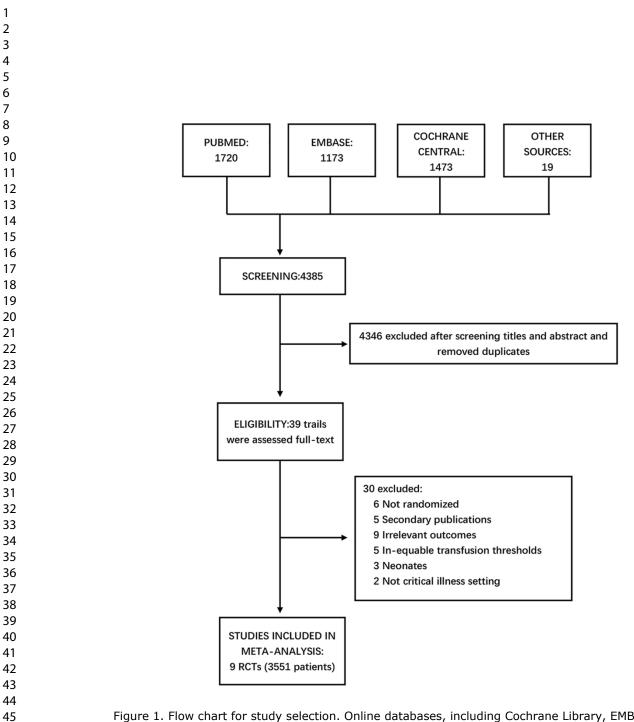


Figure 1. Flow chart for study selection. Online databases, including Cochrane Library, EMBASE, and PubMed, were systematically searched. Finally, nine RCTs with 3551 patients were included in the metaanalysis.

Restrictive		tive	Liber	al		Odds Ratio	Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Random, 95% C	1
Bergamin 2014	41	73	34	63	10.1%	1.09 [0.55, 2.15]			
Bergamin 2017	84	151	67	149	15.6%	1.53 [0.97, 2.42]			
Gobatto 2017	7	23	1	21	1.4%	8.75 [0.97, 78.65]			
Hebert 1999	78	418	98	420	19.7%	0.75 [0.54, 1.05]			
Holst 2014	168	502	175	496	22.4%	0.92 [0.71, 1.20]		+	
Mazza 2015	11	22	13	24	4.5%	0.85 [0.27, 2.70]			
Robertson 2014	9	99	9	101	6.0%	1.02 [0.39, 2.69]			
Villanueva 2013	23	444	41	445	13.5%	0.54 [0.32, 0.91]			
Walsh 2013	12	51	16	49	7.0%	0.63 [0.26, 1.53]			
Total (95% CI)		1783		1768	100.0%	0.92 [0.70, 1.20]		•	
Total events	433		454						
Heterogeneity: Tau ² =	0.07; Chi ²	= 15.1	5, df = 8 (P = 0.0	6); l ² = 47	%			+ +
Test for overall effect: Z = 0.65 (P = 0.52)						0.02	0.1 1 Restrictive Liberal	10 5	

Figure 2. Forest plot of all-cause short-term mortality in ICU patients. The odds ratio and 95% CI for short-term mortality between the restrictive and liberal transfusion thresholds are presented in the forest plot. The threshold of hemoglobin < 7 g/dl showed no obvious improvement in short-term mortality when compared with the liberal threshold.

 Study or Subgroup
 Restrictive
 Liberal
 Mean Difference
 Mean Difference

 Bergamin 2017
 13
 5
 151
 15
 149
 48.1%
 -2.00 (-3.02, -0.98)

 Hebert 1999
 34.8
 155
 19.4
 420
 139%
 -0.70 (-3.33, 19.3)

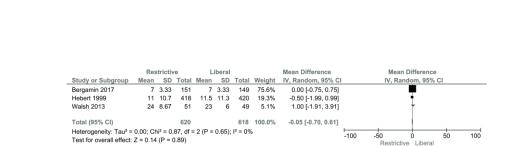
 Vilianueva 2013
 9.6
 8.7
 444
 11.5
 12.8
 445
 33.7%
 -1.90 (-3.34, -0.46)

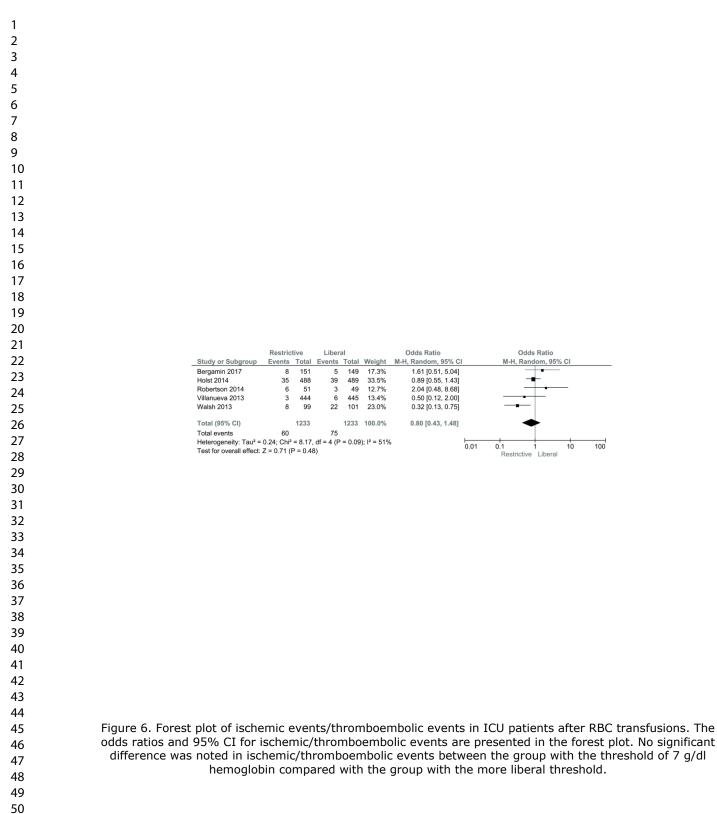
 Walsh 2013
 34
 17
 51
 31
 7.33
 49
 4.22%
 3.00 (-2.10, 8.10)

 Total (95% CI)
 1064
 1003
 100.0%
 -1.57 [-2.65, -0.50]
 -100
 -50
 0
 50
 100

 Heterogeneity, Tau* = 0.35; Ch* = 4.22, df = 3 (P = 0.24); P = 29%
 Test for overall effect; Z = 2.87 (P = 0.04)
 Test for overall effect; Z = 2.87 (P = 0.04);
 Test for overall effect; Z = 2.87 (P = 0.04);
 Test for overall effect; Z = 2.87 (P = 0.04);
 Test for overall effect; Z = 2.87 (P = 0.04);
 Test for overall effect; Z = 2.87 (P = 0.04);
 Test for overall effect; Z = 2.87 (P = 0.04);
 Test for overall effect; Z = 2.87 (P = 0.04);
 Test for overall effect; Z = 2.87 (P = 0.04);
 Test for overall effect; Z = 2.87 (P = 0.04);
 Te

Figure 3. Forest plot of the length of hospital stay. The forest plot shows the mean difference and 95% CI for the length of hospital stay between the two groups. Blood transfusion at the restrictive threshold resulted in shorter hospital stays than blood transfusion at the more liberal threshold.

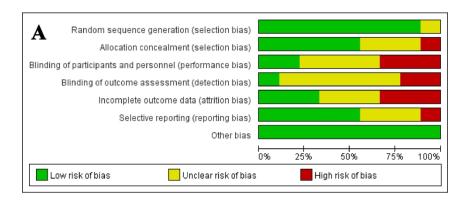


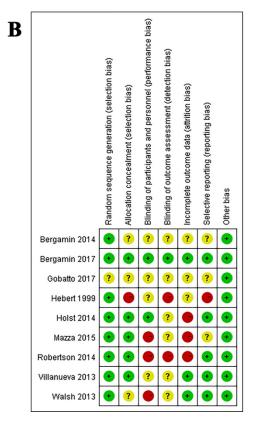

Figure 4. Forest plot of the length of ICU stay. The difference in the length of ICU stay in the groups with different transfusion thresholds is shown by the mean difference and 95% CI in the forest plot. No marked improvement was seen in the length of ICU stay with a transfusion threshold of hemoglobin < 7 g/dl.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Restrictive Liberal Odds Ratio Odds Ratio Events Total Events Total Weight M-H, Random, 95% Cl Study or Subgroup M-H, Random, 95% Cl 149 19.2% 0.99 [0.24, 4.02] Bergamin 2017 3 Hebert 1999 420 23.4% 445 47.8% 0.25 [0.07, 0.88] Villanueva 2013 0.61 [0.25, 1.49] Walsh 2013 9.5% 0.96 [0.13, 7.09] Total (95% CI) 0.56 [0.30, 1.04] 1063 100.0% Total events Heterogeneity: Tau² = 0.00; Chi² = 2.57, df = 3 (P = 0.46); I² = 0% 0.01 0.1 Test for overall effect: Z = 1.82 (P = 0.07) Restrictive Liberal

Figure 5. Forest plot of myocardial infarction in ICU patients after RBCs transfusion. The forest plot shows the odds ratios and 95% CI for myocardial infarction in the groups of ICU patients with different transfusion thresholds. Blood transfusion at a threshold of hemoglobin < 7 g/dl displayed no significant decrease in the rate of myocardial infarction compared with the more liberal threshold.


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml



3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	Restrictive Liberal Odds Ratio Odds Ratio
18	Study or Subgroup Events Total Events Total Weight M-H, Random, 95% Cl M-H, Random, 95% Cl 1.4.1 septic shock
19	Bergamin 2014 41 73 34 63 10.1% 1.09 [0.55, 2.15]
20	Hoist 2014 168 502 175 496 22.4% 0.92 [0.71, 1.20]
21	Mazza 2015 11 22 13 24 4.5% 0.85 [0.27, 2.70] Subtotal (95% CI) 748 732 52.5% 1.08 [0.82, 1.41]
22	Total events 304 289 Heterogeneity: Tau ² = 0.02; Chi ² = 3.75, df = 3 (P = 0.29); i ² = 20%
23	Test for overall effect: $Z = 0.54$ (P = 0.59)
24	1.4.2 non-sepsis
25	Gobatto 2017 7 23 1 21 1.4% 8.75 [0.97, 78.65] Hebert 1999 78 418 98 420 19.7% 0.75 [0.54, 1.05]
26	Robertson 2014 9 99 9 101 6.0% 1.02 [0.39, 2.69]
	Villanueva 2013 23 444 41 445 13.5% 0.54 [0.32, 0.91]
27	Subtotal (95% CI) 1035 1036 47.5% 0.75 (0.50, 1.14]
28	Total events 129 165 Heterogeneity: Tau ² = 0.08; Chi ² = 6.81, df = 4 (P = 0.15); i ² = 41%
29	Test for overall effect: Z = 1.34 (P = 0.18)
30	Total (95% Cl) 1783 1768 100.0% 0.92 [0.70, 1.20] ♦ Total events 433 454
31	Heterogeneity: Tau ² = 0.07; Chi ² = 15.15, df = 8 (P = 0.06); l ² = 47%
32	Test for overall effect: Z = 0.65 (P = 0.52) Test for subgroup differences: Chi ² = 2.01, df = 1 (P = 0.16), l ² = 50.3%
33	
34	
35	
36	
37	
38	
30 39	
52	

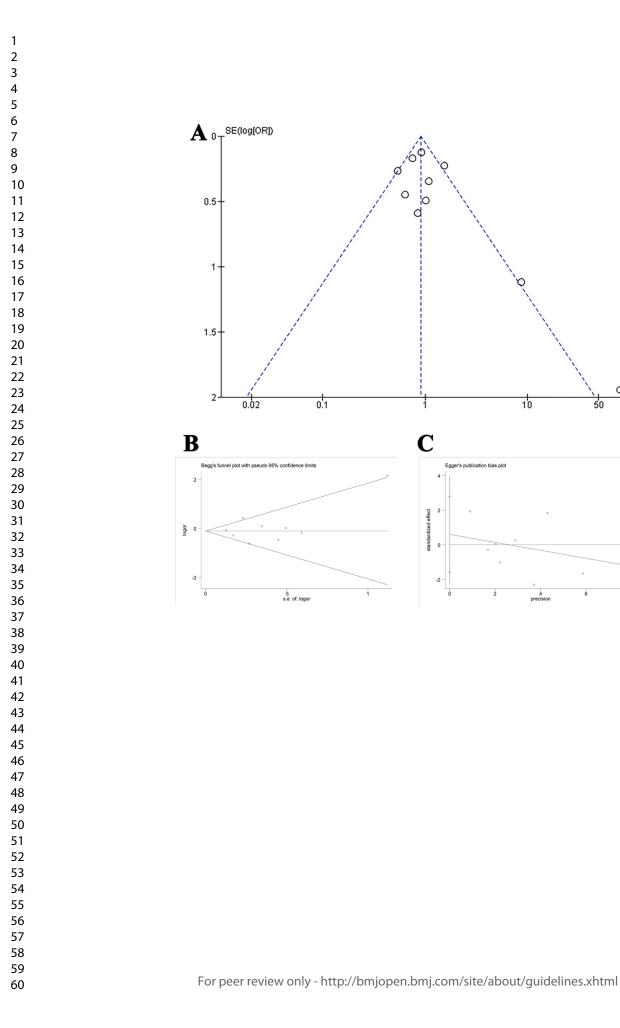
Figure 7. Forest plot for short-term mortality following subgroup analysis. The forest plot shows the odds ratios and 95% CI for the all-cause short-term mortality of patients receiving RBC transfusions at various thresholds according to the subgroup analysis of the septic shock and nonsepsis groups. Restrictive transfusion was incapable of decreasing short-term mortality in septic ICU patients.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

OR

50


10

4 precisio

6

8

ion bias plo

Supplemental	Table 1	Summary	of Findings
Supplemental	I abit I	Summary	orrinuings

Outcomes	Illustrative con	nparative risks* (95% CI)	Relative effect	No of Participants	Quality of the evidence	Comments
	Assumed risk	Corresponding risk	(95% CI)	(studies)	(GRADE)	
	Control	Critical illness				
short-term mortality	Study populati	ion	OR 0.92	3551	$\oplus \oplus \oplus \ominus$	
	257 per 1000	241 per 1000	(0.7 to 1.2)	(9 studies)	moderate ¹	
		(195 to 293)				
	Moderate					
	327 per 1000	309 per 1000				
		(254 to 368)				
Myocardial Infraction	Study populati	ion	OR 0.56	2127	$\oplus \oplus \oplus \ominus$	
	29 per 1000	17 per 1000	(0.3 to 1.04)	(4 studies)	moderate ¹	
		(9 to 30)				
	Moderate	Moderate				
	29 per 1000	16 per 1000				
		(9 to 30)		101		
Ischemic event	Study populati	ion	OR 0.8	2466	$\oplus \oplus \oplus \ominus$	
	61 per 1000	49 per 1000	(0.43 to 1.48)	(5 studies)	moderate ¹	
		(27 to 87)				
	Moderate					
	61 per 1000	49 per 1000				
		(27 to 88)				

 BMJ Open

mortality - septic shock	Study populati	ion	OR 1.08	1480	$\oplus \oplus \oplus \ominus$
	395 per 1000	413 per 1000	(0.82 to 1.41)	(4 studies)	moderate ¹
		(349 to 479)			
	Moderate				
	495 per 1000	514 per 1000			
		(446 to 580)			
mortality - non-sepsis	Study populati	ion	OR 0.75	2071	$\oplus \oplus \oplus \ominus$
	159 per 1000	124 per 1000	(0.5 to 1.14)	(5 studies)	moderate ¹
		(87 to 178)			
	Moderate				
	92 per 1000	71 per 1000			
		(48 to 104)			
ICU length of stay		The mean icu length of stay in the intervention groups was		1238	$\oplus \Theta \Theta \Theta$
		0.05 lower		(3 studies)	very low ¹
		(0.7 lower to 0.61 higher)			
hospital length of stay		The mean hospital length of stay in the intervention groups was		2127	$\oplus \oplus \ominus \ominus$
		1.57 lower		(4 studies)	low ¹
		(2.65 to 0.5 lower)			

CI: Confidence interval; OR: Odds ratio;

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

¹ No explanation was provided

For peer review only

BMJ Open

PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) Checklist

www.prisma-statement.org

You must report the page number in your manuscript where you consider each of the items listed in this checklist. If you have not included this information, either revise your manuscript accordingly before submitting or note N/A.

Section/Topic	ltem No.	Checklist item	Reported on Page No.
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Section/Topic	Item No.	Checklist item	Reported or Page No.
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	
FUNDING	r		

Page 41 of 41

BMJ Open

Section/Topic	ltem No.	Checklist item	Reported on Page No.
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	
	ati A, Tetz loi:10.137	zlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRIS 71/journal.pmed1000097	SMA Statement. PL
Once you have compl document. It must be	eted this uploaded	Zlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRIS 71/journal.pmed1000097 checklist, please save a copy and upload it as part of your submission. Please DO NOT include this checklist as part of the n d as a separate file.	nain manuscript

BMJ Open

Is hemoglobin below 7.0 g/dl an optimal trigger for allogenic red blood cell transfusion in patients admitted to intensive care units? A meta-analysis and systematic review

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-030854.R1
Article Type:	Original research
Date Submitted by the Author:	02-Oct-2019
Complete List of Authors:	Yao, Ren; Changhai Hospital Ren, Chao; Chinese PLA General Hospital, Zhang, Zi; Changhai Hospital Zhu, Yibing; Beijing Fuxing Hospital, ICU Xia, Zhao Fan; Changhai Hospital, Department of Burns YAO, Yongming; Fourth Medical Center of the Chinese PLA General Hospital
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Intensive care
Keywords:	Red blood cells, Transfusion, Intensive care units, Septic shock

3 4 5	1	Is hemoglobin below 7.0 g/dl an optimal trigger for allogenic red
6 7	2	blood cell transfusion in patients admitted to intensive care units? A
8 9 10	3	meta-analysis and systematic review
11 12 13	4	
14 15	5	Ren-qi Yao ¹ , Chao Ren ² , Zi-cheng Zhang ³ , Yi-bing Zhu ⁴ , Zhao-fan Xia ¹ ,
16 17	6	Yong-ming Yao ²
17 18 19	7	
20 21 22	8	¹ Department of Burn Surgery, Changhai Hospital, the Second Military Medical
22 23 24	9	University, Shanghai 200433, People's Republic of China.
25 26 27	10	² Trauma Research Center, Fourth Medical Center of the Chinese PLA General
27 28 29	11	Hospital, Beijing 100048, People's Republic of China.
30 31 32	12	³ Department of Orthopedics, Changhai Hospital, the Second Military Medical
33 34	13	University, Shanghai 200433, People's Republic of China.
35 36 37	14	⁴ Department of Critical Care Medicine, Fuxing Hospital, Capital Medical University,
38 39 40	15	Beijing 100038, People's Republic of China.
41 42	16	
43 44 45	17	
46 47	18	Corresponding Authors: Zhao-fan Xia, MD, PhD, Department of Burn Surgery,
48 49 50	19	Changhai Hospital, the Second Military Medical University, 168 Changhai Road,
51 52	20	Yangpu District, Shanghai 200433, People's Republic of China. Tel: (+86)
53 54 55	21	2131161821; Email: xiazhaofan@163.com. Yong-ming Yao, MD, PhD, Trauma
56 57 58	22	Research Center, Fourth Medical Center of the Chinese PLA General Hospital, 51
59 60	23	Fucheng Road, Haidian District, Beijing 100048, People's Republic of China. Tel:

2		
3 4	1	(+86) 1066867394; Fax: (+86) 1068989955; Email: c_ff@sina.com.
5		(100) 1000007551, 1 u.e. (100) 1000505553, Emun. 0_11@5mu.com.
6 7	2	
8		
9	3	Ren-qi Yao and Chao Ren contributed equally to this manuscript.
10 11		
12	4	
13 14		
14		
16		
17 18		
19		
20 21		
21		
23		
24 25		
26		
27 28		
29		
30 31		
32		
33 34		
35		
36		
37 38		
39		
40 41		
42		
43 44		
45		
46		
47 48		
49		
50 51		
52		
53		
54 55		
56		
57 58		
59		
60		2
		۷۲

BMJ Open

2		
3 4	1	Abstract
5	2	Objectives: We employed a comprehensive systematic review and meta-analysis
6	2	Objectives. We employed a comprehensive systematic review and meta-analysis
7 8	3	to assess benefits and risks of a threshold of hemoglobin level below 7g/dl vs liberal
9 10 11	4	transfusion strategy among critically ill patients, and even patients with septic shock.
12 13	5	Design: Systematic review and meta-analysis.
14 15	6	Data sources: We performed systematical searches for relevant randomized
16 17	7	controlled studies (RCTs) in the Cochrane Library, EMBASE, and PubMed databases
18 19 20	8	up to Sep 1, 2019.
21 22	9	Eligibility criteria: RCTs among adult ICU patients comparing 7 g/dl as
23 24 25	10	restrictive strategy and liberal transfusion were incorporated.
25 26 27	11	Data extraction and synthesis: The clinical outcomes, including short-term
28 29	12	mortality, length of hospital stay, length of ICU stay, myocardial infarction (MI), and
30 31 32	13	ischemic events, were screened and analyzed after data collection. We applied odds
32 33 34	14	ratios (ORs) to analyze dichotomous outcomes and mean differences to analyze
35 36	15	continuous outcomes with fixed or random effects model.
37 38	16	Results: Eight RCTs with 3415 patients were included. Compared with a more
39 40 41	17	liberal threshold, an RBC transfusion threshold < 7 g/dl hemoglobin showed no
42 43	18	significant difference in short-term mortality (OR: 0.90, 95% CI: 0.67-1.21; P=0.48;
44 45	19	I ² =53%), length of ICU stay (MD: -0.09, 95% CI: -0.74-0.56, P=0.78, I ² =0%), or
46 47 48	20	ischemic events (OR, 0.80; 95% CI, 0.43-1.48; P=0.48; I ² =51%). However, the length
49 50 51	21	of hospital stay (MD: -1.72, 95% CI: -2.510.94, $P < 0.001$, I ² =18%) was shorter, and
52 53	22	the incidence of MI (OR: 0.54, 95% CI: 0.30-0.98, P=0.04; I ² =0%) was lower in the
54 55 56	23	group with the threshold < 7 g/dl than that with the more liberal threshold.
50 57 58	24	Conclusions: A RBC transfusion threshold < 7 g/dl hemoglobin is incapable of
59 60	25	decreasing short-term mortality in ICU patients according to currently published 3

- 1 evidence, while it might have potential role in shortening hospitalization as well as
 - 2 reducing MI incidence.
 - 3 Keywords: Red blood cells, Transfusion, Intensive care units, Septic shock

to per terien ont

1 2

3	
4	
5	
6	
7	
8	
0	
9 10	
11	
12	
13	
14	
15	
10	
14 15 16 17	
17	
18	
19	
20	
21	
21 22	
∠∠ 22	
23	
24	
23 24 25 26	
26	
27	
28	
20	
29	
30 31 32 33 34 35 36	
31	
32	
33	
31	
24	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Strengths and limitations of this study

1. This meta-analysis focused on the feasibility of a transfusion threshold of
 hemoglobin < 7 g/dl with regard to short-term mortality in critically ill patients
 through only including RCTs that specified the restrictive RBC transfusion threshold
 as a pretransfusion hemoglobin concentration less than 7 g/dl.

6 2. In this meta-analysis, we performed an updated and comprehensive analysis7 that focused on ICU patients with septic shock.

3. The number of studies we enrolled was not large enough due to the strict
inclusion criteria of a restrictive transfusion threshold of hemoglobin < 7 g/dl.

10 4. There was imperfect blinding of the study participants in the trials mainly

11 owing to the nature of the interventions.

1 Introduction

Allogenic red blood cell (RBC) transfusion remains a commonly used and crucial treatment among patients admitted to the intensive care unit (ICU), as anemia is commonly complicated and critically involved in poor outcomes¹. Every year, approximately 75 million units of blood are reportedly obtained worldwide, with higher levels of consumption in the UK, Canada, and US²³. In ICU settings, 40%~50% of critically ill patients receive at least one unit of RBC transfusion, and the average consumption reaches five units during their ICU stay⁴. Undoubtedly, appropriate blood transfusion can benefit critical ill patients by increasing oxygen delivery and reducing oxygen debt, protecting against multiple organ dysfunction⁵. While these data also urge the cautious use of RBCs because of the substantial cost and supply shortage. For example, Holst LB and colleagues have reported that the units of RBCs used for liberal transfusion trigger strategies are almost twice the amount of RBCs transfusion with restrictive strategies, which puts great pressure for hospital cost and source of RBC products as no significant difference is noted between restrictive and liberal triggers in assessment of primary outcomes⁶. Additionally, the risk of complications, such as volume overload, infection, transfusion reactions, and even increased mortality, also raises concerns about the threshold for RBC transfusion in ICU patients ⁷⁻⁹. However, the optimal thresholds for RBC transfusion in diverse critical care settings remain controversial. The results of the Transfusion Requirements in Critical Care (TRICC) study have confirmed the superiority of a restrictive transfusion strategy (RBC transfusions were given when

Page 7 of 47

BMJ Open

1	hemoglobin concentration was below 7 g/dl) in controlling the 30-day mortality of
2	critical ill patients with younger age and lower Acute Physiology and Chronic Health
3	Evaluation (APACHE II) score. Indeed, conservative blood transfusion could result in
4	a marked decline in the use of RBCs, which further decreases the in-hospital cost of
5	ICU patients ² ¹⁰ . Recently, various studies have extensively discussed transfusion
6	strategies to optimize the outcomes. For instance, no significance was shown between
7	restrictive and liberal transfusion strategies in terms of adverse effects, as reported by
8	some studies ¹¹ ¹² . In addition, other researchers found that blood transfusions
9	triggered at a threshold of 7 g/dl are much safer in critically ill patients with
10	cardiovascular diseases ¹⁰ ¹³ . However, Silva Junior JM et al have found that RBC
11	transfusion was an independent risk factor for mortality of critical ill patients,
12	followed with longer ICU and hospital stay, which is associated with different
13	decisions regarding transfusion triggers ¹⁴ . Other indexes, such as oxygen delivery
14	(DO_2) and oxygen consumption (VO_2) , also show marked deviation among various
15	studies. Study from Conrad SA et al reveals significant improvement in DO ₂ but no
16	influence in VO ₂ after blood transfusion on septic patients ¹⁵ . While Steffes CP and
17	colleagues have reported that blood transfusion is capable of elevating DO_2 and VO_2
18	in septic surgical patients ¹⁶ . Therefore, the thresholds for blood transfusion should be
19	different for patients with various diseases and need to be carefully evaluated.

Actually, the benefits and harms of blood transfusions in patients admitted to intensive care units have been discussed by many systematic reviews and meta-analyses, but the results remain controversial due to the distinct inclusion

1 2
3 4 5
6
7 8 9 10
11
12 13
14 15 16
17 18
19 20
21 22 23
24 25
26 27 28
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
31 32
33 34 35
36 37
38 39
40 41 42
43 44
45 46 47
48 49
50 51
52 53 54
55 56
57 58 59
59 60

1	criteria and outcome measurement across studies. ^{9 11 12 17-19} . Salpeter and colleagues					
2	found restrictive blood transfusion trigger at 7g/dl could significantly reduce mortality					
3	of disparate phase, as well as diverse transfusion-related complications compared to					
4	the liberal transfusion trigger. However, they didn't distinguish pediatric and adult					
5	ICU settings, and enrolled merely 3 RCTs ¹⁷ . Systematic reviews conducted by					
6	Fominskiy E et al revealed no statistical difference of 90-day mortality between two					
7	transfusion thresholds ¹⁸ . Nevertheless, recently updated publication by Chong and					
8	colleagues incorporated almost same RCTs as Fominskiy E et al did, while they					
9	identified a significant reduction of 30-day mortality in ICU patients with restrictive					
10	strategy in comparison of more liberal transfusion trigger ¹⁹ . In addition, the specific					
11	thresholds of hemoglobin concentration for effective RBC transfusion is one of the					
12	most important factors for decision of transfusion regarding various clinical practice.					
13	However, no studies have reported the impact of the transfusion threshold of 7 g/dl on					
14	the short-term outcomes of critically ill patients or the financial value of a different					
15	transfusion strategy, even though it is considered as a common trigger for restrictive					
16	transfusion strategy. Furthermore, different types of clinical conditions also show					
17	remarkable deviation in RBCs administration. For example, septic shock is commonly					
18	recognized as a substantial threat to ICU, and it is related to high hospital costs and					
19	poor outcomes ²⁰ . Anemia is also commonly complicated during the progression of					
20	sepsis, as it presents with insufficient tissue perfusion, like hypovolemic shock, and					
21	dysfunction of cellular metabolism, which cannot be reversed by prompt fluid					
22	resuscitation and the administration of vasoactive drugs. Indeed, blood transfusion is					

Page 9 of 47

BMJ Open

frequently administered as an efficient remedy for patients with septic shock, but the protocol for transfusion is different in patients with septic shock than in patients with other critical illnesses ^{1 21 22}. In fact, there is still a lack of conclusive data regarding the rational transfusion threshold for patients with septic shock ²² ²³. The transfusion requirements in septic shock (TRISS) trial did provide strong evidences that no significant difference was noted between RBC transfusion with lower and higher hemoglobin thresholds in long term mortality and adverse reactions²². However, other researchers found that RBC transfusion was related to unfavorable outcomes of septic patients, such as sequential organ failure assessment (SOFA) score and length of stay in ICU. In addition, the association between RBC transfusion and short-term outcomes of septic patients hasn't been established yet. In the present study, we aim to perform a comprehensive systematic review and meta-analysis specifically determining whether hemoglobin level below 7g/dl is an optimal trigger for blood transfusion among adult ICU patients when compared to more liberal transfusion thresholds by evaluating its impacts on short-term mortality and adverse reactions. Additionally, a subgroup analysis is further performed with patients with or without septic shock to seek the optimal transfusion strategy for this unique subset of critically ill patients.

20 Materials and methods

This systematic review and meta-analysis was conducted according to the
Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
20
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
55 54
55
56
57
58
59
60

1 statement²⁴.

3 Patient and Public Involvement

No patient involved.

5

4

2

6 Search strategy and information sources

7 Online databases, including Cochrane Library, EMBASE, and PubMed, were systematically searched. We conceived strategy comprised of following combination 8 9 of exploded Medical Subject Heading (MeSH) terms: "critical care", "intensive care unit", "blood transfusion". Detailed search strategy was presented in Supplementary 10 File 1. Relevant studies up to Sep 1, 2019, were searched without any language 11 12 limitations. In addition, ongoing trials and conference abstracts were identified to obtain additional evidence. We also obtained references by searching the reference 13 lists of reviews and trial registries. There was no language restriction for the search 14 15 process.

16

17 Eligibility and exclusion criteria

This meta-analysis included RCTs among adult ICU patients (age>18 years) who underwent allogenic RBC transfusion. The recruited studies had to compare two distinct blood transfusion thresholds, a restrictive threshold and a liberal one. The definition of transfusion thresholds in this systematic review was based on hemoglobin or hematocrit levels. Blood transfusion initiated at hemoglobin thresholds

BMJ Open

below 7 g/dl were termed restrictive strategies, while the liberal transfusions were
conducted at hemoglobin thresholds between 8.5 and 10 g/dl. Other types of studies,
including observational, cohort and case-control, were excluded. Trials with
pretransfusion hemoglobin concentrations higher than 7 g/dl were eliminated as well.
Only ICU patients were considered, while participants in other hospital departments
with critical illnesses were not eligible.

8 Study selection

9 Two reviewers (RQY and CR) independently screened the titles and abstracts of 10 the relevant trials. If the abstract of a potentially eligible article failed to provide 11 adequate information, the full-text version was then screened to determine its 12 eligibility. Differing opinions between the two authors were settled by discussion and 13 consensus. If a consensus could not be reached, a consulting group including two 14 experts (ZFX and YMY) resolved the disagreements.

16 Data collection

Two reviewers (RQY and CR) extracted the data from all eligible trials with a standardized and predesigned form. First author, year of publication, baseline characteristics, the total number of included patients and the clinical settings were recorded. The clinical outcomes (short-term mortality, length of hospital stay, length of ICU stay, myocardial infarction, and ischemic events) and study design were also obtained.

1	
1	
2	Risk of bias assessment
3	The Cochrane Collaboration tool was used to evaluate the risk of bias of the
4	RCTs. The randomization sequence, allocation concealment, blinding of personnel
5	and participants, risk of incomplete outcome data, selective reporting bias and other
6	sources of bias were assessed independently by two authors. Each clause was rated as
7	'low', 'high' or 'unclear' bias. The summarized risk of bias of each RCT was ranked
8	as low, moderate or high.
9	
10	Grading quality of evidence
11	The quality of evidence of each outcome was evaluated in accordance with the
12	Grading of Recommendations, Assessment, Development and Evaluation (GRADE)
13	methods. This procedure was conducted with GRADE Pro software 3.6 (McMaster
14	University 2014, Hamilton, Canada).
15	
16	Outcomes
17	The primary endpoint was all-cause short-term mortality, which was
18	preferentially analyzed by 28-day or 30-day mortality. In the case of unreported
19	short-term mortality, we contacted the authors for the original data or considered the
20	closest available mortality data. Secondary outcomes included the following
21	indicators: length of hospital stay, length of ICU stay, myocardial infarction, and
22	ischemic events.

1

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32 33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
52	
53	
54	
55	
56	
57	
58	
59	
60	

2	Data synthesis and analysis
3	The statistical analysis was conducted with ReviewManager (RevMan 5.3,
4	Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014). We
5	applied odds ratios (ORs) to analyze dichotomous outcomes and mean differences for
6	continuous outcomes. The pooled results were calculated with 95% confidence
7	intervals (CIs). Heterogeneity among studies for each outcome was assessed by
8	applying both χ^2 test and I^2 statistics. Either I^2 greater than 50% or p value of χ^2 test
9	less than 0.10 was deemed as statistically significant heterogeneity. If remarkable
10	heterogeneity existed in pooled results, random effects model combined with the
11	Mantel-Haenszel (M-H) method was used, or else, fixed effects model was applied
12	accordingly. For the small study bias, the funnel plot of the pooled short-term
13	mortality data was scanned visually by reviewers. Besides, by using Stata software,
14	version 12, we performed Begg's and Egger's tests to further assess the possible small
15	study bias. A sensitivity analysis was also performed by means of excluding each
16	study one at a time from the pooled effect. Additionally, we performed a subgroup
17	analysis based on the M-H model to determine the difference between septic shock
18	and non-sepsis groups.
19	

22

20 **Results**

21 Search results and the characteristics of the included studies

This systematic review and meta-analysis identified 4641 relevant citations; we

1
2 3
4 5
4 5 6 7
7
/ 8
0 0
10
7 8 9 10 11
13
14 15
15
16
17
16 17 18 19
19
20
20 21 22 23 24 25 26 27 28 29 30
22
23
24
25
26
27
28
29
20 21
31 32
33
34
34 35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51 52
53 54
54 55
55 56
50 57
57
59
60

1

1	removed duplicates and then scanned the titles and abstracts of 4600 studies.							
2	Eventually, the full-text articles for 41 trials were reviewed, and 8 RCTs met the							
3	inclusion criteria and were presented with full paper, with ICU patients older than 18							
4	years who received RBC transfusions at hemoglobin thresholds below 7 g/dl (Fig. 1).							
5	The eight included RCTs ranged in publication year from 1999 to 2019 and							
6	contained a total of 3415 patients ^{10 22 23 25-29} . The patient population sizes of the							
7	included trials were very diverse, ranging from 44 to 998. Three studies enrolled more							
8	than 800 patients, while three trials enrolled fewer than 200 eligible patients. Four							
9	studies enrolled 1480 patients with septic shock, including one studies complicated by							
10	cancer diagnoses. In addition, four trials were multicenter studies (Table 1)							
11								
12	Risk of bias							
13	Most of the RCTs met the randomization requirements and used rational							
14	distribution methods. In some of the included trials, however, it was challenging to							
15	blind the attending physicians and nurses to the outcome assessment based on the							
16	intervention, which resulted in high risk of performance bias. (Supplementary Fig.							
17	1).							
4.0								

18

19 Quality of evidence

The summary of findings for the outcomes of interest and the levels of evidence are provided (**Supplementary Table 1**). The qualities of the primary outcome data and some secondary outcome data, including myocardial infarction and ischemic

1 2		
3		
4 5	1	events, were all ranked as moderate. However, both of the lengths of hospital and ICU
6 7	2	stays displayed low quality.
8		
9 10		
11		
12 13		
14		
15 16		
17		
18 19		
20		
21 22		
23		
24 25		
26		
27 28		
29		
30 31		
32		
33 34		
35		
36 37		
38 39		
39 40		
41 42		
43		
44 45		
46		
47 48		
49		
50 51		
52		
53 54		
55		
56 57		
58		
59 60		
~~		15

Table 1 Characteristics of the included studies

9 10 11 12	Author	Year of		Population			Transfusion Triggers		Mortality Data	References
13 14 15 16-		Publication		Clinical Settings	Details	Number of Participants	Restrictive	Liberal	·	
10- 17 18 19	Hebert et al.	1999	25	Critical illness	Euvolemic critically ill patients	838	Hb 7	Hb 10	30-day mortality 60-day mortality ICU mortality Hospital mortality	[10]
20 21	Holst et al.	2014	32	Critical illness	Patients with septic shock	998	Hb 7	Hb 9	90-day mortality	[22]
22 23 24	Mazza et al.	2015	Single	Critical illness	Patients with septic shock	46	Hb 7	Hb 9	Hospital mortality	[23]
25 26	Robertson et al.	2014	2	Traumatic brain injury	Patients with closed head injuries	200	Hb 7	Hb 10	Six-month mortality	[25]
27 28 29	Villanueva et al.	2013	Single	Upper UGIB	Patients with hematemesis, melena or both	889	Hb 7	Hb 9	45-day mortality	[26]
30 31 32	Walsh et al.	2013	6	Critical illness	Older critically ill patients receiving mechanical ventilation	100	Hb 7	Hb 9	30-day mortality 60-day mortality 180-day mortality ICU mortality	[27]
33 34 35	Bergamin et al.	2017	Single	Critical illness	Patients with cancer with septic shock	300	Hb 7	Hb 9	Hospital mortality 28-day mortality 60-day mortality 90-day mortality	[29]
36 37 38	Gobatto et al.	2019	Single	Traumatic brain injury	Patients with moderate or severe traumatic brain injury	44	Hb 7	Hb 9	Hospital mortality ICU mortality	[28]
39 40 41					16					

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59	

60

1 Primary outcome: short-term mortality	1	Primary outcome: short	-term mortality
--	---	------------------------	-----------------

2 Within this meta-analysis, there were three RCTs that reported 28-day or 30-day 3 mortality, and four that reported in-hospital mortality only. The published study from 4 Holst LB et al did provide solid conclusions about the impacts of blood transfusion with liberal and restrictive hemoglobin thresholds on long-term mortality and rates of 5 ischemic events, which presented with similar effects, while the information about 6 short-term outcomes was missing²². Therefore, we wrote a letter asking for the 7 important evidence of short-term mortality rates, as its analysis was based on a large 8 9 sample size and was essential for our conclusion. After generating the forest plot, we found no significant difference in short-term mortality between the transfusion 10 threshold of hemoglobin < 7 g/dl and the more liberal strategy (OR: 0.90, 95% CI: 11 12 0.67-1.21; P=0.48; I²=53%). Meanwhile, we noticed that the RCT reported by 13 Bergamin et al. (19) was the main resource of heterogeneity, and removing that study resulted in a marked reduction in heterogeneity $(I^2=29\%, P=0.21)$ (Fig. 2). 14

15

Secondary outcome: length of hospital stay, length of ICU stay, myocardial infarction, and ischemic events

Five included studies documented the length of hospital stay, which revealed 18 19 shorter hospital stays when the threshold of hemoglobin < 7 g/dl was used compared 20 with the more liberal threshold (MD: -1.72, 95% CI: -2.51--0.94, P < 0.001, I²=18%, 21 Fig. 3). The outcome of length of ICU stay was reported by four trials, and there was 22 no significant difference between the two thresholds (MD: -0.09, 95% CI: -0.74-0.56, 23 P=0.78, I²=0%, Fig. 4). In addition, we identified that MI events was decreased among patients with transfusion trigger of hemoglobin < 7 g/dl compared to those 24 25 with the liberal transfusion strategy, which was of statistical significance (OR: 0.54,

95% CI: 0.30-0.98, P=0.04; I²=0%, Fig. 5). However, no significant differences was noted between the two transfusion thresholds for critically ill patients for ischemic/thromboembolic events (OR, 0.80; 95% CI, 0.43-1.48; P=0.48; I²=51%, Fig. 6). After removing study conducted by Walsh et al, the heterogeneity of this outcome decreased significantly ($I^2=0\%$, P=0.21), which indicated the main source of heterogeneity.

Small study bias

We constructed a funnel plot to assess the possible small study bias. After inspecting the funnel plot, we found no evidence of small study bias. Furthermore, we used Begg's test (P=0.71) and Egger's test (P=0.62) to evaluate the funnel plot asymmetry, which also showed no statistically significant evidence of small study evie bias (Supplementary Fig. 2).

Subgroup analysis

The subgroup analysis of the septic shock and non-sepsis groups investigated short-term mortality. From the forest plot, there were no significant differences in short-term mortality between two thresholds in either the septic shock group (OR: 1.10, 95% CI: 0.75-1.62; P=0.63; I²=46%) or the non-sepsis group (OR: 0.75, 95% CI: 0.50-1.14; P=0.15; I²=41%) (Fig. 7).

Discussion

Major findings

The current study demonstrated that restricting the transfusion threshold to a hemoglobin concentration less than 7 g/dl did not result in significant differences in

Page 19 of 47

BMJ Open

short-term mortality, length of ICU, or ischemic events, when compared with more liberal thresholds. The length of hospital stay was shortened in the restrictive group than in the liberal group. However, as the uncertain status of censored data (discharge or death), as well as the high proportion of patients who died during hospitalization, we could not simply regard statistically shortened hospital length of stay as a beneficial effect of transfusion trigger at 7g/dl, which might be affected by mortality rate. Of note, the low quality of evidence of hospital/ICU length of stay should be aware of. Additionally, polled data also revealed that the incidence of MI was decreased among patients applied 7 g/dl as transfusion threshold. Nevertheless, we should be cautious when interpreting this finding. After removing the study conducted by Villanueva and his colleagues, as well as changing effects model from random to fixed effects model could alter the consequence, indicating the instability of this outcome.

Within the primary outcome analysis, the heterogeneity of enrolled trials was moderate, with an I^2 of 53% according to the heterogeneity test, while sensitivity analysis revealed that remove of the Transfusion Requirements in Critically III Oncological Patients (TRICOP) trial resulted in dramatically decreased heterogeneity $(I^2=29\%, P=0.21)$. As this study enrolled patients diagnosed with both solid cancer and septic shock, the baseline characteristic of this unique subset might differ from other ordinary ICU patients, which could partially explain the source of heterogeneity. Also, this finding was assumed to be due to different clinical settings, especially for patients with septic shock. We further performed a subgroup analysis after classifying the studies into a septic shock group and a non-sepsis group, as septic shock was recognized as one of the major causes of death in critical ill patients. In septic shock group, patients with a transfusion threshold < 7 g/dl showed no significant difference

in short-term mortality compared to those with a more liberal transfusion threshold, while the heterogeneity was markedly decreased ($I^2=46\%$, P=0.15). In non-sepsis group, no significant difference in short-term mortality was noted between the two thresholds with only five trials included. Additionally, the highly disparate sample size of included studies could be another resource of heterogeneity. Given the fact that several studies came from conference abstracts, we were unable to evaluate their methodology and data quality in detail.

9 Relations to other meta-analysis

Carefully designed meta-analyses on RBC transfusions in critically ill patients have been published recently. In 2014, the first time Salpeter and colleagues reported the benefits of restrictive blood transfusion at hemoglobin trigger of <7 g/dL in critical ill patients via conducting meta-analysis, which presented with significant reductions in total mortality (RR: 0.80; 95% CI, 0.65-0.98), in-hospital mortality (RR: 0.74; 95% CI, 0.60-0.92), 30-day mortality (RR: 0.77; 95% CI, 0.61-0.96), acute coronary syndrome (RR: 0.44; 95% CI, 0.22-0.89), pulmonary edema (RR: 0.48; 95% CI, 0.33-0.72), rebleeding (RR: 0.64; 95% CI, 0.45-0.90) and bacterial infections (RR: 0.86; 95% CI, 0.73-1.00) when compared with the liberal transfusion threshold group¹⁷. However, this meta-analysis did not provide a convincing conclusion with only three RCTs included, and also failed to separate adult and pediatric participants, as each population shared different transfusion protocols.

Recently, in a review by Fominskiy E et al. ¹⁸, the restrictive and liberal RBC transfusion thresholds in critically ill patients resulted in no significant difference in all-cause 90-day mortality (OR: 1.10; 95% CI: 0.99-1.23; *P*=0.07; I²=34%). In fact, this study was the first comprehensive meta-analysis to address different transfusion

Page 21 of 47

BMJ Open

1	thresholds among critically ill and perioperative patients, but it lacked a valid analysis
2	of secondary outcomes which were noteworthy factors for the effects of RBC
3	transfusions. Furthermore, Chong and colleagues also conducted an updated analysis
4	on the effects of RBC transfusion, which included two more RCTs other than the
5	same 10 trials included in the Fominskiy's study ^{18 19 23 30} . These results suggested that
6	RBC transfusion with restrictive threshold significantly reduced the risk of overall
7	30-day mortality (OR: 0.82; 95% CI: 0.70-0.97; P=0.019) when compared with that
8	with liberal threshold, accompanied with declining risk of stroke/transient ischemic
9	attack (TIA) (OR: 0.63; 95% CI, 0.40-0.99; P=0.04), transfusion reactions (OR: 0.48;
10	95% CI, 0.29-0.80; <i>P</i> =0.005), allogenic blood exposure (OR: 0.04; 95% CI: 0.01-0.14;
11	P=0.001), and length of hospital stay (95% CI: 0.42-1.64; P=0.001), hinting the safety
12	of using restrictive transfusion protocol. Actually, above two studies focused on
13	different primary outcomes, 30-day and 90-day mortality for each study, and further
14	drew different conclusions even though both included similar RCTs, indicating that
15	the effects of RBC transfusion varied with the stage of critical settings. However,
16	Hovaguimian F et al. ³¹ performed a context-specific systematic review and
17	meta-analysis comparing the restrictive and liberal transfusion thresholds and found
18	no significant differences in early mortality (OR: 0.94; 95% CI: 0.73-1.20; P=0.09;
19	$I^2=45\%$) between the two thresholds, indicating that the specific types and severity of
20	critical illness might be in need of different strategies of RBC transfusion, especially
21	for patients with major surgery.

In the present study, we specifically concentrated on the restrictive transfusion threshold of hemoglobin < 7 g/dl in ICU patients. We included data from the newly published Transfusion Requirements after Head Trauma (TRAHT) trial and the TRICOP trial, which showed with increased mortality rate in the group with

restrictive transfusion thresholds than that with liberal transfusion threshold ^{28 29}. This
study showed that RBC transfusion with restrictive threshold of < 7 g/dl did not result
in significant improvement in short-term mortality when compared with those using
liberal thresholds.

6 Subgroup analysis

The first review with regard to the impact of blood transfusion on the prognosis of septic shock patients was conducted by Dupuis and colleagues ³². They showed no association between RBC transfusion and mortality rate in patients with septic shock, and also failed to determine correlations between the two different transfusion thresholds or to infer the optimal transfusion threshold for septic shock patients because of a shortage of high-quality RCTs ³². In fact, a 10 g/dl hemoglobin threshold has been universally proposed for treatment of septic shock as the crucial role of RBC transfusions in early goal-directed therapy ³³. Nonetheless, severe adverse events caused by extensive blood transfusion have been reported as a great threat for septic shock patients by several studies³⁴⁻³⁶. The restrictive strategy, as reported previously, was beneficial for the improvement of microcirculation, while also saving blood products ^{10 37}. The landmark TRISS trial that was conducted by Holst L et al. ²² revealed no significant differences in 90-day mortality between patients in the group with the transfusion thresholds of 7 g/dl and those with the more liberal thresholds. In addition, the number of patients experiencing ischemic events and severe adverse reactions was also similar between the two groups. The TRISS trial demonstrated the safety and economic efficiency of the restrictive blood transfusion threshold, with a well-controlled risk of bias. Mazza BF et al. ²³ performed a randomized physiological study of septic shock patients with the endpoint of abnormal lactate and ScvO₂ under

Page 23 of 47

BMJ Open

distinct pretransfusion hemoglobin concentrations. However, they failed to provide valid data on mortality with a relatively small sample size provided. Recently, Bergamin and colleagues focused on cancer patients who developed septic shock in the ICU through a single-center RCT²⁹. Indeed, tumor patients that were complicated by septic shock were in urgent need of blood transfusion as high risk of anemia^{22 38}. Ideally, the more restrictive threshold for transfusion might reduce the occurrence of multiple transfusion-related complications. In this study, we conducted a comprehensive meta-analysis after enrolled all recently published RCTs that covered septic shock cases. No marked difference in mortality was observed between the transfusion threshold of hemoglobin < 7 g/dl and the more liberal transfusion threshold (OR: 1.08; 95% CI, 0.82-1.41; P=0.54; I²=20%). We assumed that these results might be, at least in part, due to the overwhelming weight that the TRISS trial carried and the relatively low quality of the other three studies. Moreover, the study by Mazza BF et al. ²³ enrolled participants with a diagnosis of malignant tumoral, which might generate heterogeneity. Taken together, we can't determine that blood transfusion at thresholds of 7 g/dl is the optimal transfusion threshold for patients with septic shock based on current evidences, which urges more as well as large clinical trials.

20 Strengths and limitations

This study mainly focused on analyzing the impact of the transfusion threshold of 7 g/dl on the short-term outcomes of critically ill patients, which remains an essential clinical practice but with controversy. Indeed, the blood transfusion is given with different triggers by different organizations, such as surviving Sepsis Campaign (SCC), the American college of critical care medicine (ACCM) and the world health

organization (WHO)³⁹⁻⁴¹. Further analysis shows that these guidelines are provided mainly based on long-term effects of blood transfusion on ICU patients. Our meta-analysis is the first report concerning the feasibility of a transfusion threshold of hemoglobin < 7 g/dl with regard to short-term mortality in critically ill patients, which is an essential issue for survival of ICU patients based on specific clinical characters. In addition, unlike the previously published meta-analyses, which enrolled studies with different restrictive transfusion thresholds, we only included RCTs that specified the restrictive RBC transfusion threshold as a pretransfusion hemoglobin concentration less than 7 g/dl to get relative solid conclusions. Simultaneously, we performed an updated and comprehensive analysis that focused on ICU patients with septic shock. Meanwhile, this analysis revealed no evidence of significant small study bias according to visual inspection of the funnel plot, Begg's test and Egger's test.

Some limitations are also noted in the current systematic review and meta-analysis. Firstly, the number of studies we enrolled was not large enough due to the strict inclusion criteria of a restrictive transfusion threshold of hemoglobin < 7g/dl. Five relevant studies that discussed the two different transfusion thresholds among critically ill patients were excluded because of their different definition of restrictive RBC transfusion thresholds ³⁰ 42-45. Secondly, the heterogeneity in our meta-analysis was relatively high, which was caused by different outcome measurements and clinical settings. Some trials with low quality evidence and insufficient participants might be another source of heterogeneity. Correspondingly, we tried to eliminate the heterogeneity by conducting a subgroup analysis and analyzing the effects. Thirdly, there was imperfect blinding of the study participants in the trials mainly owing to the nature of the interventions. Fourthly, the sample sizes of all incorporated RCTs were varied. We applied the Mantel-Haenszel method to

Page 25 of 47

BMJ Open

address this diversity in sample sizes and to avoid our results from being dominated by the larger studies. Finally, we failed to testify if hemoglobin level less than 7 g/dl is the optimal threshold for the blood transfusions in critically ill patients and in those with septic shock basing on a lack of sufficient evidence.

6 Conclusions and clinical implications

The present meta-analysis of RCTs focused on the effect of RBC transfusions at the threshold of hemoglobin < 7 g/dl on the survival and prognosis of ICU patients. RBC transfusions at the threshold of hemoglobin < 7 g/dl did not result in significantly different in short-term mortality when compared with transfusions administered at a more liberal threshold. However, it might associate with decreased hospital length of stay and MI events, suggesting its potentially protecting role for critically ill patients. Besides, within the ICU patient population with septic shock, RBC transfusions at the restrictive threshold did not improve short-term mortality compared with transfusions at the more liberal threshold. Therefore, we recommended a hemoglobin trigger of 7 g/dL for critically ill patients with or without septic shock due to the cost and resource saving effect, as well as its latent value in reducing severe adverse effect. Still, further studies are required to testify our findings. This study indeed provides novel conclusions on the impact of blood transfusion on short-term outcomes of critically ill patients as well as patients with septic shock. Even though we can't determine that the hemoglobin trigger of 7 g/dL is the optimal strategy for RBC transfusion, but it does show advantages in managing the use of RBC units and urge prudent decision making in blood transfusion for critically ill patients.

25 Funding

This work was supported by grants from the National Natural Science
 Foundation (No. 81730057) and the National Key Research and Development
 Program of China (No. 2017YFC1103302).

Data Availability Statement

All data relevant to the study are included in the article or uploaded assupplementary information.

- - **Conflicts of Interest**

10 The authors have no conflicts of interest to declare.

12 Acknowledgement

We greatly appreciated the excellent job and kind share of professor Holst in providing important evidence on the impact of blood transfusion with liberal and restrictive hemoglobin thresholds on short-term mortality.

17 Abbreviations

RBCs: Red blood cell; ICUs: Intensive care units; MI: Myocardial infarction;
ORs: Odds ratios; RCTs: Randomized controlled trials; TRICC: Transfusion
requirements in critical care; PRISMA: Preferred items for systematic reviews and
meta-analyses; GRADE: Grading of recommendations, assessment, development and
evaluation; CIs: Confidence intervals; M-H: Mantel-Haenszel; TIA: Transient
ischemic attack; TRAHT: Transfusion requirements after head trauma; TRICOP:
Transfusion requirements in critically ill oncological patients.

6

7

1

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18 10	
19 20	
20	
27	
20 21 22 23	
24	
25	
26	
27	
28	
29	
30	
31 32	
32	
33	
34	
35	
36	
37	
38	
39 40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58 50	
59 60	
00	

Author contributions

YMY and ZFX conceived the meta-analysis. RQY and CR extracted all data.
YBZ and ZCZ undertook and refined the searches. RQY and CR co-wrote the paper.
RQY undertook the statistical analyses. All authors contributed to and revised the
final manuscript.

- 8 References
- Rosland RG, Hagen MU, Haase N, *et al.* Red blood cell transfusion in septic shock clinical characteristics and outcome of unselected patients in a prospective, multicentre
 cohort. *Scand J Trauma Resusc Emerg Med* 2014;22:14.
- Klein HG, Spahn DR, Carson JL. Red blood cell transfusion in clinical practice. *Lancet* 2007;370(9585):415-26.
- 3. Amin M, Fergusson D, Aziz A, *et al.* The cost of allogeneic red blood cells--a systematic
 review.

16 *Transfus Med* 2003;13(5):275-85.

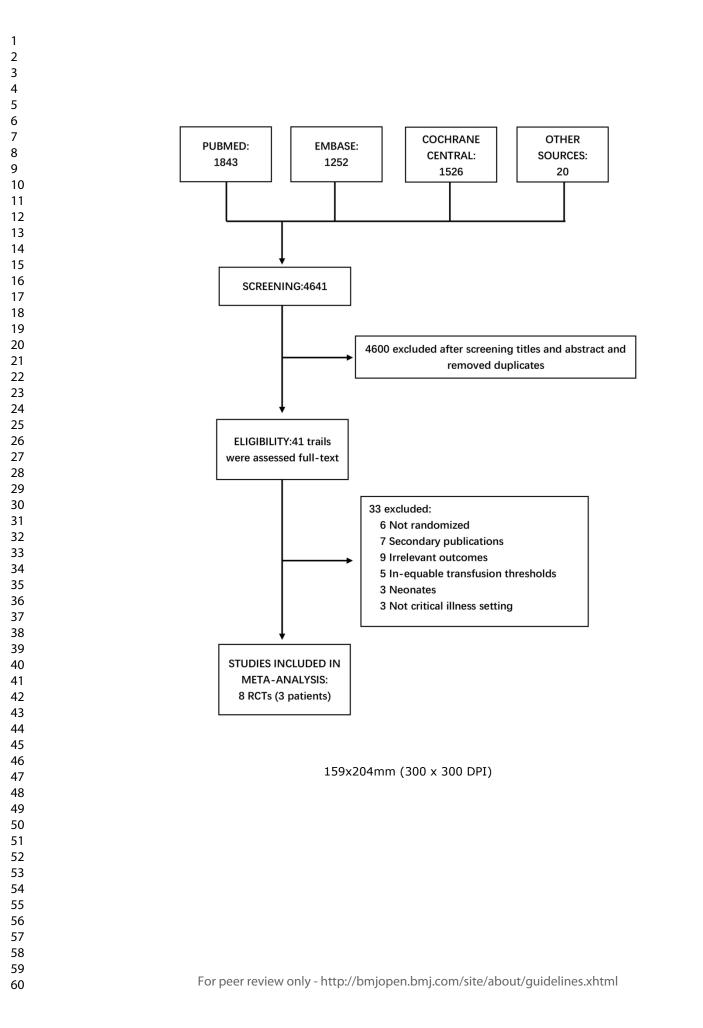
- 4. Corwin HL, Surgenor SD, Gettinger A. Transfusion practice in the critically ill. *Crit Care Med* 2003;31(12 Suppl):S668-71.
- 19 5. Kristof K, Buttner B, Grimm A, *et al.* Anaemia requiring red blood cell transfusion is
 20 associated with unfavourable 90-day survival in surgical patients with sepsis. *BMC Res*21 *Notes* 2018;11(1):879.
 - 6. Holst LB. Benefits and harms of red blood cell transfusions in patients with septic shock in
 the intensive care unit. *Dan Med J* 2016;63(2): B5209.
 - 7. Madjdpour C, Spahn DR. Allogeneic red blood cell transfusions: efficacy, risks, alternatives
 and indications. *British journal of anaesthesia* 2005;95(1):33-42.
 - 8. Marik PE, Corwin HL. Efficacy of red blood cell transfusion in the critically ill: a systematic
 review of the literature. *Crit Care Med* 2008;36(9):2667-74.
- 9. Hopewell S, Omar O, Hyde C, et al. A systematic review of the effect of red blood cell
 transfusion on mortality: evidence from large-scale observational studies published
 between 2006 and 2010. *BMJ open* 2013;3(5): e002154.
- 10. Hebert PC, Wells G, Blajchman MA, *et al.* A multicenter, randomized, controlled clinical
 trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care
 Investigators, Canadian Critical Care Trials Group. T*he New England journal of medicine*1999;340(6):409-17.
- 35 11. Holst LB, Petersen MW, Haase N, et al. Restrictive versus liberal transfusion strategy for

1	red blood cell transfusion: systematic review of randomised trials with meta-analysis and
2	trial sequential analysis. <i>BMJ</i> 2015;350:h1354.
3	12. Carson JL, Carless PA, Hebert PC. Transfusion thresholds and other strategies for
4	guiding allogeneic red blood cell transfusion. The Cochrane database of systematic
5	reviews 2012(4):Cd002042.
6	13. Hebert PC, Yetisir E, Martin C, et al. Is a low transfusion threshold safe in critically ill
7	patients with cardiovascular diseases? Crit Care Med 2001;29(2):227-34.
8	14. Silva Junior JM, Rezende E, Amendola CP, et al. Red blood cell transfusions worsen the
9	outcomes even in critically ill patients undergoing a restrictive transfusion strategy. Sao
10	<i>Paulo Med J</i> 2012;130(2):77-83.
11	15. Conrad SA, Dietrich KA, Hebert CA, et al. Effect of red cell transfusion on oxygen
12	consumption following fluid resuscitation in septic shock. <i>Circ Shock</i> 1990;31(4):419-29.
13	16. Steffes CP, Bender JS, Levison MA. Blood transfusion and oxygen consumption in
14	surgical sepsis. <i>Crit Care Med</i> 1991;19(4):512-7.
15	17. Salpeter SR, Buckley JS, Chatterjee S. Impact of more restrictive blood transfusion
16	strategies on clinical outcomes: a meta-analysis and systematic review. Am J Med
17	2014;127(2):124-31.
18	18. Fominskiy E, Putzu A, Monaco F, et al. Liberal transfusion strategy improves survival in
19	perioperative but not in critically ill patients. A meta-analysis of randomised trials. British
20	<i>journal of anaesthesia</i> 2015;115(4):511-9.
21	19. Chong MA, Krishnan R, Cheng D, et al. Should Transfusion Trigger Thresholds Differ for
22	Critical Care Versus Perioperative Patients? A Meta-Analysis of Randomized Trials. Crit
23	<i>Care Med</i> 2018;46(2):252-63.
24	20. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus
25	Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016;315(8):801-10.
26	21. Zarychanski R, Doucette S, Fergusson D, et al. Early intravenous unfractionated heparin
27	and mortality in septic shock. Crit Care Med 2008;36(11):2973-9.
28	22. Holst L, Haase N, Wetterslev J, et al. Lower versus higher hemoglobin threshold for
29	transfusion in septic shock. New England journal of medicine 2014; 371(15):1381-91.
30	23. Mazza BF, Freitas FG, Barros MM, et al. Blood transfusions in septic shock: is 7.0 g/dL
31	really the appropriate threshold? Revista Brasileira de terapia intensiva 2015;27(1):36-43.
32	24. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and
33	meta-analyses: the PRISMA statement. Ann Intern Med 2009;151(4):264-9.
34	25. Robertson CS, Hannay HJ, Yamal JM, et al. Effect of erythropoietin and transfusion
35	threshold on neurological recovery after traumatic brain injury: a randomized clinical trial.
36	JAMA 2014;312(1):36-47.
37	26. Villanueva C, Colomo A, Bosch A, et al. Transfusion strategies for acute upper
38	gastrointestinal bleeding. The New England journal of medicine 2013;368(1):11-21.
39	27. Walsh TS, Boyd JA, Watson D, et al. Restrictive versus liberal transfusion strategies for
	22

Page 29 of 47

BMJ Open

2		
3 4	1	older mechanically ventilated critically ill patients: a randomized pilot trial. Crit Care Med
5	2	2013;41(10):2354-63.
6 7	3	28. Gobatto A, Link M, Solla D, et al. Transfusion requirements after head trauma (TRAHT): a
8	4	randomized clinical trial. Crit Care 2019;23(1):89.
9 10	5	29. Bergamin FS, Almeida JP, Landoni G, et al. Liberal Versus Restrictive Transfusion
10	6	Strategy in Critically III Oncologic Patients: The Transfusion Requirements in Critically III
12 13	7	Oncologic Patients Randomized Controlled Trial. Crit Care Med 2017;45(5):766-73.
14	8	30. Jairath V, Kahan BC, Gray A, et al. Restrictive versus liberal blood transfusion for acute
15 16	9	upper gastrointestinal bleeding (TRIGGER): a pragmatic, open-label, cluster randomised
16 17	10	feasibility trial. <i>Lancet</i> 2015;386(9989):137-44.
18 10	11	31. Hovaguimian F, Myles PS. Restrictive versus Liberal Transfusion Strategy in the
19 20	12	Perioperative and Acute Care Settings: A Context-specific Systematic Review and
21	13	Meta-analysis of Randomized Controlled Trials. <i>Anesthesiology</i> 2016;125(1):46-61.
22 23	14	32. Dupuis C, Sonneville R, Adrie C, et al. Impact of transfusion on patients with sepsis
24	15	admitted in intensive care unit: a systematic review and meta-analysis. Annals of intensive
25 26	16	<i>care</i> 2017;7(1):5.
20	17	33. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of
28	18	severe sepsis and septic shock. New England journal of medicine 2001; 345(19):1368-77.
29 30	19	34. Cata JP, Wang H, Gottumukkala V, et al. Inflammatory response, immunosuppression,
31	20	and cancer recurrence after perioperative blood transfusions. British journal of
32 33	21	anaesthesia 2013;110(5):690-701.
34	22	35. Amato A, Pescatori M. Perioperative blood transfusions for the recurrence of colorectal
35 36	23	cancer. The Cochrane database of systematic reviews 2006(1):Cd005033.
37	24	36. Mynster T, Christensen IJ, Moesgaard F, et al. Effects of the combination of blood
38 39	25	transfusion and postoperative infectious complications on prognosis after surgery for
40	26	colorectal cancer. Danish RANX05 Colorectal Cancer Study Group. The British journal of
41 42	27	<i>surgery</i> 2000;87(11):1553-62.
42 43	28	37. den Uil CA, Lagrand WK, Spronk PE, et al. Does red blood cell transfusion result in a
44	29	variate microvascular response in sepsis? Crit Care Med 2007;35(10):2464-5.
45 46	30	38. Soares M, Caruso P, Silva E, et al. Characteristics and outcomes of patients with cancer
47	31	requiring admission to intensive care units: a prospective multicenter study. Crit Care Med
48 49	32	2010;38(1):9-15.
50	33	39. Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International
51 52	34	Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med
53	35	2017;43(3):304-77.
54	36	40. Davis AL, Carcillo JA, Aneja RK, et al. American College of Critical Care Medicine Clinical
55 56	37	Practice Parameters for Hemodynamic Support of Pediatric and Neonatal Septic Shock.
57	38	<i>Crit Care Med</i> 2017;45(6):1061-93.
58 59	39	41. Obonyo NG, Byrne L, Tung JP, et al. Pre-clinical study protocol: Blood transfusion in
60		
		29


3	1	endotoxaemic shock. <i>MethodsX</i> 2019;6:1124-32.
4	2	42. Carson J, Brooks M, Abbott J, <i>et al.</i> Liberal versus restrictive transfusion thresholds for
5 6		
7	3	patients with symptomatic coronary artery disease. American heart journal 2013; 165(6):
8	4	964-971.
9	5	43. Cooper HA, Rao SV, Greenberg MD, et al. Conservative versus liberal red cell transfusion
10	6	in acute myocardial infarction (the CRIT Randomized Pilot Study). <i>The American journal of</i>
11 12		
12	7	<i>cardiology</i> 2011;108(8):1108-11.
14	8	44. Hebert PC, Wells G, Marshall J, et al. Transfusion requirements in critical care. A pilot
15	9	study. Canadian Critical Care Trials Group. JAMA 1995;273(18):1439-44.
16	10	45. Blair SD, Janvrin SB, McCollum CN, et al. Effect of early blood transfusion on
17	11	actrointecting becomerchase. The British journal of ourgan; (1096)72(10):782.5
18 19		gastrointestinal haemorrhage. <i>The British journal of surgery</i> 1986;73(10):783-5.
20	12	
21	40	
22	13	
23	14	
24 25	14	
26		
27		
28		
29		
30 31		
32		4.5. Blail OD, Galivini OD, Nicoolidin ON, et al. Effect of early blood transition of gastrointestinal haemorrhage. The British journal of surgery 1986;73(10):783-5.
33		
34		
35		
36 37		
38		
39		
40		
41		
42 43		
44		
45		
46		
47 49		
48 49		
50		
51		
52		
53 54		
54 55		
56		
57		
58		
59 60		
00		30

1		
2 3		
5 4	1	Figure legends
5 6	2	Figure 1. Flow chart for study selection. Online databases, including Cochrane
7 8 9	3	Library, EMBASE, and PubMed, were systematically searched. Finally, nine RCTs
10 11	4	with 3415 patients were included in the meta-analysis.
12 13	5	
14 15 16	6	Figure 2. Forest plot of all-cause short-term mortality in ICU patients. The odds
17 18	7	ratio and 95% CI for short-term mortality between the restrictive and liberal
19 20	8	transfusion thresholds are presented in the forest plot. The threshold of hemoglobin <
21 22 23	9	7 g/dl showed no obvious improvement in short-term mortality when compared with
24 25	10	the liberal threshold.
26 27	11	
28 29 20	12	Figure 3. Forest plot of the length of hospital stay. The forest plot shows the mean
30 31 32	13	difference and 95% CI for the length of hospital stay between the two groups. Blood
33 34	14	transfusion at the restrictive threshold resulted in shorter hospital stays than blood
35 36	15	transfusion at the more liberal threshold.
37 38 39	16	
40 41	17	Figure 4. Forest plot of the length of ICU stay. The difference in the length of ICU
42 43	18	stay in the groups with different transfusion thresholds is shown by the mean
44 45 46	19	difference and 95% CI in the forest plot. No marked improvement was seen in the
40 47 48	20	length of ICU stay with a transfusion threshold of hemoglobin < 7 g/dl.
49 50	21	
51 52	22	Figure 5. Forest plot of myocardial infarction in ICU patients after RBCs
53 54 55	23	transfusion. The forest plot shows the odds ratios and 95% CI for myocardial
56 57	24	infarction in the groups of ICU patients with different transfusion thresholds. Blood
58 59	25	transfusion at a threshold of hemoglobin < 7 g/dl significantly decrease in the rate of
60		31

myocardial infarction compared with the more liberal threshold.

Figure 6. Forest plot of ischemic events/thromboembolic events in ICU patients after RBC transfusions. The odds ratios and 95% CI for ischemic/thromboembolic events are presented in the forest plot. No significant difference was noted in ischemic/thromboembolic events between the group with the threshold of 7 g/dl hemoglobin compared with the group with the more liberal threshold.

Figure 7. Forest plot for short-term mortality following subgroup analysis. The forest plot shows the odds ratios and 95% CI for the all-cause short-term mortality of patients receiving RBC transfusions at various thresholds according to the subgroup analysis of the septic shock and non-sepsis groups. Restrictive transfusion was incapable of decreasing short-term mortality in septic ICU patients.

4 5 6 7 8	
9 10 11 12 13	
14 15 16 17 18	
19 20	
21	<7g/dl Control Odds Ratio Odds Ratio Study or Subgroup Events Total Events Total Weight M-H, Random, 95% Cl M-H, Random, 95% Cl
22 23	Bergamin 2017 84 151 67 149 17.3% 1.53 (0.97, 2.42) Gobatto 2019 7 23 1 21 1.7% 8.75 (0.97, 78.65) Hebert 1999 78 418 98 420 21.3% 0.75 [0.54, 1.05]
24	Holst 2014 168 502 175 496 23.8% 0.92 [0.71, 1.20] Mazza 2015 11 22 13 24 5.4% 0.85 [0.27, 2.70]
25	Robertson 2014 9 99 9 101 7.1% 1.02 [0.39, 2.69] Villanueva 2013 23 444 41 445 15.2% 0.54 [0.32, 0.91] Walsh 2013 12 51 16 49 8.2% 0.63 [0.26, 1.53]
26 27	Total (95% Cl) 1710 1705 100.0% 0.90 [0.67, 1.21]
28	Total events 392 420 Heterogeneity: Tau ² = 0.08; Chi ² = 14.82, df = 7 (P = 0.04); l ² = 53%
29	Test for overall effect: Z = 0.70 (P = 0.48) favours restrictive favours liberal
30	
31 32	
33	
34	
35 36	
37	
38	
39	
40 41	
42	
43	
44	
45 46	
47	215x279mm (300 x 300 DPI)
48	
49	
50 51	
52	
53	
54	
55 56	
57	
58	
59	For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml
611	TO DECLICATE VOID TRUNT OFFICIAL OFFICIAL OFFICIAL OFFICIAL OFFICES ATTIMES

<7g/dl Control Mean Difference Mean SD Total Mean SD Total Weight IV, Fixed, 95% CI

 149
 58.8%
 -2.00 [-3.02, -0.98]

 21
 0.1%
 7.00 [-13.85, 27.85]

 420
 8.9%
 -0.70 [-3.33, 1.93]

 445
 29.8%
 -1.90 [-3.34, -0.46]

 49
 2.4%
 3.00 [-2.10, 8.10]

1084 100.0% -1.72 [-2.51, -0.94]

15 4 35 31.1 35.5 19.4

11.5 12.8 31 7.33

Study or Subgroup

Bergamin 2017 Gobatto 2019

Villanueva 2013 Walsh 2013

Total (95% CI)

Hebert 1999

1351514239.32334.819.5418

9.6 34 8.7 17 51

Heterogeneity: $Chi^2 = 4.89$, df = 4 (P = 0.30); l² = 18% Test for overall effect: Z = 4.30 (P < 0.0001)

Mean Difference IV, Fixed, 95% CI

-

ò

favours liberal

-10

favours restrictive

-20

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

215x279mm (300 x 300 DPI)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	
18 19 20 21	
22	<7g/dl Control Mean Difference Mean Difference
23	Study or Subgroup Mean SD Total Mean SD Total Weight IV, Fixed, 95% CI IV, Fixed, 95% CI Bergamin 2017 7 3.33 151 7 3.33 149 74.9% 0.00 [-0.75, 0.75] Image: Control of the second seco
24	Gobatto 2019 16 3.7 23 21 15.6 21 0.9% -5.00 [-11.84, 1.84] Hebert 1999 11 10.7 418 11.5 11.3 420 19.2% -0.50 [-1.99, 0.99] •
25	Walsh 2013 24 8.67 51 23 6 49 5.0% 1.00 [-1.91, 3.91]
26	Total (95% Cl) 643 639 100.0% -0.09 [-0.74, 0.56] Heterogeneity: Chi ² = 2.86, df = 3 ($P = 0.41$); $I^2 = 0\%$ -20 -10 0 10 20
27	Test for overall effect: Z = 0.27 (P = 0.78) favours restrictive favours liberal
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42 43	
43 44	
44	
46	
47	215x279mm (300 x 300 DPI)
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

<7g/dl

3 418

2 51

Heterogeneity: $Chi^2 = 2.57$, df = 3 (P = 0.46); $l^2 = 0\%$

Test for overall effect: Z = 2.03 (P = 0.04)

Study or Subgroup

Bergamin 2017

Villanueva 2013

Hebert 1999

Walsh 2013

Total (95% CI)

Total events

Control

Events Total Events Total Weight M-H, Fixed, 95% Cl

12 420 38.9% 13 445 41.8%

2 49

149 12.8%

1063 100.0%

6.4%

Odds Ratio

0.99 [0.24, 4.02]

0.25 [0.07, 0.88] 0.61 [0.25, 1.49]

0.96 [0.13, 7.09]

0.54 [0.30, 0.98]

0.01

0.1

Odds Ratio

favours restrictive favours liberal

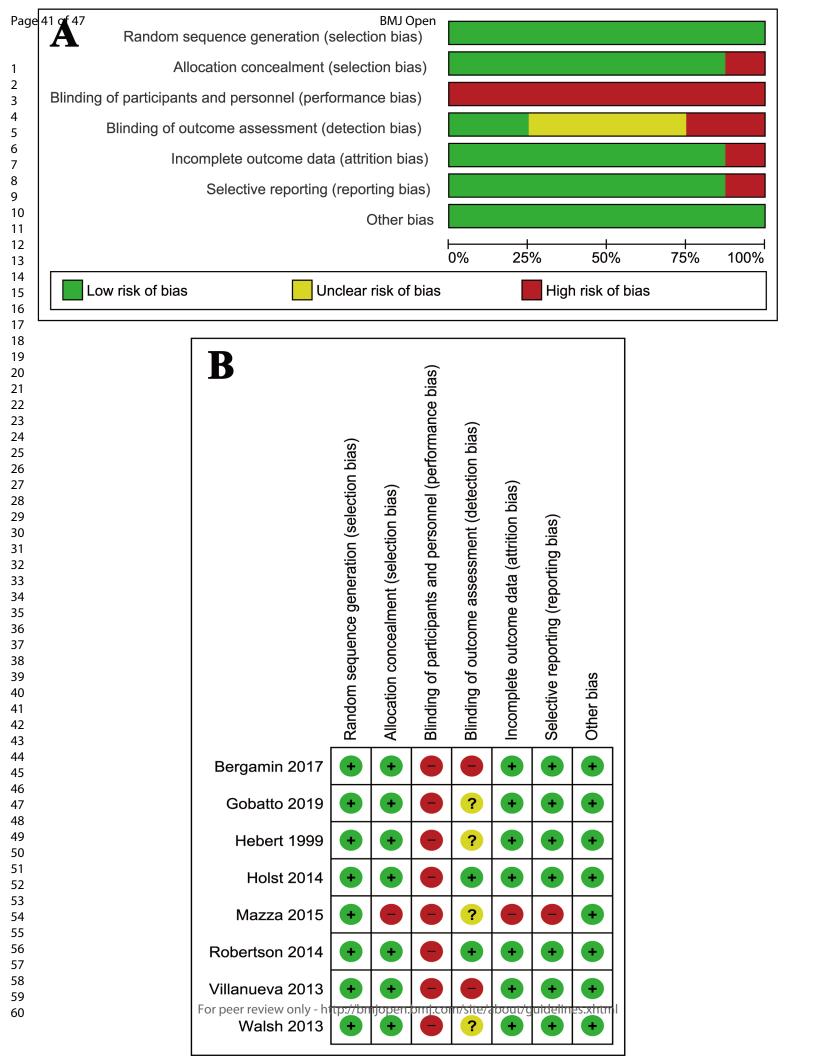
M-H, Fixed, 95% Cl

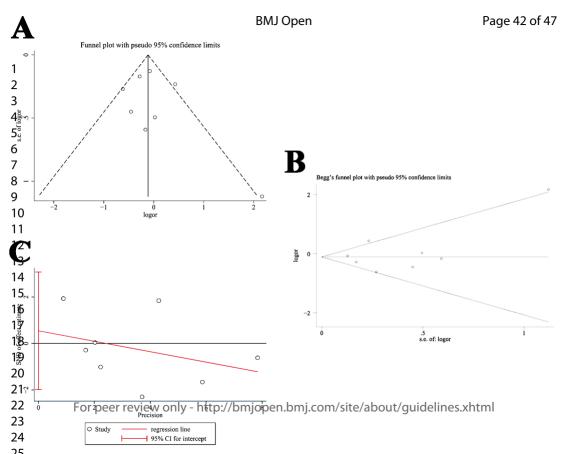
 215x279mm (300 x 300 DPI)

6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
22	<7g/dl Control Odds Ratio Odds Ratio
22 23	Study or Subgroup Events Total Events Total Weight M-H, Random, 95% Cl M-H, Random, 95% Cl Bergamin 2017 8 151 5 149 17.3% 1.61 [0.51, 5.04] ************************************
	Holst 2014 35 488 39 489 33.5% 0.89 [0.55, 1.43]
24	Villanueva 2013 3 444 6 445 13.4% 0.50 [0.12, 2.00] Walsh 2013 8 99 22 101 23.0% 0.32 [0.13, 0.75]
25	
26	Total (95% CI) 1233 1233 100.0% 0.80 [0.43, 1.48] Total events 60 75
27	Heterogeneity: Tau ² = 0.24; Chi ² = 8.17, df = 4 (P = 0.09); l ² = 51% Test for overall effect: Z = 0.71 (P = 0.48) Test for overall effect: Z = 0.71 (P = 0.48)
28	avours restrictive lavours liberal
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	215x279mm (300 x 300 DPI)
48	
49	
50	
51	
52	
53	
55	
55	
56	
57	
58	
59	For more required only better // business business (site /-b
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3 4	
5	
6 7	
8 9	
10	
11 12	
13	
14 15	
16	
17 18	
19	
20 21	
22 23	
24	
25 26	
27	
28 29	
30 31	
32	
33 34	
35	
36 37	
38	
39 40	
41 42	
42 43	
44 45	
46	
47 48	
49	
50	

	<7g/c	11	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	M-H, Random, 95% Cl
1.4.1 septic shock							
Bergamin 2017	84	151	67	149	17.3%	1.53 [0.97, 2.42]	
Holst 2014	168	502	175	496	23.8%	0.92 [0.71, 1.20]	+
Mazza 2015	11	22	13	24	5.4%	0.85 [0.27, 2.70]	
Subtotal (95% CI)		675		669	46.5%	1.10 [0.75, 1.62]	•
Total events	263		255				
Heterogeneity: Tau ² =	0.05; Chi ²	= 3.73	, df = 2 (F	P = 0.15	5); l² = 46%		
Test for overall effect:	Z = 0.48 (P = 0.6	3)				
1.4.2 non-sepsis							
Gobatto 2019	7	23	1	21	1.7%	8.75 [0.97, 78.65]	
Hebert 1999	78	418	98	420	21.3%	0.75 [0.54, 1.05]	
Robertson 2014	9	99	9	101	7.1%	1.02 [0.39, 2.69]	
Villanueva 2013	23	444	41	445	15.2%	0.54 [0.32, 0.91]	
Walsh 2013	12	51	16	49	8.2%	0.63 [0.26, 1.53]	
Subtotal (95% CI)		1035		1036	53.5%	0.75 [0.50, 1.14]	←
Total events	129		165				
Heterogeneity: Tau ² =	0.08; Chi2	= 6.81	, df = 4 (F	9 = 0.15	5); l ² = 41%		
Test for overall effect:	Z = 1.34 (P = 0.1	8)				
Total (95% CI)		1710		1705	100.0%	0.90 [0.67, 1.21]	
Total events	392		420				
Heterogeneity: Tau ² =	0.08; Chi2	= 14.8	2, df = 7 (P = 0.0)4); l ² = 53%	6	
Test for overall effect:					,,		0.01 0.1 1 10 10
Test for subaroup diffe				(D - 0	10) 12 - 41	60/	favours restrictive favours liberal


180x232mm (300 x 300 DPI)


60

Search strategy

(((((((critical care) OR intensive care) OR ICU) OR SICU) OR critical care[MeSH Terms]) OR intensive care unit[MeSH Terms])) AND (((((red blood cell*[Title/Abstract]) OR transfusion[MeSH blood Terms])) AND ((((therap*[Title/Abstract]) OR transfus*[Title/Abstract]) OR restrict*[Title/Abstract]) OR liberal*[Title/Abstract] OR trigger*[Title/Abstract] OR threshold*[Title/Abstract] conservative*[Title/Abstract] OR aggress*[Title/Abstract]))) OR OR blood transfusion*[Title/Abstract]))) AND OR "randomized controlled trial"[Publication Type]) OR systematic*[Title/Abstract]) OR metaanalys*[Title/Abstract]) OR analys*[Title/Abstract]) meta OR guideline*[Title/Abstract]) OR "guideline"[Publication Type]) OR consensus[Title/Abstract]) OR "appropriateness criteria"[Title/Abstract]) OR "choosing wisely"[Title/Abstract]) OR "appropriate use criteria"[Title/Abstract]) OR ((GRADE[Title/Abstract]) AND recommendation*[Title/Abstract])))

R. R. ONL

Outcomes	Illustrative co	mparative risks* (95% CI)	Relative effect	No of Participants	Quality of the evidence	Comments
	Assumed risk	Corresponding risk	(95% CI)	(studies)	(GRADE)	
	Control	Critical illness				
Short-term mortality	Study populat	tion	OR 0.9	3415	$\oplus \oplus \oplus \ominus$	
	246 per 1000	227 per 1000	(0.67 to 1.21)	(8 studies)	moderate ¹	
		(180 to 283)				
	Moderate					
	280 per 1000	259 per 1000				
		(207 to 320)				
Hospital length of stay		The mean hospital length of stay in the intervention groups was		2171	$\oplus \oplus \ominus \ominus$	
		1.72 lower		(5 studies)	low ¹	
		(2.51 to 0.94 lower)	h			
ICU length of stay		The mean icu length of stay in the intervention groups was		1282	$\oplus \oplus \ominus \ominus$	
		0.09 lower		(4 studies)	low ¹	
		(0.74 lower to 0.56 higher)				
Myocardial Infraction	Study populat	tion	OR 0.54	2127	$\oplus \oplus \oplus \ominus$	
	29 per 1000	16 per 1000	(0.3 to 0.98)	(4 studies)	moderate ¹	
		(9 to 29)				
	Moderate					
	29 per 1000	16 per 1000				
		(9 to 28)				

	61 per 1000	49 per 1000 (27 to 87)				
	Moderate		OR 0.8 (0.43 to 1.48)	2466 (5 studies)	⊕⊕⊕⊝ moderate¹	
	61 per 1000	49 per 1000	(0.43 to 1.46)		moderate	
		(27 to 88)				
		effect of the intervention (and its 95% CI).				
CI: Confidence interval;		<u></u>				
GRADE Working Group	-		t			
		kely to change our confidence in the estimate of effe ly to have an important impact on our confidence in		hange the estimate		
would all quality. Full	her research is like	iy to have an important impact on our connuence in	the estimate of ellect and may c	nange me esumate.		
Low quality: Further re	search is verv likel	v to have an important impact on our confidence in t	the estimate of effect and is likely	/ to change the estin	nate	
		y to have an important impact on our confidence in t bout the estimate.	he estimate of effect and is likely	y to change the estin	nate.	
Low quality: Further re Very low quality: We a ¹ No explanation was pr	re very uncertain a		he estimate of effect and is likely	y to change the estin	nate.	
/ery low quality: We a	re very uncertain a		en.	y to change the estin		
Very low quality: We a	re very uncertain a		en.			
Very low quality: We a	re very uncertain a		en.			

BMJ Open

PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) Checklist

www.prisma-statement.org

You must report the page number in your manuscript where you consider each of the items listed in this checklist. If you have not included this information, either revise your manuscript accordingly before submitting or note N/A.

Section/Topic	ltem No.	Checklist item	Reported on Page No.	
TITLE	L			
Title	1	Identify the report as a systematic review, meta-analysis, or both.		
ABSTRACT				
Structured summary 2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.				
INTRODUCTION				
Rationale	3	Describe the rationale for the review in the context of what is already known.		
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).		
METHODS				
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.		
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.		
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.		
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.		
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).		
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.		
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.		
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		

Section/Topic	ltem No.	Checklist item	Reported on Page No.			
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).				
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.				
Risk of bias across studies	15	pecify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).				
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.				
RESULTS						
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.				
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.				
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).				
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.				
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.				
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).				
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).				
DISCUSSION						
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).				
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).				
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.				
FUNDING						
FUNDING		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				

Page 47 of 47

BMJ Open

Section/Topic	ltem No.	Checklist item	Reported on Page No.
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	
	erati A, Teta doi:10.13	zlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRIS 71/journal.pmed1000097	MA Statement. PLo
From: Moher D, Liberati A, Tetzlaff J, Attman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097 Once you have completed this checklist, please save a copy and upload it as part of your submission. Please DO NOT include this checklist as part of the main manuscript document. It must be uploaded as a separate file.			
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

Is hemoglobin below 7.0 g/dl an optimal trigger for allogenic red blood cell transfusion in patients admitted to intensive care units? A meta-analysis and systematic review

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-030854.R2
Article Type:	Original research
Date Submitted by the Author:	25-Nov-2019
Complete List of Authors:	Yao, Ren; Changhai Hospital Ren, Chao; Chinese PLA General Hospital, Zhang, Zi; Changhai Hospital Zhu, Yibing; Beijing Fuxing Hospital, ICU Xia, Zhao Fan; Changhai Hospital, Department of Burns YAO, Yongming; Fourth Medical Center of the Chinese PLA General Hospital
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Intensive care
Keywords:	Red blood cells, Transfusion, Intensive care units, Septic shock

3 4 5	1	Is hemoglobin below 7.0 g/dl an optimal trigger for allogenic red
6 7	2	blood cell transfusion in patients admitted to intensive care units? A
8 9 10	3	meta-analysis and systematic review
11 12 13	4	
14 15	5	Ren-qi Yao ¹ , Chao Ren ² , Zi-cheng Zhang ³ , Yi-bing Zhu ⁴ , Zhao-fan Xia ¹ ,
16 17	6	Yong-ming Yao ²
17 18 19	7	
20 21 22	8	¹ Department of Burn Surgery, Changhai Hospital, the Second Military Medical
22 23 24	9	University, Shanghai 200433, People's Republic of China.
25 26 27	10	² Trauma Research Center, Fourth Medical Center of the Chinese PLA General
27 28 29	11	Hospital, Beijing 100048, People's Republic of China.
30 31 32	12	³ Department of Orthopedics, Changhai Hospital, the Second Military Medical
33 34	13	University, Shanghai 200433, People's Republic of China.
35 36 37	14	⁴ Department of Critical Care Medicine, Fuxing Hospital, Capital Medical University,
38 39 40	15	Beijing 100038, People's Republic of China.
41 42	16	
43 44 45	17	
46 47	18	Corresponding Authors: Zhao-fan Xia, MD, PhD, Department of Burn Surgery,
48 49 50	19	Changhai Hospital, the Second Military Medical University, 168 Changhai Road,
51 52	20	Yangpu District, Shanghai 200433, People's Republic of China. Tel: (+86)
53 54 55	21	2131161821; Email: xiazhaofan@163.com. Yong-ming Yao, MD, PhD, Trauma
56 57 58	22	Research Center, Fourth Medical Center of the Chinese PLA General Hospital, 51
59 60	23	Fucheng Road, Haidian District, Beijing 100048, People's Republic of China. Tel:

2		
3 4	1	(+86) 1066867394; Fax: (+86) 1068989955; Email: c_ff@sina.com.
5		(100) 1000007551, 1 u.e. (100) 1000505553, Emun. 0_11@5mu.com.
6 7	2	
8		
9	3	Ren-qi Yao and Chao Ren contributed equally to this manuscript.
10 11		
12	4	
13 14		
14		
16		
17 18		
19		
20 21		
21		
23		
24 25		
26		
27 28		
29		
30 31		
32		
33 34		
35		
36		
37 38		
39		
40 41		
42		
43 44		
45		
46		
47 48		
49		
50 51		
52		
53		
54 55		
56		
57 58		
59		
60		2
		۷۲

BMJ Open

Abstract
 Objectives: We employed a comprehensive systematic review and meta-analysis
 to assess benefits and risks of a threshold of hemoglobin level below 7g/dl vs liberal
 transfusion strategy among critically ill patients, and even patients with septic shock.
 Design: Systematic review and meta-analysis.

Data sources: We performed systematical searches for relevant randomized
controlled trials (RCTs) in the Cochrane Library, EMBASE, and PubMed databases
up to Sep 1, 2019.

9 Eligibility criteria: RCTs among adult intensive care unit (ICU) patients
10 comparing 7 g/dl as restrictive strategy with liberal transfusion were incorporated.

Data extraction and synthesis: The clinical outcomes, including short-term mortality, length of hospital stay, length of ICU stay, myocardial infarction (MI), and ischemic events, were screened and analyzed after data collection. We applied odds ratios (ORs) to analyze dichotomous outcomes and standardized mean differences (SMDs) to analyze continuous outcomes with fixed or random effects models based on heterogeneity evaluation for each outcome.

Results: Eight RCTs with 3415 patients were included. Compared with a more liberal threshold, an red blood cell (RBC) transfusion threshold < 7 g/dl hemoglobin showed no significant difference in short-term mortality (OR: 0.90, 95% CI: 0.67-1.21; P=0.48; I²=53%), length of hospital stay (SMD: -0.11, 95% CI: -0.30-0.07, P=0.24, I²=71%), length of ICU stay (SMD: -0.03, 95% CI: -0.14-0.08, P=0.54, $I^{2}=0\%$), or ischemic events (OR, 0.80; 95% CI, 0.43-1.48; P=0.48; I^{2}=51\%). However, we found that the incidence of MI (OR: 0.54, 95% CI: 0.30-0.98, P=0.04; I²=0%) was lower in the group with the threshold < 7 g/dl than that with the more liberal threshold.

2	
3	
4	
5	
4 5 6 7 8 9	
7	
,	
ð	
9	
10	
11	
11	
12	
13	
14	
15	
10	
16	
17	
18	
9 10 11 12 13 14 15 16 17 18 19	
20	
21	
20 21 22	
22 23 24 25 26 27 28 29	
23	
24	
25	
26	
27	
27	
28	
29	
30	
21	
31	
32 33	
22	
34	
25	
35	
36	
37	
34 35 36 37 38	
50	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
55	
56	
57	
57	
58	
59	

1

Conclusions: An RBC transfusion threshold < 7 g/dl hemoglobin is incapable of
 decreasing short-term mortality in ICU patients according to currently published
 evidences, while it might have potential role in reducing MI incidence.

4 Keywords: Red blood cells, Transfusion, Intensive care units, Septic shock

For occurrence with any

1 2

3	
4	
5	
6	
7	
8	
0	
9 10	
11	
12	
13	
14	
15	
10	
14 15 16 17	
17	
18	
19	
20	
21	
21 22	
∠∠ 22	
23	
24	
23 24 25 26	
26	
27	
28	
20	
29	
30 31 32 33 34 35 36	
31	
32	
33	
31	
24	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Strengths and limitations of this study

1. This meta-analysis focused on the feasibility of a transfusion threshold of
 hemoglobin < 7 g/dl with regard to short-term mortality in critically ill patients
 through only including RCTs that specified the restrictive RBC transfusion threshold
 as a pretransfusion hemoglobin concentration less than 7 g/dl.

6 2. In this meta-analysis, we performed an updated and comprehensive analysis7 that focused on ICU patients with septic shock.

3. The number of studies we enrolled was not large enough due to the strict
inclusion criteria of a restrictive transfusion threshold of hemoglobin < 7 g/dl.

10 4. There was imperfect blinding of the study participants in the trials mainly

11 owing to the nature of the interventions.

1 Introduction

Allogenic red blood cell (RBC) transfusion remains a commonly used and crucial treatment among patients admitted to the intensive care unit (ICU), as anemia is commonly complicated and critically involved in poor outcomes¹. Every year, approximately 75 million units of blood are reportedly obtained worldwide, with higher levels of consumption in the UK, Canada, and US²³. In ICU settings, 40%~50% of critically ill patients receive at least one unit of RBC transfusion, and the average consumption reaches five units during their ICU stay⁴. Undoubtedly, appropriate blood transfusion can benefit critical ill patients by increasing oxygen delivery and reducing oxygen debt, protecting against multiple organ dysfunction⁵. While these data also urge the cautious use of RBCs because of the substantial cost and supply shortage. For example, Holst LB and colleagues have reported that the units of RBCs used for liberal transfusion trigger strategies are almost twice the amount of RBCs transfusion with restrictive strategies, but no significant difference is noted between restrictive and liberal triggers in assessment of primary outcomes⁶. Additionally, the risk of complications, such as volume overload, infection, transfusion reactions, and even increased mortality, also raises concerns about the threshold for RBC transfusion in ICU patients ⁷⁻⁹. However, the optimal thresholds for RBC transfusion in diverse critical care settings remain controversial. The results of the Transfusion Requirements in Critical Care (TRICC) study have confirmed the superiority of a restrictive transfusion strategy (RBC transfusions were given when hemoglobin concentration was below 7 g/dl) in controlling the 30-day mortality of

Page 7 of 47

BMJ Open

1	critical ill patients with younger age and lower acute physiology and chronic health
2	evaluation (APACHE) II score. Indeed, conservative blood transfusion could result in
3	a marked decline in the use of RBCs, which further decreases the in-hospital cost of
4	ICU patients ² ¹⁰ . Recently, various studies have extensively discussed transfusion
5	strategies to optimize the outcomes. For instance, no significant difference was shown
6	between restrictive and liberal transfusion strategies in terms of adverse effects, as
7	reported by some studies ¹¹ ¹² . In addition, other researchers found that blood
8	transfusions triggered at a threshold of 7 g/dl were much safer in critically ill patients
9	with cardiovascular diseases ¹⁰ ¹³ . However, Silva Junior JM et al have found that
10	RBC transfusion was an independent risk factor for mortality of critical ill patients,
11	followed with longer ICU and hospital stay, which was associated with different
12	decisions regarding transfusion triggers ¹⁴ . Other indexes, such as oxygen delivery
13	(DO ₂) and oxygen consumption (VO ₂), also show marked deviation among various
14	studies. Study by Conrad SA and colleagues revealed significant improvement in DO ₂
15	but no influence in VO ₂ after blood transfusion on septic patients ¹⁵ . While Steffes CP
16	and colleagues have reported that blood transfusion is capable of elevating DO_2 and
17	VO_2 in septic surgical patients ¹⁶ . Therefore, the thresholds for blood transfusion
18	should be different for patients with various diseases and need to be carefully
19	evaluated.

Actually, the benefits and harms of blood transfusions in patients admitted to intensive care units have been discussed by many systematic reviews and meta-analyses, but the results remain controversial due to the distinct inclusion

1 2
3 4 5
6
7 8 9 10
11
12 13
14 15 16
17 18
19 20
21 22 23
24 25
26 27 28
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
31 32
33 34 35
36 37
38 39
40 41 42
43 44
45 46 47
48 49
50 51
52 53 54
55 56
57 58 59
59 60

1	criteria and outcome measurement across studies. ^{9 11 12 17-19} . Salpeter and colleagues
2	found restrictive blood transfusion trigger at 7g/dl could significantly reduce mortality
3	of disparate phase, as well as diverse transfusion-related complications compared to
4	the liberal transfusion trigger. However, they didn't distinguish pediatric and adult
5	ICU settings, and merely enrolled 3 randomized controlled trials (RCTs) ¹⁷ . Systematic
6	reviews conducted by Fominskiy E et al revealed no statistical difference in 90-day
7	mortality between two transfusion thresholds ¹⁸ . Nevertheless, recently updated
8	publication by Chong and colleagues incorporated almost same RCTs as Fominskiy E
9	et al did, while they identified a significant reduction of 30-day mortality in ICU
10	patients with restrictive strategy in comparison with those with more liberal
11	transfusion trigger ¹⁹ . In addition, the specific thresholds of hemoglobin concentration
12	are essential for decision of RBC transfusion regarding various clinical practice.
13	However, no studies have reported the impact of the transfusion threshold of 7 g/dl on
14	the short-term outcomes of critically ill patients or the financial value of a different
15	transfusion strategy, even though it is considered as a common trigger to implement
16	restrictive transfusion strategy. Furthermore, different types of clinical conditions also
17	show remarkable deviation in RBCs administration. For example, septic shock is
18	commonly recognized as a substantial threat to ICU, and it is related to high hospital
19	costs and poor outcomes 20. Anemia is also commonly complicated during the
20	progression of sepsis, as it presents with insufficient tissue perfusion, like
21	hypovolemic shock, and dysfunction of cellular metabolism, which cannot be
22	reversed by prompt fluid resuscitation and administration of vasoactive drugs. Indeed,

Page 9 of 47

BMJ Open

blood transfusion is frequently administered as an efficient remedy for patients with septic shock, but the protocol for transfusion is different in patients with septic shock from patients with other critical illnesses 1 21 22. In fact, there is still a lack of conclusive data regarding the rational transfusion threshold for patients with septic shock ²² ²³. The transfusion requirements in septic shock (TRISS) trial did provide strong evidences that no significant difference was noted between RBC transfusion with lower and higher hemoglobin thresholds in long term mortality and adverse reactions²². However, other researchers found that RBC transfusion was related to unfavorable outcomes of septic patients, such as sequential organ failure assessment (SOFA) score and length of stay in ICU. In addition, the association between RBC transfusion and short-term outcomes of septic patients hasn't been established yet. In the present study, we aim to perform a comprehensive systematic review and meta-analysis specifically determining whether hemoglobin level below 7g/dl is an optimal trigger for blood transfusion among adult ICU patients when compared to more liberal transfusion thresholds by evaluating its impacts on short-term mortality and adverse reactions. Additionally, a subgroup analysis is further performed with patients with or without septic shock to seek the optimal transfusion strategy for this unique subset of critically ill patients.

20 Materials and methods

This systematic review and meta-analysis was conducted according to the
Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)

statement²⁴.

Patient and public involvement There were no patients' involvement in the development of the research question, outcome measurement, design of this study, or the recruitment to and conduct of the study. The results will not be disseminated to study participants.

Search strategy and information sources

Online databases, including Cochrane Library, EMBASE, and PubMed, were systematically searched. We conceived strategy comprised of following combination of exploded Medical Subject Heading (MeSH) terms: "critical care", "intensive care unit", "blood transfusion". Detailed search strategy was presented in Supplementary File 1. Relevant studies up to Sep 1, 2019, were searched without any language limitations. In addition, ongoing trials and conference abstracts were identified to obtain additional evidences. We also obtained references by searching the reference lists of reviews and trial registries.

Eligibility and exclusion criteria

This meta-analysis included RCTs among adult ICU patients (age>18 years) who underwent allogenic RBC transfusion. The recruited studies had to compare two distinct blood transfusion thresholds, a restrictive threshold and a liberal one. The definition of transfusion thresholds in this systematic review was based on

BMJ Open

hemoglobin or hematocrit levels. Blood transfusion initiated at hemoglobin thresholds below 7 g/dl were termed restrictive strategies, while the liberal transfusions were conducted at hemoglobin thresholds between 8.5 and 10 g/dl. Other types of studies, including observational, cohort and case-control, were excluded. Trials with pretransfusion hemoglobin concentrations higher than 7 g/dl were eliminated as well. Only ICU patients were considered, while participants in other hospital departments were not eligible.

Study selection

Two reviewers (RQY and CR) independently screened the titles and abstracts of the relevant trials. If the abstract of a potentially eligible article failed to provide adequate information, the full-text version was then screened to determine its eligibility. Differing opinions between the two authors were settled by discussion and consensus. If a consensus could not be reached, a consulting group including two experts (ZFX and YMY) resolved the disagreements.

Data collection

Two reviewers (RQY and CR) extracted the data from all eligible trials with a standardized and predesigned form. First author, year of publication, baseline characteristics, the total number of included patients and the clinical settings were recorded. The clinical outcomes (short-term mortality, length of hospital stay, length of ICU stay, myocardial infarction (MI), and ischemic events) and study design were

1 also obtained.

Risk of bias assessment The Cochrane Collaboration tool was used to evaluate the risk of bias of the RCTs. The randomization sequence, allocation concealment, blinding of personnel and participants, risk of incomplete outcome data, selective reporting bias and other sources of bias were assessed independently by two authors. Each clause was rated as 'low', 'high' or 'unclear' bias. The summarized risk of bias of each RCT was ranked as low, moderate or high. Grading quality of evidence The quality of evidence of each outcome was evaluated in accordance with the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) methods. This procedure was conducted with GRADE Pro software 3.6 (McMaster University 2014, Hamilton, Canada). Outcomes The primary endpoint was all-cause short-term mortality, which was preferentially analyzed by 28-day or 30-day mortality. In the case of unreported short-term mortality, we contacted the authors for the original data or considered the closest available mortality data. Secondary outcomes included the following indicators: length of hospital stay, length of ICU stay, myocardial infarction, and

1 ischemic events.

Data synthesis and analysis

The statistical analysis was conducted with ReviewManager (RevMan 5.3, Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014). We applied odds ratios (ORs) to analyze dichotomous outcomes and standardized mean differences (SMDs) for continuous outcomes. The pooled results were calculated with 95% confidence intervals (CIs). Heterogeneity among studies for each outcome was assessed by applying both χ^2 test and I² statistics. Either I² greater than 50% or p value of χ^2 test less than 0.10 was deemed as statistically significant heterogeneity. If remarkable heterogeneity existed in pooled results, random effects models combined with the Mantel-Haenszel (M-H) method were used, or else, fixed effects models was applied accordingly. For the small study bias, the funnel plot of the pooled short-term mortality data was scanned visually by reviewers. Besides, by using Stata software, version 12, we performed Begg's and Egger's tests to further assess the possible small study bias. A sensitivity analysis was also performed by means of excluding each study one at a time from the pooled effect. Additionally, we performed a subgroup analysis based on the M-H model to determine the difference between septic shock and non-sepsis groups.

Results

22 Search results and the characteristics of the included studies

2	
3	
4	
5	
6	
5 6 7	
, Q	
0	
8 9 10	
10	
11	
12	
13	
14	
15	
16 17	
17	
18	
19	
20	
20 21	
∠ I 22	
22	
20 21 22 23 24 25 26 27 28	
24	
25	
26	
27	
27 20	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50 59	
59 60	

60

1

1	This systematic review and meta-analysis identified 4641 relevant citations; we
2	removed duplicates and then scanned the titles and abstracts of 4600 studies.
3	Eventually, the full-text articles for 41 trials were reviewed, and 8 RCTs met the
4	inclusion criteria and were presented with full paper, with ICU patients older than 18
5	years who received RBC transfusions at hemoglobin thresholds below 7 g/dl (Fig. 1).
6	The eight included RCTs ranged in publication year from 1999 to 2019 and
7	contained a total of 3415 patients ^{10 22 23 25-29} . The patient population sizes of the
8	included trials were very diverse, ranging from 44 to 998. Three studies enrolled more

studies enrolled 1480 patients with septic shock, including one studies complicated by
cancer diagnoses. In addition, four trials were multicenter studies (Table 1)

than 800 patients, while three trials enrolled fewer than 200 eligible patients. Four

16

12

9

13 Risk of bias

Most of the RCTs met the randomization requirements and used rational distribution methods. In some of the included trials, however, it was challenging to blind the attending physicians and nurses to the outcome assessment based on the intervention, which resulted in high risk of performance bias (**Supplementary Fig. 1**).

19 Quality of evidence

The summary of findings for the outcomes of interest and the levels of evidence were provided (**Supplementary Table 1**). The qualities of the primary outcome data and some secondary outcome data, including myocardial infarction and ischemic

1 2		
3 4	1	events, were all ranked as moderate. However, the length of stay both in hospital and
5 6 7	2	ICU displayed low quality.
7 8 9	-	ree alspia for quality.
10 11		
12 13		
14 15		
16 17		
18 19		
20 21		
22 23		
24 25 26		
20 27 28		
29 30		
31 32		
33 34		
35 36		
37 38 39		
40 41		
42 43		
44 45		
46 47		
48 49 50		
51 52		
53 54		
55 56		
57 58		
59 60		45
		15

Table 1 Characteristics of the included studies

9 10 11 12 13 14 15 16	Author	Year of Publication	No. of sites	Population			Transfusion Triggers		Mortality Data	References
				Clinical Settings	Details	Number of Participants	Restrictive	Liberal		
10- 17 18 19	Hebert et al.	1999	25	Critical illness	Euvolemic critically ill patients	838	Hb 7	Hb 10	30-day mortality 60-day mortality ICU mortality Hospital mortality	[10]
20 21	Holst et al.	2014	32	Critical illness	Patients with septic shock	998	Hb 7	Hb 9	90-day mortality	[22]
22 23 24	Mazza et al.	2015	Single	Critical illness	Patients with septic shock	46	Hb 7	Hb 9	Hospital mortality	[23]
25 26	Robertson et al.	2014	2	Traumatic brain injury	Patients with closed head injuries	200	Hb 7	Hb 10	Six-month mortality	[25]
27 28 29	Villanueva et al.	2013	Single	Upper UGIB	Patients with hematemesis, melena or both	889	Hb 7	Hb 9	45-day mortality	[26]
30 31 32	Walsh et al.	2013	6	Critical illness	Older critically ill patients receiving mechanical ventilation	100	Hb 7	Hb 9	30-day mortality 60-day mortality 180-day mortality ICU mortality	[27]
33 34 35	Bergamin et al.	2017	Single	Critical illness	Patients with cancer with septic shock	300	Hb 7	Hb 9	Hospital mortality 28-day mortality 60-day mortality 90-day mortality	[29]
36 37 38	Gobatto et al.	2019	Single	Traumatic brain injury	Patients with moderate or severe traumatic brain injury	44	Hb 7	Hb 9	Hospital mortality ICU mortality	[28]
39 40 41					16					

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2		
3		
4		
5		
6		
7		
, 8		
9		
	0	
1		
1		
	3	
1	4	
1	5	
1	6	
	7	
	8	
	9	
	0	
2 2		
2		
	3	
	4	
	5	
	6	
2	7	
2	8	
2	9	
	0	
	1	
3		
	2 3	
	3 4	
	5	
	6	
	7	
	8	
3	9	
4	0	
4	1	
4	2	
4		
4	-	
4		
4		
4		
4		
4 4		
-	-	
5	1	
5	1	
5		
5		
5	4	
5	5	
5	6	
5	7	
5	8	
5	9	
2	-	

60

1 Primary outcome: short-term mortality

2 Within this meta-analysis, there were three RCTs that reported 28-day or 30-day 3 mortality, and four reported in-hospital mortality only. The published study from 4 Holst LB et al did provide solid conclusions about the impacts of blood transfusion with liberal and restrictive hemoglobin thresholds on long-term mortality and rates of 5 ischemic events, which presented with similar effects, while the information about 6 short-term outcomes was missing²². Therefore, we wrote a letter asking for the 7 important evidence of short-term mortality rates, as its analysis was based on a large 8 9 sample size and was essential for our conclusions. After generating the forest plot, we found no significant difference in short-term mortality between the transfusion 10 threshold of hemoglobin < 7 g/dl and the more liberal strategy (OR: 0.90, 95% CI: 11 12 0.67-1.21; P=0.48; I²=53%). Meanwhile, we noticed that the RCT reported by 13 Bergamin et al. (19) was the main resource of heterogeneity, and removing that study resulted in a marked reduction in heterogeneity ($I^2=29\%$, P=0.21) (Fig. 2). 14

15

Secondary outcome: length of hospital stay, length of ICU stay, myocardial infarction, and ischemic events

Five included studies documented the length of hospital stay, which revealed no 18 19 significant difference in hospital stays when the threshold of hemoglobin < 7 g/dl was 20 used, comparing with the more liberal threshold (SMD: -0.11, 95% CI: -0.30-0.07, P=0.24, I²=71%, Fig. 3). Sensitivity analysis indicated that study by Bergamin et al 21 22 was the main source of heterogeneity, exclusion of which could significantly reduce 23 heterogeneity ($I^2=45\%$, P=0.51). The outcome of length of ICU stay was reported by four trials, and there was no significant difference between the two thresholds (SMD: 24 -0.03, 95% CI: -0.14-0.08, P=0.54, I²=0%, Fig. 4). In addition, we identified that MI 25

> events was decreased among patients with transfusion trigger of hemoglobin < 7 g/dl when compared to those with the liberal transfusion strategy (OR: 0.54, 95% CI: 0.30-0.98, P=0.04; I²=0%, Fig. 5). However, no significant differences were noted thresholds between the transfusion for critically ill patients in two ischemic/thromboembolic events (OR, 0.80; 95% CI, 0.43-1.48; P=0.48; I²=51%, Fig. 6). After removing study conducted by Walsh et al, the heterogeneity of this outcome decreased significantly ($I^2=0\%$, P=0.21), which indicated the main source of heterogeneity.

10 Small study bias

We constructed a funnel plot to assess the possible small study bias. After inspecting the funnel plot, we found no evidence of small study bias. Furthermore, we used Begg's test (P=0.71) and Egger's test (P=0.62) to evaluate the funnel plot asymmetry, which also showed no significant statistical evidence of small study bias (**Supplementary Fig. 2**).

17 Subgroup analysis

The subgroup analysis of the septic shock and non-sepsis groups investigated short-term mortality. From the forest plot, there were no significant differences in short-term mortality between two thresholds in either the septic shock group (OR: 1.10, 95% CI: 0.75-1.62; *P*=0.63; I²=46%) or the non-sepsis group (OR: 0.75, 95% CI: 0.50-1.14; *P*=0.15; I²=41%) (**Fig. 7**).

24 Discussion

25 Major findings

Page 19 of 47

BMJ Open

The current study demonstrated that restricting the transfusion threshold to a hemoglobin concentration less than 7 g/dl did not result in significant differences in short-term mortality, ICU/hospital length of stay, or ischemic events, when compared with more liberal thresholds. Of note, the length of stay of both ICU and hospital displayed low quality of evidence. Additionally, pooled data also revealed that the incidence of MI was decreased among patients applied 7 g/dl as transfusion threshold. Nevertheless, we should be cautious when interpreting this finding. After removing the study conducted by Villanueva and his colleagues, as well as changing effects model from random effects models to fixed effects models could alter the consequence, indicating the instability of this outcome.

Within the primary outcome analysis, the heterogeneity of enrolled trials was moderate, with an I² of 53% according to the heterogeneity test, while sensitivity analysis revealed that remove of the Transfusion Requirements in Critically III Oncological Patients (TRICOP) trial resulted in dramatically decreased heterogeneity (I²=29%, P=0.21). As this study enrolled patients diagnosed with both solid cancer and septic shock, the baseline characteristic of this unique subset might differ from other ordinary ICU patients, which could partially explain the source of heterogeneity. Also, this finding was assumed to be due to different clinical settings, especially for patients with septic shock. We further performed a subgroup analysis after classifying the studies into a septic shock group and a non-sepsis group, as septic shock was recognized as one of the major causes of death in critical ill patients. In septic shock group, patients with a transfusion threshold < 7 g/dl showed no significant difference in short-term mortality compared to those with a more liberal transfusion threshold, while the heterogeneity was markedly decreased (I²=46%, P=0.15). In non-sepsis group, no significant difference in short-term mortality was noted between the two

thresholds with only five trials included. Additionally, the highly disparate sample sizes of included studies could be another resource of heterogeneity. Given the fact that several studies came from conference abstracts, we were unable to evaluate their methodology and data quality in detail.

6 Relations to other meta-analysis

Carefully designed meta-analyses on RBC transfusions in critically ill patients have been published recently. In 2014, the first time Salpeter and colleagues reported the benefits of restrictive blood transfusion at hemoglobin trigger <7 g/dL in critical ill patients via conducting meta-analysis, which presented with significant reductions in total mortality (RR: 0.80; 95% CI, 0.65-0.98), in-hospital mortality (RR: 0.74; 95% CI, 0.60-0.92), 30-day mortality (RR: 0.77; 95% CI, 0.61-0.96), acute coronary syndrome (RR: 0.44; 95% CI, 0.22-0.89), pulmonary edema (RR: 0.48; 95% CI, 0.33-0.72), rebleeding (RR: 0.64; 95% CI, 0.45-0.90) and bacterial infections (RR: 0.86; 95% CI, 0.73-1.00) when compared with the liberal transfusion threshold group¹⁷. However, this meta-analysis did not provide a convincing conclusion with only three RCTs included, and also failed to separate adult and pediatric participants, as each population shared different transfusion protocols.

19 Recently, in a review by Fominskiy E et al. ¹⁸, the restrictive and liberal RBC 20 transfusion thresholds in critically ill patients showed no significant difference in 21 all-cause 90-day mortality (OR: 1.10; 95% CI: 0.99-1.23; *P*=0.07; I²=34%). In fact, 22 this study was the first comprehensive meta-analysis to address different transfusion 23 thresholds among critically ill and perioperative patients, but it lacked a valid analysis 24 of secondary outcomes which were noteworthy factors for the effects of RBC 25 transfusions. Furthermore, Chong and colleagues also conducted an updated analysis

Page 21 of 47

BMJ Open

on the effects of RBC transfusion, which included two more RCTs other than the same 10 trials included in the Fominskiy's study¹⁸ ¹⁹ ²³ ³⁰. These results suggested that RBC transfusion with restrictive threshold significantly reduced the risk of overall 30-day mortality (OR: 0.82; 95% CI: 0.70-0.97; P=0.019) when compared with that with liberal threshold, accompanied with declining risk of stroke/transient ischemic attack (TIA) (OR: 0.63; 95% CI, 0.40-0.99; P=0.04), transfusion reactions (OR: 0.48; 95% CI, 0.29-0.80; P=0.005), allogenic blood exposure (OR: 0.04; 95% CI: 0.01-0.14; P=0.001), and length of hospital stay (95% CI: 0.42-1.64; P=0.001), hinting the safety of using restrictive transfusion protocol. Actually, above two studies focused on different primary outcomes, 30-day and 90-day mortality respectively, and further drew different conclusions even though both included similar RCTs, indicating that the effects of RBC transfusion varied with the stage of critical settings. However, Hovaguimian F et al.³¹ performed a context-specific systematic review and meta-analysis comparing the restrictive and liberal transfusion thresholds and found no significant differences in early mortality (OR: 0.94; 95% CI: 0.73-1.20; P=0.09; $I^2=45\%$) between the two thresholds, indicating that the specific types and severity of critical illness might be in need of different strategies of RBC transfusion, especially for patients with major surgery.

In the present study, we specifically concentrated on the restrictive transfusion threshold of hemoglobin < 7 g/dl in ICU patients. We included data from the newly published Transfusion Requirements after Head Trauma (TRAHT) trial and the TRICOP trial, which presented with increased mortality rate in the group with restrictive transfusion thresholds in comparison with liberal transfusion threshold group^{28 29}. This study showed that RBC transfusion with restrictive threshold < 7 g/dl did not result in significant improvement in short-term mortality when compared with 1 those using liberal thresholds.

Subgroup analysis

The first review with regard to the impact of blood transfusion on the prognosis of septic shock patients was conducted by Dupuis and colleagues ³². They showed no association between RBC transfusion and mortality rate in patients with septic shock, and also failed to determine correlations between the two different transfusion thresholds or to infer the optimal transfusion threshold for septic shock patients because of a shortage of high-quality RCTs ³². In fact, a 10 g/dl hemoglobin threshold has been universally proposed for treatment of septic shock as the crucial role of RBC transfusions in early goal-directed therapy ³³. Nonetheless, severe adverse events caused by extensive blood transfusion have been reported as a great threat for septic shock patients by several studies³⁴⁻³⁶. The restrictive strategy, as reported previously, was beneficial for the improvement of microcirculation, while also saving blood products ¹⁰ ³⁷. The landmark TRISS trial that was conducted by Holst L et al. ²² revealed no significant differences in 90-day mortality between patients in the group with the transfusion thresholds of 7 g/dl and those with the more liberal thresholds. In addition, the number of patients experiencing ischemic events and severe adverse reactions was also similar between the two groups. The TRISS trial demonstrated the safety and economic efficiency of the restrictive blood transfusion threshold, with a well-controlled risk of bias. Mazza BF et al. ²³ performed a randomized physiological study of septic shock patients with the endpoint of abnormal lactate and ScvO₂ under distinct pretransfusion hemoglobin concentrations. However, they failed to provide valid data on mortality with a relatively small sample size provided. Recently, Bergamin and colleagues focused on cancer patients who developed septic shock in

BMJ Open

the ICU through a single-center RCT²⁹. Indeed, tumor patients that were complicated by septic shock were in urgent need of blood transfusion as high risk of anemia^{22 38}. Ideally, the more restrictive threshold for transfusion might reduce the occurrence of multiple transfusion-related complications. In this study, we conducted a comprehensive meta-analysis after enrolled all recently published RCTs that covered septic shock cases. No marked difference in mortality was observed between the transfusion threshold of hemoglobin < 7 g/dl and the more liberal transfusion threshold (OR: 1.08; 95% CI, 0.82-1.41; P=0.54; I²=20%). We assumed that these results might be, at least in part, due to the overwhelming weight that the TRISS trial carried and the relatively low quality of the other three studies. Moreover, the study by Mazza BF et al. ²³ enrolled participants with a diagnosis of malignant tumoral, which might generate heterogeneity. Taken together, we can't determine that blood transfusion at thresholds of 7 g/dl is the optimal transfusion threshold for patients with septic shock based on current evidences, which urges more as well as large clinical trials.

17 Strengths and limitations

This study mainly focused on analyzing the impact of the transfusion threshold of 7 g/dl on the short-term outcomes of critically ill patients, which remains an essential clinical practice but with controversy. Indeed, the blood transfusion is given with different triggers by different organizations, such as surviving Sepsis Campaign (SCC), the American college of critical care medicine (ACCM) and the world health organization (WHO)³⁹⁻⁴¹. Further analysis shows that these guidelines are provided mainly based on long-term effects of blood transfusion on ICU patients. Our meta-analysis is the first report concerning the feasibility of a transfusion threshold of

hemoglobin < 7 g/dl with regard to short-term mortality in critically ill patients, which is an essential issue for survival of ICU patients based on specific clinical characters. In addition, unlike the previously published meta-analyses, which enrolled studies with different restrictive transfusion thresholds, we only included RCTs that specified the restrictive RBC transfusion threshold as a pretransfusion hemoglobin concentration less than 7 g/dl to get relative solid conclusions. Simultaneously, we performed an updated and comprehensive analysis that focused on ICU patients with septic shock. Meanwhile, this analysis revealed no evidence of significant small study bias according to visual inspection of the funnel plot, Begg's test and Egger's test.

Some limitations are also noted in the current systematic review and meta-analysis. Firstly, the number of studies we enrolled was not large enough due to the strict inclusion criteria of a restrictive transfusion threshold of hemoglobin < 7g/dl. Five relevant studies that discussed the two different transfusion thresholds among critically ill patients were excluded because of their different definition of restrictive RBC transfusion thresholds ³⁰ 42-45. Secondly, the heterogeneity in our meta-analysis was relatively high, which was caused by different outcome measurements and clinical settings. Some trials with low quality evidence and insufficient participants might be another source of heterogeneity. Correspondingly, we tried to eliminate the heterogeneity by conducting a subgroup analysis and analyzing the effects. Thirdly, there was imperfect blinding of the study participants in the trials mainly owing to the nature of the interventions. Fourthly, the sample sizes of all incorporated RCTs were varied. We applied the Mantel-Haenszel method to address this diversity in sample sizes and to avoid our results from being dominated by the larger studies. Finally, we failed to testify if hemoglobin level less than 7 g/dl was the optimal threshold for the blood transfusions in critically ill patients and in

BMJ Open

those with septic shock basing on a lack of sufficient evidence.

Conclusions and clinical implications

The present meta-analysis of RCTs focused on the effect of RBC transfusions at the threshold of hemoglobin < 7 g/dl on the survival and prognosis of ICU patients. RBC transfusions at the threshold of hemoglobin < 7 g/dl did not result in significant difference in short-term mortality when compared with transfusions administered at a more liberal threshold. However, it might associate with decreased MI events, suggesting its potentially protecting role for critically ill patients. Besides, regarding ICU patient with septic shock, RBC transfusions at the restrictive threshold did not improve short-term mortality compared with transfusions at the more liberal threshold. Therefore, we recommend a hemoglobin trigger of 7 g/dL for critically ill patients with or without septic shock due to the cost and resource saving effect, as well as its latent value in reducing severe adverse effect. Still, further studies are required to validate our findings. This study indeed provides novel conclusions on the impact of blood transfusion on short-term outcomes of critically ill patients as well as patients with septic shock. Even though it was hard to determine that the hemoglobin trigger of 7 g/dL was the optimal strategy for RBC transfusion, but it did show advantages in managing the use of RBC units and urged prudent decision-making in blood transfusion for critically ill patients.

22 Funding

This work was supported by grants from the National Natural Science
Foundation (No. 81730057) and the National Key Research and Development
Program of China (No. 2017YFC1103302).

1	
2	Data Availability Statement
3	All data relevant to the study are included in the article or uploaded as
4	supplementary information.
5	
6	Conflicts of Interest
7	The authors have no conflicts of interest to declare.
8	
9	Acknowledgement
10	We greatly appreciated the excellent job and kind share of professor Holst in
11	providing important evidence on the impact of blood transfusion with liberal and
12	restrictive hemoglobin thresholds on short-term mortality.
13	
14	Abbreviations
15	RBC: Red blood cell; ICU: Intensive care unit; TRICC: Transfusion
16	requirements in critical care; APACHE: Acute physiology and chronic health
17	evaluation; DO2: oxygen delivery; VO2: oxygen consumption; RCT: Randomized
18	controlled trial; TRISS: The transfusion requirements in septic shock; SOFA:
19	sequential organ failure assessment; PRISMA: Preferred items for systematic reviews
20	and meta-analyses; MeSH: Medical Subject Heading; MI: Myocardial infarction;
21	GRADE: Grading of recommendations, assessment, development and evaluation;
22	ORs: Odds ratios; SMDs: standardized mean differences; CIs: Confidence intervals;
23	M-H: Mantel-Haenszel; TRICOP: Transfusion requirements in critically ill
24	oncological patients; TIA: Transient ischemic attack; TRAHT: Transfusion
25	requirements after head trauma; SCC: Surviving sepsis campaign; ACCM: American

BMJ Open

3 4	1	college of critical care medicine; WHO: World health organization.
5	C	
6 7	2	
7 8 9	3	Author contributions
10 11	4	YMY and ZFX conceived the meta-analysis. RQY and CR extracted all data.
12 13	5	YBZ and ZCZ undertook and refined the searches. RQY and CR co-wrote the paper.
14 15	6	RQY undertook the statistical analyses. All authors contributed to and revised the
16 17 18	7	final manuscript.
19 20	8	
21 22	9	
23	10	References
24 25		
26	11	1. Rosland RG, Hagen MU, Haase N, et al. Red blood cell transfusion in septic shock -
27 28	12	clinical characteristics and outcome of unselected patients in a prospective, multicentre
29	13	cohort. Scand J Trauma Resusc Emerg Med 2014;22:14.
30	14	2. Klein HG, Spahn DR, Carson JL. Red blood cell transfusion in clinical practice. Lancet
31 32	15	2007;370(9585):415-26.
32 33	16	3. Amin M, Fergusson D, Aziz A, <i>et al.</i> The cost of allogeneic red blood cellsa systematic
34	17	review.
35 36	18	
37		Transfus Med 2003;13(5):275-85.
38	19	4. Corwin HL, Surgenor SD, Gettinger A. Transfusion practice in the critically ill. <i>Crit Care</i>
39 40	20	Med 2003;31(12 Suppl):S668-71.
41	21	5. Kristof K, Buttner B, Grimm A, et al. Anaemia requiring red blood cell transfusion is
42	22	associated with unfavourable 90-day survival in surgical patients with sepsis. BMC Res
43 44	23	<i>Notes</i> 2018;11(1):879.
45	24	6. Holst LB. Benefits and harms of red blood cell transfusions in patients with septic shock in
46	25	the intensive care unit. Dan Med J 2016;63(2): B5209.
47 48	26	7. Madjdpour C, Spahn DR. Allogeneic red blood cell transfusions: efficacy, risks, alternatives
49	27	and indications. British journal of anaesthesia 2005;95(1):33-42.
50 51	28	8. Marik PE, Corwin HL. Efficacy of red blood cell transfusion in the critically ill: a systematic
52	29	review of the literature. Crit Care Med 2008;36(9):2667-74.
53	30	9. Hopewell S, Omar O, Hyde C, et al. A systematic review of the effect of red blood cell
54 55	31	transfusion on mortality: evidence from large-scale observational studies published
56	32	
57		between 2006 and 2010. <i>BMJ open</i> 2013;3(5): e002154.
58 59	33	10. Hebert PC, Wells G, Blajchman MA, <i>et al.</i> A multicenter, randomized, controlled clinical
60	34	trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care
		27

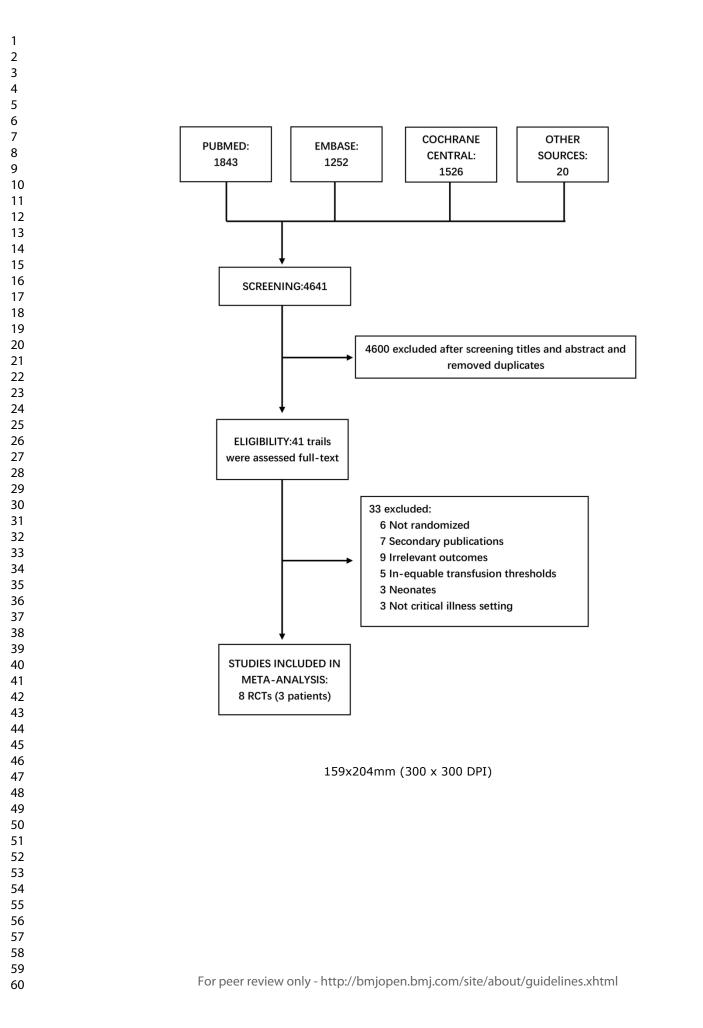
Investigators, Canadian Critical Care Trials Group. The New England journal of medicine 1999;340(6):409-17. 11. Holst LB, Petersen MW, Haase N, et al. Restrictive versus liberal transfusion strategy for red blood cell transfusion: systematic review of randomised trials with meta-analysis and trial sequential analysis. BMJ 2015;350:h1354. 12. Carson JL, Carless PA, Hebert PC. Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion. The Cochrane database of systematic reviews 2012(4):Cd002042. 13. Hebert PC, Yetisir E, Martin C, et al. Is a low transfusion threshold safe in critically ill patients with cardiovascular diseases? Crit Care Med 2001;29(2):227-34. 14. Silva Junior JM, Rezende E, Amendola CP, et al. Red blood cell transfusions worsen the outcomes even in critically ill patients undergoing a restrictive transfusion strategy. Sao Paulo Med J 2012;130(2):77-83. 15. Conrad SA, Dietrich KA, Hebert CA, et al. Effect of red cell transfusion on oxygen consumption following fluid resuscitation in septic shock. Circ Shock 1990;31(4):419-29. 16. Steffes CP, Bender JS, Levison MA. Blood transfusion and oxygen consumption in surgical sepsis. Crit Care Med 1991;19(4):512-7. 17. Salpeter SR, Buckley JS, Chatterjee S. Impact of more restrictive blood transfusion strategies on clinical outcomes: a meta-analysis and systematic review. Am J Med 2014;127(2):124-31. 18. Fominskiy E, Putzu A, Monaco F, et al. Liberal transfusion strategy improves survival in perioperative but not in critically ill patients. A meta-analysis of randomised trials. British journal of anaesthesia 2015;115(4):511-9. 19. Chong MA, Krishnan R, Cheng D, et al. Should Transfusion Trigger Thresholds Differ for Critical Care Versus Perioperative Patients? A Meta-Analysis of Randomized Trials. Crit Care Med 2018;46(2):252-63. 20. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016;315(8):801-10. 21. Zarychanski R, Doucette S, Fergusson D, et al. Early intravenous unfractionated heparin and mortality in septic shock. Crit Care Med 2008;36(11):2973-9. 22. Holst L, Haase N, Wetterslev J, et al. Lower versus higher hemoglobin threshold for transfusion in septic shock. New England journal of medicine 2014; 371(15):1381-91. 23. Mazza BF, Freitas FG, Barros MM, et al. Blood transfusions in septic shock: is 7.0 g/dL really the appropriate threshold? Revista Brasileira de terapia intensiva 2015;27(1):36-43. 24. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009;151(4):264-9. 25. Robertson CS, Hannay HJ, Yamal JM, et al. Effect of erythropoietin and transfusion threshold on neurological recovery after traumatic brain injury: a randomized clinical trial. JAMA 2014;312(1):36-47.

Page 29 of 47

1 2		
3	1	26. Villanueva C, Colomo A, Bosch A, <i>et al</i> . Transfusion strategies for acute upper
4 5	2	gastrointestinal bleeding. <i>The New England journal of medicine</i> 2013;368(1):11-21.
6	3	27. Walsh TS, Boyd JA, Watson D, <i>et al.</i> Restrictive versus liberal transfusion strategies for
7 8	4	older mechanically ventilated critically ill patients: a randomized pilot trial. <i>Crit Care Med</i>
9	5	2013;41(10):2354-63.
10	6	28. Gobatto A, Link M, Solla D, <i>et al</i> . Transfusion requirements after head trauma (TRAHT): a
11 12	7	randomized clinical trial. Crit Care 2019;23(1):89.
13	8	29. Bergamin FS, Almeida JP, Landoni G, <i>et al.</i> Liberal Versus Restrictive Transfusion
14 15	9	Strategy in Critically III Oncologic Patients: The Transfusion Requirements in Critically III
16	10	Oncologic Patients Randomized Controlled Trial. <i>Crit Care Med</i> 2017;45(5):766-73.
17 18	11	30. Jairath V, Kahan BC, Gray A, <i>et al.</i> Restrictive versus liberal blood transfusion for acute
19	12	upper gastrointestinal bleeding (TRIGGER): a pragmatic, open-label, cluster randomised
20 21	13	feasibility trial. <i>Lancet</i> 2015;386(9989):137-44.
22	14	31. Hovaguimian F, Myles PS. Restrictive versus Liberal Transfusion Strategy in the
23 24	15	Perioperative and Acute Care Settings: A Context-specific Systematic Review and
25	16	Meta-analysis of Randomized Controlled Trials. <i>Anesthesiology</i> 2016;125(1):46-61.
26 27	17	32. Dupuis C, Sonneville R, Adrie C, et al. Impact of transfusion on patients with sepsis
28	18	admitted in intensive care unit: a systematic review and meta-analysis. Annals of intensive
29 30	19	<i>care</i> 2017;7(1):5.
31	20	33. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of
32	21	severe sepsis and septic shock. New England journal of medicine 2001; 345(19):1368-77.
33 34	22	34. Cata JP, Wang H, Gottumukkala V, et al. Inflammatory response, immunosuppression,
35	23	and cancer recurrence after perioperative blood transfusions. British journal of
36 37	24	anaesthesia 2013;110(5):690-701.
38	25	35. Amato A, Pescatori M. Perioperative blood transfusions for the recurrence of colorectal
39 40	26	cancer. The Cochrane database of systematic reviews 2006(1):Cd005033.
41	27	36. Mynster T, Christensen IJ, Moesgaard F, et al. Effects of the combination of blood
42 43	28	transfusion and postoperative infectious complications on prognosis after surgery for
44	29	colorectal cancer. Danish RANX05 Colorectal Cancer Study Group. The British journal of
45 46	30	<i>surgery</i> 2000;87(11):1553-62.
47	31	37. den Uil CA, Lagrand WK, Spronk PE, et al. Does red blood cell transfusion result in a
48 49	32	variate microvascular response in sepsis? Crit Care Med 2007;35(10):2464-5.
50	33	38. Soares M, Caruso P, Silva E, et al. Characteristics and outcomes of patients with cancer
51 52	34	requiring admission to intensive care units: a prospective multicenter study. Crit Care Med
53	35	2010;38(1):9-15.
54 55	36	39. Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International
55 56	37	Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med
57 58	38	2017;43(3):304-77.
58 59	39	40. Davis AL, Carcillo JA, Aneja RK, et al. American College of Critical Care Medicine Clinical
60		29
		LJ

1

60


ן ר		
2 3		
4	1	Practice Parameters for Hemodynamic Support of Pediatric and Neonatal Septic Shock.
5	2	<i>Crit Care Med</i> 2017;45(6):1061-93.
6	3	41. Obonyo NG, Byrne L, Tung JP, et al. Pre-clinical study protocol: Blood transfusion in
7 8	4	endotoxaemic shock. <i>MethodsX</i> 2019;6:1124-32.
9	5	
10		42. Carson J, Brooks M, Abbott J, <i>et al.</i> Liberal versus restrictive transfusion thresholds for
11	6	patients with symptomatic coronary artery disease. American heart journal 2013; 165(6):
12	7	964-971.
13 14	8	43. Cooper HA, Rao SV, Greenberg MD, et al. Conservative versus liberal red cell transfusion
15	9	in acute myocardial infarction (the CRIT Randomized Pilot Study). The American journal of
16	10	<i>cardiology</i> 2011;108(8):1108-11.
17		
18 19	11	44. Hebert PC, Wells G, Marshall J, et al. Transfusion requirements in critical care. A pilot
20	12	study. Canadian Critical Care Trials Group. <i>JAMA</i> 1995;273(18):1439-44.
21	13	45. Blair SD, Janvrin SB, McCollum CN, et al. Effect of early blood transfusion on
22	14	gastrointestinal haemorrhage. <i>The British journal of surgery</i> 1986;73(10):783-5.
23 24	15	
25		
26	16	
27		
28 29	17	
29 30		
31		
32		
33		
34 35		
36		
37		
38		
39 40		
41		
42		
43		
44 45		
46		
47		
48		
49 50		
50 51		
52		
53		
54 55		
55 56		
57		
58		
59 60		

1		
2 3		
4	1	Figure legends
5 6	2	Figure 1. Flow chart for study selection. Online databases, including Cochrane
7 8 9	3	Library, EMBASE, and PubMed, were systematically searched. Finally, nine RCTs
10 11	4	with 3415 patients were included in the meta-analysis.
12 13	5	
14 15 16	6	Figure 2. Forest plot of all-cause short-term mortality in ICU patients. The odds
17 18	7	ratio and 95% CI for short-term mortality between the restrictive and liberal
19 20	8	transfusion thresholds are presented in the forest plot. The threshold of hemoglobin <
21 22	9	7 g/dl showed no obvious improvement in short-term mortality when compared with
23 24 25	10	the liberal threshold.
26 27	11	
28 29	12	Figure 3. Forest plot of the length of hospital stay. The forest plot shows the mean
30 31 32	13	difference and 95% CI for the length of hospital stay between the two groups. Blood
33 34	14	transfusion at the restrictive threshold resulted in no significant difference of hospital
35 36	15	stays compared to blood transfusion at the more liberal threshold.
37 38 20	16	
39 40 41	17	Figure 4. Forest plot of the length of ICU stay. The difference in the length of ICU
42 43	18	stay in the groups with different transfusion thresholds is shown by the mean
44 45	19	difference and 95% CI in the forest plot. No marked improvement was seen in the
46 47 48	20	length of ICU stay with a transfusion threshold of hemoglobin < 7 g/dl.
49 50	21	
51 52	22	Figure 5. Forest plot of myocardial infarction in ICU patients after RBCs
53 54 55	23	transfusion. The forest plot shows the odds ratios and 95% CI for myocardial
56 57	24	infarction in the groups of ICU patients with different transfusion thresholds. Blood
58 59	25	transfusion at a threshold of hemoglobin < 7 g/dl significantly decrease in the rate of
60		31

myocardial infarction compared with the more liberal threshold.

Figure 6. Forest plot of ischemic events/thromboembolic events in ICU patients after RBC transfusions. The odds ratios and 95% CI for ischemic/thromboembolic events are presented in the forest plot. No significant difference was noted in ischemic/thromboembolic events between the group with the threshold of 7 g/dl hemoglobin compared with the group with the more liberal threshold.

Figure 7. Forest plot for short-term mortality following subgroup analysis. The forest plot shows the odds ratios and 95% CI for the all-cause short-term mortality of patients receiving RBC transfusions at various thresholds according to the subgroup analysis of the septic shock and non-sepsis groups. Restrictive transfusion was incapable of decreasing short-term mortality in septic ICU patients.

4 5 6 7 8	
9 10 11 12 13	
14 15 16 17 18	
19 20	
21	<7g/dl Control Odds Ratio Odds Ratio Study or Subgroup Events Total Events Total Weight M-H, Random, 95% Cl M-H, Random, 95% Cl
22 23	Bergamin 2017 84 151 67 149 17.3% 1.53 (0.97, 2.42) Gobatto 2019 7 23 1 21 1.7% 8.75 (0.97, 78.65) Hebert 1999 78 418 98 420 21.3% 0.75 [0.54, 1.05]
24	Holst 2014 168 502 175 496 23.8% 0.92 [0.71, 1.20] Mazza 2015 11 22 13 24 5.4% 0.85 [0.27, 2.70]
25	Robertson 2014 9 99 9 101 7.1% 1.02 [0.39, 2.69] Villanueva 2013 23 444 41 445 15.2% 0.54 [0.32, 0.91] Walsh 2013 12 51 16 49 8.2% 0.63 [0.26, 1.53]
26 27	Total (95% Cl) 1710 1705 100.0% 0.90 [0.67, 1.21]
28	Total events 392 420 Heterogeneity: Tau ² = 0.08; Chi ² = 14.82, df = 7 (P = 0.04); l ² = 53%
29	Test for overall effect: Z = 0.70 (P = 0.48) favours restrictive favours liberal
30	
31 32	
33	
34	
35 36	
37	
38	
39	
40 41	
42	
43	
44	
45 46	
47	215x279mm (300 x 300 DPI)
48	
49	
50 51	
52	
53	
54	
55 56	
57	
58	
59	For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml
611	TO DECLICATE VOID TRUNT OFFICIAL OFFICIAL OFFICIAL OFFICIAL OFFICES ATTIMES

Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% Cl Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% Cl Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% Cl Study or Subgroup Mean SD Total Mea Std. Mean Differe IV, Random, 95% CI Bergamin 2017 Gobatto 2019 -0.44 [-0.67, -0.21] 0.19 [-0.40, 0.79] Hebert 1999 -0.04 [-0.17, 0.10] Villanueva 2013 Walsh 2013 -0.17 [-0.31, -0.04] 0.23 [-0.17, 0.62]

Heterogeneity: Tau² = 0.03; Chi² = 13.60, df = 4 (P = 0.009); l² = 71%

Test for overall effect: Z = 1.19 (P = 0.24)

Total (95% CI)

215x279mm (300 x 300 DPI)

-0.11 [-0.30, 0.07]

⊢ -1

-0.5

ò

favours restrictive favours liberal

0.5

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	Total processing of the second sec
56 57 58 59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

<7g/dl

3 418

2 51

Heterogeneity: $Chi^2 = 2.57$, df = 3 (P = 0.46); $l^2 = 0\%$

Test for overall effect: Z = 2.03 (P = 0.04)

Study or Subgroup

Bergamin 2017

Villanueva 2013

Hebert 1999

Walsh 2013

Total (95% CI)

Total events

Control

Events Total Events Total Weight M-H, Fixed, 95% Cl

12 420 38.9% 13 445 41.8%

2 49

149 12.8%

1063 100.0%

6.4%

Odds Ratio

0.99 [0.24, 4.02]

0.25 [0.07, 0.88] 0.61 [0.25, 1.49]

0.96 [0.13, 7.09]

0.54 [0.30, 0.98]

0.01

0.1

Odds Ratio

favours restrictive favours liberal

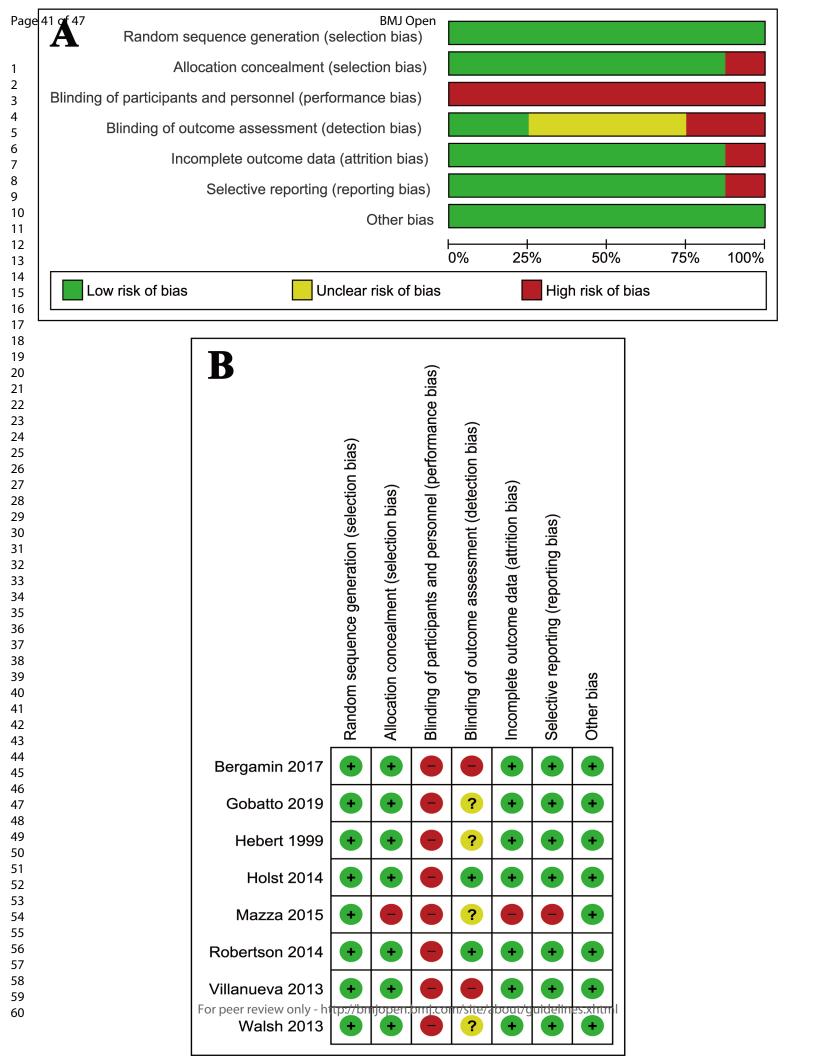
M-H, Fixed, 95% Cl

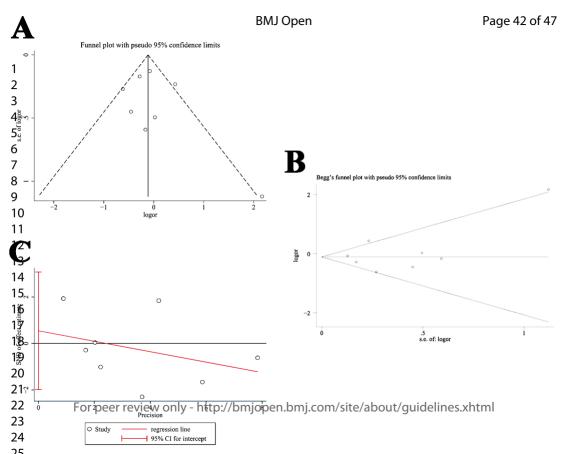
 215x279mm (300 x 300 DPI)

6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
22	<7g/dl Control Odds Ratio Odds Ratio
22 23	Study or Subgroup Events Total Events Total Weight M-H, Random, 95% Cl M-H, Random, 95% Cl Bergamin 2017 8 151 5 149 17.3% 1.61 [0.51, 5.04] ************************************
	Holst 2014 35 488 39 489 33.5% 0.89 [0.55, 1.43]
24	Villanueva 2013 3 444 6 445 13.4% 0.50 [0.12, 2.00] Walsh 2013 8 99 22 101 23.0% 0.32 [0.13, 0.75]
25	
26	Total (95% CI) 1233 1233 100.0% 0.80 [0.43, 1.48] Total events 60 75
27	Heterogeneity: Tau ² = 0.24; Chi ² = 8.17, df = 4 (P = 0.09); l ² = 51% Test for overall effect: Z = 0.71 (P = 0.48) Test for overall effect: Z = 0.71 (P = 0.48)
28	avours restrictive lavours liberal
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	215x279mm (300 x 300 DPI)
48	
49	
50	
51	
52	
53	
55	
55	
56	
57	
58	
59	For more required only better // business business (site /-b
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3 4	
5	
6 7	
8 9	
10	
11 12	
13	
14 15	
16	
17 18	
19	
20 21	
22 23	
24	
25 26	
27	
28 29	
30 31	
32	
33 34	
35	
36 37	
38	
39 40	
41 42	
42 43	
44 45	
46	
47 48	
49	
50	

	<7g/c	11	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	M-H, Random, 95% Cl
1.4.1 septic shock							
Bergamin 2017	84	151	67	149	17.3%	1.53 [0.97, 2.42]	
Holst 2014	168	502	175	496	23.8%	0.92 [0.71, 1.20]	+
Mazza 2015	11	22	13	24	5.4%	0.85 [0.27, 2.70]	
Subtotal (95% CI)		675		669	46.5%	1.10 [0.75, 1.62]	•
Total events	263		255				
Heterogeneity: Tau ² =	0.05; Chi ²	= 3.73	, df = 2 (F	P = 0.15	5); l² = 46%		
Test for overall effect:	Z = 0.48 (P = 0.6	3)				
1.4.2 non-sepsis							
Gobatto 2019	7	23	1	21	1.7%	8.75 [0.97, 78.65]	
Hebert 1999	78	418	98	420	21.3%	0.75 [0.54, 1.05]	
Robertson 2014	9	99	9	101	7.1%	1.02 [0.39, 2.69]	
Villanueva 2013	23	444	41	445	15.2%	0.54 [0.32, 0.91]	
Walsh 2013	12	51	16	49	8.2%	0.63 [0.26, 1.53]	
Subtotal (95% CI)		1035		1036	53.5%	0.75 [0.50, 1.14]	←
Total events	129		165				
Heterogeneity: Tau ² =	0.08; Chi2	= 6.81	, df = 4 (F	9 = 0.15	5); l ² = 41%		
Test for overall effect:	Z = 1.34 (P = 0.1	8)				
Total (95% CI)		1710		1705	100.0%	0.90 [0.67, 1.21]	
Total events	392		420				
Heterogeneity: Tau ² =	0.08; Chi2	= 14.8	2, df = 7 (P = 0.0)4); l ² = 53%	6	
Test for overall effect:					,,		0.01 0.1 1 10 10
Test for subaroup diffe				(D - 0	10) 12 - 41	60/	favours restrictive favours liberal


180x232mm (300 x 300 DPI)


60

Search strategy

(((((((critical care) OR intensive care) OR ICU) OR SICU) OR critical care[MeSH Terms]) OR intensive care unit[MeSH Terms])) AND (((((red blood cell*[Title/Abstract]) OR transfusion[MeSH blood Terms])) AND ((((therap*[Title/Abstract]) OR transfus*[Title/Abstract]) OR restrict*[Title/Abstract]) OR liberal*[Title/Abstract] OR trigger*[Title/Abstract] OR threshold*[Title/Abstract] conservative*[Title/Abstract] OR aggress*[Title/Abstract]))) OR OR blood transfusion*[Title/Abstract]))) AND OR "randomized controlled trial"[Publication Type]) OR systematic*[Title/Abstract]) OR metaanalys*[Title/Abstract]) OR analys*[Title/Abstract]) meta OR guideline*[Title/Abstract]) OR "guideline"[Publication Type]) OR consensus[Title/Abstract]) OR "appropriateness criteria"[Title/Abstract]) OR "choosing wisely"[Title/Abstract]) OR "appropriate use criteria"[Title/Abstract]) OR ((GRADE[Title/Abstract]) AND recommendation*[Title/Abstract])))

R. R. ONL

Outcomes	Illustrative cor	nparative risks* (95% CI)	Relative effect	No of Participants	Quality of the evidence	Comments
	Assumed risk	Corresponding risk	(95% CI)	(studies)	(GRADE)	
	Control	Critical illness				
Short-term mortality	Study populat	ion	OR 0.9	3415	$\oplus \oplus \oplus \ominus$	
	246 per 1000	227 per 1000	(0.67 to 1.21)	(8 studies)	moderate ¹	
		(180 to 283)				
	Moderate					
	280 per 1000	259 per 1000				
		(207 to 320)				
Hospital length of stay		The mean hospital length of stay in the intervention groups was	SMD -0.11	2171	$\oplus \oplus \ominus \ominus$	
		0.11 standard deviations lower	(-0.30 to 0.07)	(5 studies)	low ¹	
		(0.30 lower to 0.07 higher)				
ICU length of stay		The mean icu length of stay in the intervention groups was	SMD -0.03	1282	$\oplus \oplus \ominus \ominus$	
		0.03 standard deviations lower	(-0.14 to 0.08)	(4 studies)	low ¹	
		(0.14 lower to 0.08 higher)				
Myocardial Infraction	Study populat	ion	OR 0.54	2127	$\oplus \oplus \oplus \ominus$	
	29 per 1000	16 per 1000	(0.3 to 0.98)	(4 studies)	moderate ¹	
		(9 to 29)				
	Moderate					
	29 per 1000	16 per 1000				
		(9 to 28)				

	61 per 1000 Moderate 61 per 1000	49 per 1000 (27 to 87)		2466 (5 studies)	⊕⊕⊕⊝ moderate ¹
			OR 0.8 (0.43 to 1.48)		
		49 per 1000			
		(27 to 88)			
in the comparison group and CI: Confidence interval; OR:		ffect of the intervention (and its 95% CI).			
GRADE Working Group grad		ely to change our confidence in the estimate of effect.			
		y to have an important impact on our confidence in the esti-	imate of effect and may c	hange the estimate	
Low quality: Further resear	ch is verv likelv	to have an important impact on our confidence in the esti-	mate of effect and is likely	/ to change the estin	nate.
		to have an important impact on our confidence in the estino the estino the estimate.	mate of effect and is likely	to change the estin	nate.
Very low quality: Further researce Very low quality: We are ve	ery uncertain al		Ph.		
Very low quality: We are ve	ery uncertain al		Ph.	v to change the estin	

BMJ Open

PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) Checklist

www.prisma-statement.org

You must report the page number in your manuscript where you consider each of the items listed in this checklist. If you have not included this information, either revise your manuscript accordingly before submitting or note N/A.

Section/Topic	ltem No.	Checklist item	Reported on Page No.
TITLE	L		
Title	1	Identify the report as a systematic review, meta-analysis, or both.	
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Section/Topic	Item No.	Checklist item	Reported on Page No.
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	
FUNDING			1

Page 47 of 47

BMJ Open

Section/Topic	ltem No.	Checklist item	Reported on Page No.
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	
	rati A, Tetz doi:10.13	zlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRIS 71/journal.pmed1000097	MA Statement. PLo
Once you have comp document. It must be	leted this e uploaded	zlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRIS 71/journal.pmed1000097 checklist, please save a copy and upload it as part of your submission. Please DO NOT include this checklist as part of the n d as a separate file.	nain manuscript
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	