
Table S1 σ54-dependent promoters characterized in this study 

Promoters Genes Gene functions 
glnHp2 glnH periplasmic binding protein of L-glutamine ABC transporter 
ddpXp ddpX D-alanyl-D-alanine dipeptidase
glnKp glnK nitrogen regulator PII 
astCp2 astC succinylornithine transaminase 
pabBp6 pabB aminodeoxychorismate synthase subunit I 
patAp patA putrescine aminotransferase 
puuPp puuP proton dependent putrescine transporter 
rutAp rutA pyrimidine oxygenase 
yhdWp yhdW substrate binding protein of a putative polar amino acid transporter 
argTp argT periplasmic binding protein of a basic amino acid ABC transporter 
nacp nac DNA-binding transcriptional dual regulator 
glnAp2 glnA glutamine synthetase 



Table S2 List of primers 

Primers Sequence 5’-3’ 
Primers for pathway construction 
pLM-F    cctttcgtcttcacctcgagacattcacatcgtggtgcagc    

pLM-R ctcgaggtgaagacgaaagg                     

pLM1-F    acgcgtgctagaggcatc                            

pLM1-R    ttaaccccccagtttcgatttatc                      

pLM6-F    agatttcgctttatctttttgaattcattaaagaggagaaagg 

pLM6-R    caccatgttggtgcaatgacctcgaggtgaagacgaaag     

pLM8-F   ataagacctgcatgaaagagcgaattcattaaagaggaga      

pLM8-R   aattgccctgaaacagggcactcgaggtgaagacgaaagg      

avta-F    aatcgaaactggggggttaaacgcgtaagaaggagatataccatg 

avta-R    ttgatgcctctagcacgcgtttagtgactttcagcccagg      

glnAp2-F     gccctttcgtcttcacctcgaggtcattgcaccaacatggtg         
glnAp2-R    ctttctcctctttaatgaattcaaaaagataaagcgaaatctgtgccaac 

glnAp2-F2  gtcattgcaccaacatggtg                        

glnAp2-R2  aaaaagataaagcgaaatctgtgc                    

rrnBp-F cctttcgtcttcacctcgagcaagtgctgccagagggaac       

rrnBp-R ttctcctctttaatgaattccccggcggcgtgtttgccgt            

J23100-M1-F tcagtcctaggtacagtgctagcgaattcattaaagaggagaaaggtacaatgttgacaaaag 

J23100-97-F tcagtcctaggtacagtgctagcgaattcattaaagaggagaaaggtaccatgaaaatct 

J23100-R actgtacctaggactgagctagccgtcaactcgaggtgaagacgaaagggcctc 

Primers for promoter selection 
pLMg1-F  acgcgtgctagaggcatc                       

pLMg1-R         tgtacctttctcctctttaa   

gfp-F  cattaaagaggagaaaggtacaatggtgagcaagggcgag 

gfp-R     gatgcctctagcacgcgtttacttgtacagctcgtccatg 

argTp-F  cctttcgtcttcacctcgagtgccctgtttcagggcaatt 

argTp-R  ttctcctctttaatgaattcggctctttcatgcaggtctt 

astCp-F cctttcgtcttcacctcgagatgtcaacgatggcgcaaaa 

astCp-R ttctcctctttaatgaattcaaatgtagattgcagggttc 

ddpXp-F cctttcgtcttcacctcgagcttcccctcttgcaccaaaac 

ddpXp-R tctcctctttaatgaattccgctttccgcttatgcagatc 

glnHp-F cctttcgtcttcacctcgagaatcactgtgttgagtgcac 

glnHp-R      ttctcctctttaatgaattcattcacatatatgaaaaaat 
glnKp-F cctttcgtcttcacctcgagatagcgcaatatttcatcgt 

glnKp-R ttctcctctttaatgaattcaagaaggtattgcaagcggt 



nacp-F   cctttcgtcttcacctcgagtgaaccatcgtggtgcatac 

nacp-R   ttctcctctttaatgaattcacaaccagattgcaagatgc 

pabBp-F cctttcgtcttcacctcgagcacgattcgctcgccggagt 

pabBp-R tctcctctttaatgaattccgggtagcatgaaataattag 

patAp-F cctttcgtcttcacctcgagcgcaccatgttgtgcggctg 

patAp-R ttctcctctttaatgaattcatttaagtattgcagggatt 

puuPp-F cctttcgtcttcacctcgagtgcagtttgagcgcctcatc 

puuPp-R ttctcctctttaatgaattcaacggaagcccgttgccgcc 

rutAp-F cctttcgtcttcacctcgagtgcactctcatcgcgcacag 

rutAp-R ttctcctctttaatgaattcgtattggcttgtttgcaaag 

yhdWp-F cctttcgtcttcacctcgagtgcgccaaaatgtggcgcat 

yhdWp-R ttctcctctttaatgaattctcctcttataagcaaaagta 

glnAp2g-F    cctttcgtcttcacctcgagacattcacatcgtggtgcag 
glnAp2g-R    ttctcctctttaatgaattcaaaaagataaagcgaaatct 

To clone pLM1, primers pLM1-F and pLM1-R were used to amplify PLlacO1: alsS-

ilvC-ilvD from pSA69, primers avta-F and avta-R were used to amplify avtA from the 

E. coli genomic DNA, the PCR products were assembled by Gibson Assembly. 

To clone pLM2, primers rrnBp-F and rrnBp-R were used to amplify rrnBp1 from the 

E. coli genomic DNA, primers pLM-F and pLM-R were used to amplify alsS-ilvC-

ilvD-avtA from pLM1, the PCR products were assembled by Gibson Assembly. 

To clone pLM3, primers rrnBp-F and rrnBp-R were used to amplify rrnBp1 from the 

E. coli genomic DNA, primers pLM-F and pLM-R were used to amplify leuDH-kivD-

yqhD; lacI from pYX97, the PCR products were assembled by Gibson Assembly. 

To clone pLM4, primers J23100-M1-F and J23100-R were used to amplify J23100: 

alsS-ilvC-ilvD-avtA from pLM1, the PCR product was assembled by Gibson Assembly. 

To clone pLM5, primers J23100-97-F and J23100-R were used to amplify J23100: 

leuDH-kivD-yqhD; lacI from pYX97, the PCR product was assembled by Gibson 

Assembly. 

To clone pLM6, primers pLM6-F and pLM6-R were used to amplify glnAp2 from the 

E. coli genomic DNA, primers pLM-F and pLM-R were used to amplify alsS-ilvC-

ilvD-avtA from pLM1, the PCR products were assembled by Gibson Assembly. 



To clone pLM7, primers pLM6-F and pLM6-R were used to amplify glnAp2 from the 

E. coli genomic DNA, primers pLM-F and pLM-R were used to amplify leuDH-kivD-

yqhD; lacI from pYX97, the PCR products were assembled by Gibson Assembly. 

To clone pLM8, primers pLM8-F and pLM8-R were used to amplify argTp from the E. 

coli genomic DNA, primers pLM-F and pLM-R were used to amplify alsS-ilvC-ilvD-

avtA from pLM1, the PCR products were assembled by Gibson Assembly. 

To clone pLM9, primers pLM8-F and pLM8-R were used to amplify argTp from the E. 

coli genomic DNA, primers pLM-F and pLM-R were used to amplify leuDH-kivD-

yqhD; lacI from pYX97, the PCR products were assembled by Gibson Assembly. 

 
  



 

Figure S1 The growth curves of the parent strain and the ammonia-assimilation-

pathway-deleted strain in defined media. a The growth curve of LM10 and LM14 in 

M9 medium with 15 mM valine (Val) or 15 mM glutamine (Glu) as the sole carbon and 

nitrogen sources. b The growth curve of LM10 and LM14 in M9 medium with 0.4% 

glucose as the carbon source and 15 mM Val or 15 mM Glu as the nitrogen source. c 

the growth curve of LM10 and LM14 in M9 medium with 0.5% yeast extract as the 

carbon source and 15 mM alanine (Ala) or 15 mM leucine (Leu) as the nitrogen source. 

d The growth curve of LM10 with isobutanol producing pathway and LM19 in M9 

medium with 0.4% glucose as the carbon source and 15 mM glutamine as the nitrogen 

source. 



 

Figure S2 The biofuel titer for LM19 and LM10 with biofuel synthetic pathway in M9 

medium with 40 g L–1 yeast extract as the carbon and nitrogen sources.  



 

Figure S3 The fluorescence intensities for GFP expressed from different σ54-dependent 

promoters. a Fluorescence intensities for cells in the early stationary phase. b 

Fluorescence intensities for cells in the late stationary phase. All the strains were 

cultured in a 96 deep-well (2 mL) plate and sampled at defined time points for 

measurement of fluorescence intensity. Values and error bars represent the mean and 

the s.d. (n = 3). 

  



 

Figure S4 Activities of AlsS in the biofuel synthetic pathway driven by different 

promoters. a AlsS activities under optimal condition; b AlsS activities under osmotic 

stress (400 mM NaCl); c AlsS activities under acid stress (pH 5.0). Values and error 

bars represent the mean and the s.d. (n = 3). **P < 0.01, ***P < 0.001, ****P < 0.0001 

as determined by two-tailed t test.  

  



 

Figure S5 Biofuel production from pathway driven by a glnAp2, b argTp, c PLlacO1, 

d J23100 and e rrnBp1 in batch fermentation. 

  



 
Figure S6 The percentage of theoretical yield [1] (g of product per g of consumed raw 

material) for biofuel produced from pathway driven by different promoters. Yeast 

extract and E. coil protein biomass were used as the feedstock. 
  



 
Figure S7 The regulatory cascade for nitrogen assimilation in E. coli. The nitrogen 

status is sensed by the GlnD and the PII system. A low nitrogen availability promotes 

GlnD to uridylylate PII protein (PII-UMP) and inhibit its ability to bind NtrB, allowing 

free NtrB to undergo phosphorylation and subsequently transfer its phosphoryl group 

to NtrC. The phosphorylated NtrC (NtrC-P) then activates glnAp2 and other targeted 

promoters [2]. The GlnD responds to intracellular glutamine and the PII is regulated by 

2-oxoglutarate [3]. Accumulation of glutamine (Gln) promotes GlnD to deuridylylate 

PII-UMP and leads to the dephosphorylation of NtrC-P, which subsequently suppresses 

the NtrC-mediated transcription. Excessive α-ketoglutarate (α-KG) would bind with PII 

and promote the release of free NtrB. The increased level of NtrB available for 

phosphorylation would subsequently increase the level of NtrC-P and activate the 

targeted transcriptions. 

  



Figure S8 Precursors of the 20 amino acids and their value-added derivatives. The 

amino acids and their corresponding precursors and derivatives are of the same color. 

2-KG: 2-ketoglutarate, OAA: oxaloacetic acid, PYR: pyruvic acid, KIV: 2-

ketoisovaleric acid, KIC: 2-ketoisocaproic acid, 2-KB: α-ketobutyrate, KMV: 2-

ketomethylvaleric acid. The derivatives include fuels (e.g. ethanol [4], 2-methyl-1-

butanal (2MB), 3-methyl-1-butanol (3MB), isobutanol [1], n-butanol [5] and 1-

propanol [6]), perfumes (e.g., indole [7], phenylethanol [8] and homophenylalanine [9]),

polymers (e.g., polyglutamic acid [10] and polylysine [11]), organic solvents (e.g.,

pyrrolidone [12] and n-methylpyrrolidone [13] ), pharmaceutical intermediates (e.g., L-

alanyl-L-glutamine [14], L-cis-4-hydroxyproline, L-alanyl-L-cystine, carnosine [15],

L-tert-leucine [16], and tyrosol [18]), and other chemicals (e.g., itaconic acid [19], 1,5-

diaminopentane [20], 1,5-pentandiol [21], 4-amino-1-butanol [22], D-pyroglutaminol

[21], 2-aminopentanoic acid [23], 1,2,4-pentanetriol [24], glutaminol [25], amino-γ-

butyrolactone [27], amino-2-pyrrolidone [12], tetrahydrofuran [1], γ-butyrolactone [21],

3-aminotetrahydrofuran [21], aspartic anhydride [27], citrate [28], 1,4-butanediol [29],

succinate [30], 2,3-butanediol [31], isoprene [32], n-butyrate [33], acetoin [31], acetone

https://www.google.com.hk/search?newwindow=1&safe=strict&q=2-methyl-butanal&spell=1&sa=X&ved=0ahUKEwjI5dn1ycLjAhWKL48KHZZiDRoQBQgpKAA
https://www.google.com.hk/search?newwindow=1&safe=strict&q=2-methyl-butanal&spell=1&sa=X&ved=0ahUKEwjI5dn1ycLjAhWKL48KHZZiDRoQBQgpKAA


[34], itaconate [35], isobutene [36], lactate [33], 3-methyl-tetrahydrofuran [37], 2-

methyl-1,4-butanediol [38], 2-methyl-1,4-butanediamine [39], 2-methylpropanoic acid 

[40], acetaldehyde [41], imine [42], cinnamic acid [43], p-hydroxy-cinnamic acid [44], 

2-ketoadipic acid [42] and adipic acid [45]).



Figure S9 Amino acid composition of different protein sources. a Principle component 

analysis (PCA) of the amino acid composition of different raw materials, the proportion 

of variance accounted for by the two axes are presented in the parenthesis. b The 

distribution of individual amino acids in the corresponding PCA space. When projected 

onto the vectors, protein sources with projections located in the positive direction of a 

vector have higher abundance of the corresponding amino acid than that of other 

materials. For instance, the distillers dried grains with solubles ( DDGS) is rich in 

glutamic acid and the bacterial biomass has a relatively high abundance of alanine and 

glycine. The DDGS used for analysis are sorghum DDGS [46], maize DDGS, wheat 

DDGS, and sugarbeet vinasse [47]; the animal sources of proteins are poultry feathers 

[47] and eggs [48]; the algae biomass include Gracilaria sp.[49], Dromogomphus

armatus [50], Chlorella sp., Spirulina sp. [47], Aphanizomenon sp., Chlorella vulgaris,

Dunaliella bardawil, Scenedesmus obliquus, Arthrospira maxima, and pirulina

platensis [48]; the microbial biomass include Saccharomyces cerevisiae,

Kluyveromyces marxianus, Saccharomyces uvarum, Saccharomycodes ludwigii [51],

Brevibacterium methylicum [52], Bacillus subtilis [52], Rhodocyclus gelatinosus [53],

Rhodopseudomonas capsulate [53], Corynebacterium glutamicum [54],

Staphylococcus aureus [55], Lactobacillus acidophilus, Lactobacillus bulgaricus,

Lactobacillus casei, Lactobacillus plantarum, and Streptococcus thermophilus [56]; the

straws and leaves protein sources are sugarbeet leaves [57], sugarcane leaves [58],

cassava leaves [59], ryegrass meal [60], wheat straw and alfalfa hay [47]; the oil plant

biomass are from jatropha meal [61], sunflower seed meal, rapeseed, and palmoil meal

[47]; the legume seed biomass are soybeen [62] and carob germ [63].
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