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Supplementary Material

Methods

RNAseq data processing and reference transcriptome assembly

We used Trimmomatic (v0.36) (Bolger et al. 2014) to remove adapter sequences from paired reads.
Quality trimming was performed using a 4 bp sliding window, a phred-scale average quality score of 20
and a minimum size filter of 50 bp. We reduced redundancy among high-coverage reads (including
rRNA contaminants) and discarded associated sequence errors by digitally normalising each dataset
using Trinity’s insilico_read_normalization.pl script with a default kmer size of 25 and maximum read
coverage of 50 (Grabherr et al. 2011). Overlapping paired reads were merged using FLASH v1.2.11
(Mago¢ and Salzberg 2011) with a minimum overlap length of 10 bp. Three M. galloprovincialis
individuals (those with the highest FLASH merging scores: the highest absolute number of reads
merged into larger fragments) from three native-range populations (refer to Table 1) were used to make
a reference transcriptome assembly intending to capture representative proportions of genetic variation
in the M. galloprovincialis native range. These samples were used to create three population-specific
de novo assemblies using Trinity v2.0.6 (Grabherr et al. 2011) with default parameters. The longest
isoforms were extracted for each gene group for each assembly. The three reduced Trinity assemblies
were meta-assembled using CAP3 (Huang and Madan 1999) with default parameters into a single high-

quality M. galloprovincialis reference assembly.

We queried the resulting assembly against the Uniprot-Swissprot protein database using blastx with an
e-value threshold of 10 for significant matches. Contigs with significant blast matches to likely
environmental contaminants, including bacteria, fungi, viruses, protists (Alveolata), green (Viridiplantae)
and red algae (Haptophyceae), and other eukaryotic contaminants (i.e. Euglenozoa) were removed
using Biopython v1.68 and R (184,842 contigs; R Development Core Team 2017). Prior to genomic
analyses, transcripts showing high sequence similarity in the reference assembly (i.e. likely derived from
the same gene) were clustered using Cd-Hit-Est (Li and Godzik 2006; Fu et al. 2012) with a minimum
sequence identity threshold of 95% of the shortest sequence. Finally, we removed transcripts with
significant blastn matches (e-value 10'3) to the M. galloprovincialis male (Genbank reference:
FJ890850.1) and female (Genbank reference: FJ890849.1) mitochondrial genomes. The resulting
159,985 nuclear sequences were used as a reference assembly for variant discovery and as input for

all downstream analyses.
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Approximate Bayesian Computations (ABC) of demographic history

Empirical genetic data

We reduced the reference assembly to only contigs containing predicted open reading frames (ORFs),
using Transdecoder (Haas et al. 2013); we identified protein-coding sequences greater than 100 amino
acids and with significant matches to the Pfam protein database. This resulted in 52,364 transcripts with
OREFs, including 16,151 complete protein-coding nuclear loci (in which both start and stop codons were
detected). We mapped individual reads datasets (as described above) against this reduced complete
protein-coding assembly and used the resulting BAM files as input for downstream ABC analyses. We
conducted two pairwise population comparisons to calculate summary statistics: We compared the
genomic backgrounds of M. planulatus sampled in Tasmania (putative endemic) with two divergent M.
galloprovincialis lineages from its native range in the Mediterranean and Atlantic. For each dataset, the
reads2snps program was used to predict individual genotypes based on a probabilistic maximum-
likelihood framework. Genotypes below a minimum read depth of 10 and genotype posterior probability
of 95% were removed as well as variants resulting from the misalignment of reads to paralogous contigs.
Subsequent analyses were conducted on the output of reads2snps using custom scripts in R (available
at https://github.com/dinmatias). The R scripts implement an existing pipeline available from the
PopPhyl project (https://github.com/popgenomics/popPhylABC; Roux et al. 2016). For each pairwise
population comparison, we used PolydNdS to retain only synonymous variants and transcripts above a
minimum length of 30 synonymous sites. Following these filtering thresholds, we removed monomorphic
loci and loci with missing haplotypes for any individuals. The resulting empirical datasets consisted of

1,362 loci for Mediterranean-Tasmania, and 1,539 loci for Atlantic-Tasmania population pairs.

Coalescent simulations of genetic data

We used msnsam, a modified version of the ms coalescent simulator, to generate one million multilocus
simulations under each demographic model, for each population pair (Ross-lbarra et al. 2008).
Simulations assumed a neutral mutation rate p=2.763x10’8 per bp per generation, which was scaled by
the number of synonymous sites of each locus to obtain per-locus mutation rates. To account for
recombination, we followed the recombination rate implemented by Roux et al. (2016), which is equal
to 0.5 of the mutation rate. Initial models assumed equal (i.e. homogenous) effective population size

(Ne) among loci and homogeneous migration rate, M=4 N, m every generation, where N,y is the
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reference effective population size and m is the proportion of each population consisting of new migrants

each generation.

Each simulation was parametrised by model-specific demographic parameters randomly drawn from a
uniform prior distribution (Table S1) generated by a modified version of the priorgen software (Ross-
Ibarra et al. 2008). Effective population size parameters (N, N; and Nancestra) Were randomly drawn from
a distribution of 1000-500,000 individuals. To inform the priors for time-related parameters, we
capitalised on previous divergence estimates for Mytilus species translated to generations using a
generation time of 2 years (e.g., Roux et al. 2014). Specifically, divergence time (Tg;,) was sampled from
the interval 100,000-1,750,000 generations to capture the earliest estimated time of mitochondrial
divergence between southern hemisphere taxa and M. galloprovincialis between 0.54-1.31 million years
ago (Gérard et al. 2008). The upper bound for Ty, was informed by the estimated splitting time between
M. trossulus and the ancestor of M. edulis and M. galloprovincialis (~3.5 million years) that preceded
potential periods of transequatorial migration associated with the late Pliocene about 3.1 million years
ago (Lindberg 1991; Hilbish et al. 2000). The prior distribution for bidirectional ancient migration (ma)
between northern and southern hemispheres was sampled between 0-0.0001 (equivalent to 0-200
migrants per generation when N, =500,000). We sampled the number of generations since ancient
migration seized (T,;) bounded by the interval T,;,-10,000 generations (corresponding to the last glacial
maximum). For the invasive migration parameter (m) we explored unidirectional gene flow values
sampled on a broader interval m=0-0.5 into Tasmania. We sampled the onset of human mediated
secondary contact (Ts) on the interval 5-300 generations. A standard set of 39 summary statistics (e.g.,
Roux et al. 2014; Fraisse et al. 2014) of divergence and polymorphism were calculated for each

simulation and for the empirical genetic data using Mscalc (Ross-Ibarra et al. 2008).

Demographic model selection

To evaluate the posterior support for alternative demographic models, we obtained posterior samples
from all simulated data by applying thresholds of 0.001 and 0.01. An acceptance threshold of 0.001 is
equivalent to 6000 simulations that generated summary statistics falling closest to the observed
empirical values (Blum and Frangois 2009). To estimate the posterior probability of each model, we
performed a categorical regression on the model indices and summary statistics of the posterior
samples using the feed-forward neural network method (Beaumont 2010). Computations were
performed with 50 trained neural networks and a maximum of 2000 iterations while weighing each

posterior sample by an Epanechnikov kernel with a maximum value when the simulated values are
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equal to the observed summary statistics. In comparisons where not all six demographic models had
accepted values within the applied threshold, the simple rejection method (i.e. linear regression) was
applied (Beaumont et al. 2010). All these procedures were conducted using the packages "abc’ (Csilléry

et al. 2012) and "nnet’ (Ripley et al. 2016) in R.

To validate the ability to discriminate between alternative models, we simulated an additional 1000
pseudo-observed datasets (PODS) from the prior distribution for each demographic model to perform
model checking. Using each POD as the new empirical dataset, we estimated posterior support for each
model given the original simulated summary statistics utilising the model selection procedure (as
described above). We then examined the rate by which our approach correctly supported the true model
of the PODs (i.e. precision) and the rate of by which incorrect models are supported (i.e. misclassification
or Type | error). From this validation procedure, we examined the minimum threshold for model
probability that will give a robustness of 0.95 (Roux et al. 2016), that is, a 95% probability to correctly
support a model given that its posterior probability is higher than the threshold. We applied this minimum

probability to evaluate if the estimated posterior probability for the empirical data is robust.

Accounting for among-locus variation in genetic drift and migration

For initial ABC comparisons, simulated demographic models assumed genome-wide homogenous N,
and m. Accounting for differential rates of introgression and genomic variance in genetic drift that may
result as an outcome of linked selection, however, has been shown to significantly improve the accuracy
of demographic inferences in marine taxa (Ciona sp., Roux et al. 2013; Mytilus species, Roux et al.
2014; sea bass, Tine et al. 2014; Salmo salar, Rougemont and Bernatchez 2018). To account for the
combined effects of differential migration and variable among-locus rates of genetic drift, we re-
simulated a series of nested models incorporating heterogeneous N, and/or heterogeneous m under
the best demographic scenario (inferred from initial homogeneous model comparisons) to estimate
demographic parameters. Specifically, we were interested in whether these models provided an
improved model probability (and parameter estimates) when compared to the best inferred model with

homogeneous N, and m.

In simulating these additional models, an initial value of N, and m were randomly drawn as described
above. These initial values of N, and m were homogenously applied for all the loci (homo). To account
for differential selection and migration across the genome, we varied the initial N, and m values for a

certain proportion of loci. This proportion was drawn from a uniform distribution [0-1]. The N, and m of
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these sets of loci were modified by (i) decreasing the initial parameter value (hetero1) or (ii) allowing the
each of these loci to have a lower or higher parameter than the initial draw (hetero2). For each locus
with modified N, and m, the amount of decrease/increase was proportional to the initial values by a
certain factor, which was sampled from a beta distribution with shape parameters drawn from the interval
[1-50] for N, and [1-20] for m. We simulated 1 x 10° simulations for a total of 13 additional heterogeneous

models and calculated summary statistics as described above.

Demographic parameter inference

Demographic parameters were estimated for each population pair using the posterior distribution
approximated by accepted simulations under the best demographic model. Parameter values were log
transformed prior to regression to ensure that the posterior distribution was contained within the prior
bounds (e.g., Estoup et al. 2004; Hamilton et al. 2005). We used 50 neural networks and a maximum of
2000 iterations to obtain weighted non-linear regressions of the parameters to the summary statistics
from 1000 accepted simulations closest to the observed values (acceptance tolerance=0.001%).
Parameter inference was based on estimated posterior means and 95% credible intervals when

parameters were differentiated from the uniform prior.
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Table S1. Summary of prior distribution lower and upper bounds for 13 parameters (for each demographic model) shown in generation units (generation time=2
years). Effective populations sizes of derived (N;, N;) and ancestral (Nancesirar) POpulations; migration rate (m), where mjis the proportion of migrants from

population j into population i; ancient migration rate (ma); time of secondary contact (T); time of the onset of ancient gene flow (T, backwards in time);

divergence time (T4).

Parameter
Ni Nj Nancestral

The
Taiv

ri

rho

Demographic Model Priors: Lower bound — Upper bound

pan
1000-500000

0.00000002763
0.5

div

1000-500000
100000-1750000
0.00000002763
0.5

im
1000-500000
0-0.0001
0-0.0001

100000-1750000
0.00000002763
0.5

divSC
1000-500000
0-0.5

0

5-300
100000-1750000
0.01-0.99
0.00000002763
0.5

divAGF
1000-500000

0-0.0001
0-0.0001
10000-1750000
100000-1750000
0.00000002763
0.5

divAGFSC
1000-500000
0-0.5

0

0-0.0001
0-0.0001

5-300
10000-1750000
100000-1750000
0.01-0.99
0.00000002763
0.5




Table S2. Summary of stepwise comparison Akaike Information Criterion (AIC) between sequential migration models in TreeMix. We did not consider additional

migration events when the difference between nested models was less than two (AAIC < 2).

Number of migration events Ln(likelihood) AIC value A AIC
0 -1552.53 3109.06 -
-361.959 727.918 2381.142
2 174.862 -345.724 1073.642
3 215.341 -426.682 80.958
4 218.552 -433.104 6.422
5 219.126 -434.252 1.148
6 219.483 -434.966 0.714
7 219.483 -434.966 0
8 219.483 -434.966 0
9 219.483 -434.966 0
10 219.483 -434.966 0




Table S3. Summary of model validation using pseudo-observed datasets. Values are shown for the A) Mediterranean-Tasmania and B) Atlantic-Tasmania

populations pairs. Values for the best inferred model is indicated in bold.

A)
Model Precision Misclassification rate (Type | error) Mean Type Il error
pan 1.000 0.000 0.145
div 0.618 0.382 0.0776
ima 0.933 0.067 0.0088
divSC 0.390 0.610 0.0678
divAGF 0.607 0.393 0.0826
divSCAGF  0.364 0.636 0.0354
B)
Model Precision Misclassification rate (Type | error) Mean Type Il error
pan 1.000 0.000 0.1408
div 0.708 0.292 0.812
ima 0.948 0.052 0.0076
divSC 0.422 0.578 0.0618
divAGF 0.587 0.413 0.0614
divSCAGF  0.397 0.603 0.0348
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Table S4. Summary of demographic model selection under an approximate Bayesian computation framework. Model posterior probabilities comparing all

homogeneous and heterogeneous models (accounting for variation in N, | m parameters) under each demographic scenario independently. Bold indicates the

highest probability model for each comparison at an acceptance threshold of 0.001. Divergence time parameters were estimated under the best inferred

demographic scenario (divAGF).

Population
Mediterranean-Tasmania Model
div
ima
divSC
divAGF
divAGFSC
Atlantic-Tasmania
div
ima
divSC
divAGF
divAGFSC

Method

Demographic Model Probability: Proportion of accepted simulations

homo|homo
0.0037
0.0023
0.0191
0.0013
0.0217

0.0001
0.0009
0.0177
0.0040
0.0222

homo|hetero1
0.0471
0.1048
0.0020
0.0984

0.0167
0.1129
0.0398
0.0974

hetero1lhomo
0.0761
0.0014
0.0196
0.0259
0.0201

0.0500
0.0016
0.0130
0.0118
0.0192

hetero1|hetero1

0.0825
0.1491
0.0421
0.2688

0.0395
0.0674
0.0265
0.1168

hetero2lhomo hetero2|hetero1

0.4728
0.0030
0.0199
0.6410
0.0246

0.9498
0.0042
0.0405
0.4291
0.0465

0.8637
0.6875
0.2877
0.5664

0.9369
0.7486
0.4888
0.6979
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Analyses of population
structure and admixture

Figure S1. Summary of genomic data filtering schemes applied to respective analyses.

Genomic analyses of
species relationships

Align reads to de novo
M. galloprovincialis assembly

Align reads to de novo
M. galloprovincialis assembly

Call variants and genotypes
using Freebayes

Call variants and genotypes
using Freebayes

Minimum genotype quality 30
Minimum mean depth coverage 10
Remove singletons, indel variants

Minimum genotype quality 30
Minimum mean depth coverage 10
Remove singletons, indel variants

7\

Remove sites with minor No missing data

sites >20% missing data

allele frequency <5% and 1

1 PCA

Genetic ancestry (ADMIXTURE)
Test of introgression (TreeMix)

1

No missing data

Generate consensus haplotypes

l

Network analysis (SplitsTree4)
Topology weighting (TWISST)

Approximate Bayesian Computations
(ABC) of demographic history

Align reads to reduced de novo
M. galloprovincialis assembly
(protein-coding contigs only)

Call variants and genotypes
using reads2snps

Minimum read depth 10
Minimum genotype
posterior probability 95%

l

Retain only synonymous variants
Minimum transcript length 30 sites
Remove loci with missing haplotypes

l

Empirical data for ABC inference
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Figure S2. ADMIXTURE analyses for K=3 genetic clusters performed using 1 SNP per contig to account for linkage effects. Each bar represents an individual

belonging to one or more ancestral clusters, corresponding to different colours.
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Figure S3. Maximum likelihood population tree without migration generated in TreeMix. The drift parameter indicates the amount of genetic drift that separates

groups. Under a model of zero migration, the heat colours indicate pairwise population residual allele frequency covariance. The darkest boxes in this residual

matrix indicate high genotypic covariance between Sydney Harbour or Batemans Bay populations with northern taxa.
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Figure S4. Summary of TWISST analyses of species relationships. Contributions of three possible unrooted topologies (hypotheses) to the nuclear species tree

grouping M. planulatus (MP, Tasmania) with either M. trossulus (MT), M. edulis (ME) or M. galloprovincialis (MG, Mediterranean). Plots indicate i) mean topology

contributions of 343 genealogies with a minimum tree length of 0.025; and ii) Distributions of the proportion of topology contributions across loci for three tested

topologies.
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Figure S5. Summary of model choice validation using pseudo-observed datasets (PODS). Plots indicate the distributions of posterior probabilities for each true

model. Model comparisons were carried out using 1000 PODS generated under the same model (shown in pink box plot).
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