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Supplementary Text

Recent work has raised concerns about the accuracy of predictions based on genetic models
when applied both across and within human populations due to demographic, environmental, and
other confounding factorsi—4. Given the divergence of archaic hominins and modern humans,
addressing these issues is particularly relevant in this studys. Several lines of evidence support
our approach.

First, our analyses are based on the identification of divergent regulation, not differential
expression. We do not interpret the PrediXcan output as a direct proxy for gene expression, but
rather a proxy for divergence in gene regulatory architecture. Furthermore, in many of our
analyses, we evaluate the effects of Neanderthal sequences in the modern human genomic
context, where the models were trained.

Second, concerns about genetics-based prediction models are largely based on polygenic
risk scores (PRSs), which analyze genetic variants genome-wide to predict risk for organism-
level phenotypes. In contrast, our approach considers only genetic variants in the cis-regulatory
region of a gene and a much narrower phenotype, gene expression. Comparisons of the gene
regulatory architecture across humans have shown that effects of common variants are largely
shared across diverse populations and that the majority of expression quantitative trait loci
(eQTL) are conservede,7. In other words, the molecular machinery and genetic architecture of
gene regulation are largely conserved across humans; most common human alleles have similar
regulatory effects across populationsz. Despite this there are still differences in gene expression
that are attributable to population-level genetic differencess. To test how well the PrediXcan
models, which were trained on GTEX (a primarily European-ancestry population), generalize
across human populations, we applied models trained on GTEx LCLs to expression and
genotype data from LCLs from 1000 Genomes European ancestry populations (CEU, GBR, FIN,
TSI) and a sub-Saharan African population (YRI)s. We then compared the accuracy of
predictions between the European and African populations. We find that our approach maintains
significant accuracy when models are trained in a European-ancestry population and applied to
African individuals, though there is a decrease in the amount of variance in gene expression for
many genes (Supplementary Fig. 1).

Third, while there is a reduction in performance across populations9, cross-population
application of PrediXcan has previously enabled identification of relevant cardiometabolic gene-
trait associations, supporting the biological relevance of differences observedio. In all of our
analyses, we compare Neanderthal sequences to individuals from all 1kG human populations,
thereby taking cross-population variation into account when interpreting our results. We
examined the stability of the imputed values across all 2000 Genomes populations and found that
most genes analyzed here have similar imputed distributions between populations
(Supplementary Fig. 7). In more detail, for all PrediXcan models in all tissues, we computed the
median imputed regulation for each 1000 Genomes population, then found the maximum
difference between populations (Supplementary Fig. 7). Only 2.7% of all gene models have a



maximum difference in population median regulation greater than 1 standard deviation. To
determine whether genes with population-specific regulation differences were more likely to be
divergently regulated in the Altai Neanderthal, we computed the odds ratio for population-
specific patterns and divergent regulation. At a threshold of max difference > 1 (matching the
threshold set for comparisons across archaic hominins), population-specific models were not
more likely to be divergently regulated (OR = 1.06; P = 0.689, Fisher’s exact test). However, if
we used a less stringent threshold for defining population differences (max difference in imputed
regulation > 0.5), population-specific genes are more likely to be divergently regulated (OR =
1.35, P=3.5E-11). The pattern is similar when the analysis only considers the DR GWARRS.
Overall, this suggests that, while some DR genes show moderate differences among human
populations, this is not true of the most extreme differences. Furthermore, when excluding genes
with evidence of population-specificity from our analyses, hundreds of DR GWARRS remain.

Finally, and most importantly, as described in the Main Text, we demonstrate that models
trained on ancestral human sequences have significant accuracy when applied to Neanderthal
sequences remaining in modern human genomes (Supplementary Fig. 3).

GWARR Functional Annotations

Beyond the phenotypes significantly enriched for DR GWARRs, several additional DR
GWARRSs have functions relevant to potentially human-specific phenotypes, like language. For
example, GNPTG, the gamma subunit of GIcNAc-1-phosphotransferase, is associated with
stutteringi1,12, and CHMP2B, a member of the chromatin-modifying protein/charged
multivesicular body protein (CHMP) family, is associated with aphasia, frontotemporal
dementia, and amyotrophic lateral sclerosis (ALS). CHMP2B is also in a Neanderthal
introgression desert and has seven human accelerated regions (HARs) within its regulatory
region.

Several DR GWARRSs are involved in processing of melatonin and serotonin (CYP2U1,
SULTIAI, SULT1A42) and in regulating photoperiod (CRY2, ARNTL)13. This suggests potential
gene regulatory differences in circadian biology between Neanderthal and AMH populationsi4,is.

DR genes in introgression deserts are of particular interest, due to their potential
relevance to human-specific biology. Several additional DR desert genes have been implicated—
either in previous work or our biobank association tests—with a variety of traits important to
humanness, including neural development (CELSR2, CHMP2B)16-18 and learning and spatial
memory (CARF)19. CELSR2 and CARF both also have associations with heart disease. In
addition, five DR desert genes are loss-of-function intolerant according to gnomAD (<0.35 for
the upper bound of the o/e 95% confidence interval): CELSR2, RBICC1, BMPR2, ADAM?23, and
MOV 10. Desert genes are also significantly more likely to have a human accelerated region
(HAR) within 1 Mb than other GWARRs (OR = 1.36, P = 0.01); this trend becomes even
stronger when comparing DR desert genes to other DR GWARRs (OR = 2.36, P =0.07). This
suggests that regions of the deserts have experienced significant sequence changes since the last



common ancestor of humans and chimpanzees (but prior to the effects captured by our models),
and that these regions might therefore be important to human-specific phenotypes.

| .
Among the strongest associations of DR GWARRs with phenotypes in BioVU were MSH5,

PRSS16, VARS, and NCR3 with type 1 diabetes (T1D; P = 1.3E-11, 5.2E-8, 7.1E-8, 8.0E-8,
respectively, from PrediXcan association tests), C1/orf65 with transient mental disorders (P =
3.1E-9), SPINTI with pulmonary embolism and infarction (P = 7.2E-8), and PSRC1 with
hyperlipidemia (P = 3E-8). With the exception of C110rf65, each of these genes has evidence of
function in pathways relevant to the associated phenotypes. MSH5 encodes a mutS family
protein involved in DNA damage repair and meiotic recombination. DNA damage repair has
been linked with various forms of diabetes2o,21 and differential splicing of MSH5 was observed
between lean individuals with normoglycemia and overweight individuals with type 2 diabeteszo.
PRSS16 is a serine protease expressed in the thymus that is involved in T cell maturation, and
polymorphism in PRSS16 has been associated with T1D2324. VARS encodes a Valyl-tRNA
synthetase and is located in the class Il region of the major histocompatibility complex. NCR3
encodes a cell membrane receptor that activates natural killer (NK) cells in response to
extracellular ligands. Genetic variation in NCR3 has been linked to chronic autoimmune
diseases, like Sjogren’s syndrome, and NCR3 has significantly lower expression in NK cells of
T1D patients compared to controlszs—27. SPINT1 encode a serine protease inhibitor that regulates
the activity of hepatocyte growth factor in injured tissue; SPINT1 inhibits hepatocyte growth
factor activator (HGFA), which is activated during blood coagulationzs. PSRC1 encodes a
proline-rich protein that regulates mitotic spindle dynamics; variants in the CELSR2-PSRC1—
SORT1 locus have been associated with lipid traits and coronary artery disease in multiple
GWAS studies29-32. There is limited knowledge about the C110rf65 locus. It is possible that it is
functional or that regulatory signals influencing other molecules are captured by its prediction
models.



Supplementary Figures
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Supplementary Figure 1. PrediXcan models retain predictive power across populations.

QQ plots for applying GTEx LCL PrediXcan models to (A) the 1000 Genomes Europeans (CEU,
GBR, FIN, TSI) and (B) YRI. The plots show the observed and expected square of the Spearman

correlation between observed and imputed regulation.
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Supplementary Figure 2. PrediXcan considers genomic variants with different evolutionary
histories, but does not model Neanderthal-specific variants.

This schematic illustrates the evolutionary histories of variants whose effects on gene regulation
are modelled by PrediXcan. These include: variants ancestral to Neanderthals and AMH, variants
that occurred on each lineage independently, variants specific to AMH (where Neanderthal
retains the ancestral or a different variant), and variants that appeared in the Neanderthal lineage
and were introgressed into AMH populations. The PrediXcan approach cannot directly model the
effects of Neanderthal-specific variants.
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Supplementary Figure 3. PrediXcan models trained without introgressed Neanderthal
haplotypes retain significant accuracy on Neanderthal-ancestry regulatory regions.

(A) Scatter plot comparing the accuracy of PrediXcan models for non-GWARRs in skeletal
muscle when trained and evaluated on sequences of human and Neanderthal ancestry (All) vs.
trained on human-ancestry sequences and evaluated on sequences of Neanderthal ancestry
(Introgressed Excluded). Accuracy was quantified as the r2 between observed expression and
PrediXcan prediction. Models with r > 0.1 and P < 0.05 are defined as imputable. Patterns are
similar for other tissues. The large dots represent r2 computed over all individuals in the testing
set. To illustrate the variation in the performance, the small dots represent results over 99
resampled sets of 50% of the testing set (Methods). (B) QQ Plot of observed vs. expected —
log10(P) for the Introgression Excluded skeletal muscle models when applied to individuals with
Neanderthal ancestry regulatory regions. (One representative sampling per gene is plotted for
simplicity.) (C) Relative r2 (r2introgression-Excluded/r2a11) for models with rain > 0.1 across a
representative set of tissues. Outliers were not plotted. As expected, there is a decrease in
accuracy: medians between 0.647 and 0.769. Nonetheless, thousands of models remain
significant predictive ability when applied to Neanderthals.
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Supplementary Figure 4. ZDBF2 has similar predicted regulation distributions across

AMH populations.
(A) Stacked bar plot showing predicted regulation of ZDBF2 in the tibial artery, colored by 1kG
super-population. (B) Density plot of ZDBF2 predicted regulation in the tibial artery across 1kG

super-populations.
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Supplementary Figure 5. The number of DR GWARRs found in each GTEX tissue.

DR GWARRs are found across diverse tissues. See Supplementary Methods for abbreviations.
We caution against direct comparisons of the number of DR GWARRSs in each tissue due to
differences in power resulting from variation in sample size, genetic architecture, and expression
levels across tissues. For example, the number of DR GWARRS per tissue is correlated with the
GTEx sample size for the tissue (Supplementary Figure 13). We abbreviate the 44 tissues
considered as follows throughout the supplement: Adipose - Subcutaneous: ADPS, Adipose -
Visceral Omentum: ABPV, Adrenal Gland: ADRNLG, Artery - Aorta: ARTA, Artery - Coronary:
ARTC, Artery - Tibial: ARTT, Brain - Anterior Cingulate Cortex: BRNACC, Brain - Caudate:
BRNCDT, Brain - Cerebellar Hemisphere: BRNCHB, Brain - Cerebellum: BRNCHA, Brain -
Cortex: BRNCTX, Brain - Frontal Cortex: BRNFCTX, Brain - Hippocampus: BRNHPP, Brain -
Hypothalamus: BRNHPT, Brain - Nucleus Accumbens basal ganglia: BRNNCC, Brain -
putamen basal ganglia: BRNPTM, Breast: BREAST, Cells - Transformed Fibroblasts: FIBS,
Colon - Sigmoid: CLNS, Colon - Transverse: CLNT, Esophagus - Gastroesophageal Junction:
ESPGJ, Esophagus - Mucosa: ESPMC, Esophagus - Muscularis: ESPMS, Heart - Atrial
Appendage: HRTAA, Heart - Left Ventricle: HRTLV, Liver: LIVER, Lung: LUNG, Cells- EBV-
transformed Lymphocytes: LYMPH, Ovary: OVARY, Pancreas: PNCS, Pituitary: PTTY,
Prostate: PRSTT, Skeletal Muscle: MSCSK, Skin - Not sun-exposed: SKINNS, Skin - Sun-
exposed: SKINS, Small Intestine: SMINT, Spleen: SPLEEN, Stomach: STMCH, Testis:
TESTIS, Thyroid: THYROID, Tibial Nerve: NERVET, Uterus: UTERUS, Vagina: VAGINA,
Whole Blood: WHLBLD.
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Supplementary Figure 6. Distributions of the number of DR genes found in 50 random
humans from 1kG.
For 50 random individuals from the 1kG cohort (10 from each continental population), we
counted the number of unique DR genes found across any of the tissues considered. Europeans
have the largest number of DR genes. The other individuals with high DR gene counts are from
populations with significant amounts of admixture with Europeans (AMR; PJL and GIH from
SAS (N=6); ASW and ACB from AFR (N=2)). This suggests that power to detect DR is greatest
in the training population, and that divergence from the training population is unlikely to cause a
large number of false positives. The Altai Neanderthal has significantly more DR genes (2325
total; P < 0.02) than any modern human, despite its greater evolutionary distance from the
training population.
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Supplementary Figure 7. Distribution of the maximum difference in the median imputed
regulation between 1000 Genomes populations for all PrediXcan models.

Very few models have large predicted regulation differences between populations.
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Supplementary Figure 8. Neanderthal-specific variant density in gene regulatory regions.
(A) Density of Neanderthal-specific variants in the regulatory regions of genes. (B) The
percentage of Neanderthal-specific variants out of all variable sites (observed in humans,
Neanderthals, or both) in a gene region is similar for both DR and Non-DR genes: median 0.182
for DR genes, 0.186 for non-DR genes. The difference is significant due to the large number of
genes compared (P =0.0095, MWU Test), but is very small in magnitude. The regulatory region
is defined as the gene plus 1 Mb flanking on either side, corresponding to the region considered
by PrediXcan.
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Supplementary Figure 9. Regulation predictions are consistent on the Altai genome.

Scatterplots of predicted regulation of all genes in all tissues based on the recently re-processed
Altai genome (y-axis) vs. the original release of the Altai genome (x-axis). We excluded gene
models that were missing all SNPs in either version. The mean Spearman correlation across all
tissues is 0.81. Individual tissue correlations are in the bottom right of the corresponding plot.
Overall, 97% of DR genes called in Altai are also DR in Vindija, with the same predicted level
of effect (92% vice versa).
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Supplementary Figure 10. Archaic hominins have distinct imputed gene regulatory profiles
compared to AMH in all tissues analyzed.

Hierarchical clustering dendrogram by the Pearson correlation of predicted gene regulation for
all analyzed genes in all tissues of archaic hominins and non-admixed AMH populations from
1kG. Red=AFR, Blue=EUR, Green=EAS, Purple=SAS.
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Supplementary Figure 11. Archaic hominins have distinct imputed regulatory profiles for
both GWARRs (A) and non-GWARRs (B).

Trees were constructed as in Fig. 5 using PrediXcan values from the Brain-Frontal Cortex
models. Other tissues show similar patterns (e.g., as in Supplementary Figure 11).

15



Supplementary Figure 12. Clustering in imputed regulatory profiles is consistent when
using Spearman correlation as the similarity metric.

Trees were generated with hierarchical clustering on imputed regulatory profiles from Brain
Frontal Cortex models using Spearman correlation. (A) Tree based on all genes. (B) Tree based
on GWARRs. (C) Tree based on non-GWARRSs. Patterns were similar for all other tissues.

16
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Supplementary Figure 13. The number of DR genes found in a tissue is correlated with the
sample size used in training models for that tissue.

The correlation between sample size and # of DR genes is significant (Spearman’s p = 0.89; P =
1.3E-15). The raw number of DR genes or phenotype associations should not be directly
compared across tissues.
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Supplementary Table 1. No bias in the direction of divergent regulation among DR
GWARRs and tissues.

No tissues were significantly depleted or enriched for Neanderthal upregulation compared to the
overall proportion of upregulated genes (0.43). P-values were calculated using the binomial test.
The Bonferroni-corrected significance threshold is 0.001. See Supplementary Methods for tissue
abbreviations.

Tissue Prop. Up P-value \ Tissue Prop. Up P-value
ADPS 0.43 1.00 | ESPMS 0.67 0.02
ABPV 0.56 0.32 \ HRTAA 0.47 0.82
ADRNLG 0.35 0.51 \ HRTLV 0.50 0.64
ARTA 0.29 0.33 \ LIVER 0.60 0.21
ARTC 0.42 1.00 | LUNG 0.48 0.71
ARTT 0.37 0.56 \ LYMPH 0.44 1.00
BRNACC 0.60 0.35 \ OVARY 0.60 0.21
BRNCDT 0.50 0.77 \ PNCS 0.50 0.56
BRNCHB 0.52 0.41 | PTTY 0.50 0.76
BRNCHA 0.57 0.12 \ PRSTT 0.44 1.0
BRNCTX 0.38 0.79 | MSCSK 0.32 0.31
BRNFCTX 0.36 0.77 \ SKINNS 0.60 0.1
BRNHPP 0.18 0.13 \ SKINS 0.47 0.72
BRNHPT 0.50 0.76 \ SMINT 0.45 1.00
BRNNCC 0.36 0.60 | SPLEEN 0.47 0.81
BRNPTM 0.40 1.00 \ STMCH 0.46 0.84
BREAST 0.59 0.20 | TESTIS 0.41 0.85
FIBS 0.52 0.38 \ THYROID 0.50 0.49
CLNS 0.62 0.26 \ NERVET 0.63 0.03
CLNT 0.45 1.00 \ UTERUS 0.45 1.00
ESPGJ 0.38 0.80 | VAGINA 0.43 1.00
ESPMC 0.39 0.73 \ WHLBLD 0.47 0.72

18



Supplementary Table 2. HPO phenotypes enriched in DR genes common to all archaic

hominins.

Enrichments are the ratio of the number of genes in the category observed among DR genes
found in all archaic hominins compared to the number expected under no association. P-values

were calculated using gene set over-representation analysis for phenotypes containing >10 genes
in the Human Phenotype Ontology via the hypergeometric test. See Supplementary File S18 for

all associations.

HPO ID Description # DR Genes Enrichment P-value
HP:0005736 Short tibia 4 7.15 0.0017
HP:0004691 2-3 toe syndactyly 6 4.15 0.0026
HP:0003330 Abnormal bone structure 31 1.62 0.0034
HP:0001650 Aortic valve stenosis 6 3.78 0.0042
HP:0001007 Hirsutism 10 2.61 0.0042
HP:0006498 Aplasia/Hypoplasia of the patella 5 4.29 0.0051
HP:0002205 Recurrent respiratory infections 26 1.63 0.0071
HP:0001712 Left ventricular hypertrophy 8 2.77 0.0073
HP:0001769 Broad foot 6 3.30 0.0085
HP:0012745 Short palpebral fissure 6 3.22 0.0096
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Supplementary Table 3. HPO phenotypes enriched in DR genes specific to Neanderthals.

Enrichments are the ratio of the number of genes in the category observed among the union of
DR genes in the Altai and Vindija Neanderthals that are not DR in the Denisovan compared to

the number expected under no association. P-values were calculated using gene set over-
representation analysis for phenotypes containing >10 genes in the Human Phenotype Ontology
via the hypergeometric test. See Supplementary File S18 for all associations.

HPO ID Description # DR Genes Enrichment P-value
HP:0011065 Conical incisor 4 9.53 0.0006
HP:0006342 Peg-shaped maxillary lateral incisors 3 11.43 0.0018
HP:0011063 Abnormality of incisor morphology 4 6.93 0.0022
HP:0011792 Neoplasm by histology 12 250 0.0025
HP:0000698 Conical tooth 4 6.35 0.0031
HP:0000557 Buphthalmos 4 6.10 0.0037
HP:0000676 Abnormality of the incisor 5 4.54 0.0044
HP:0001019 Erythroderma 4 5.44 0.0056
HP:0001000 Abnormality of skin pigmentation 16 1.96 0.0058
HP:0001519 Disproportionate tall stature 3 7.62 0.0063
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Supplementary Table 4. HPO phenotypes enriched in DR genes specific to the Denisovan.
Enrichments are the ratio of the number of genes in the category observed among Denisovan-

specific DR genes compared to the number expected under no association. P-values were
calculated using gene set over-representation analysis for phenotypes containing >10 genes in the

Human Phenotype Ontology via the hypergeometric test. See Supplementary File S18 for all

associations.

# DR
HPO ID Description Genes Enrichment P-value
HP:0100710 Implusivity 3 7.74 0.0063
HP:0001302 Pachygyria 6 3.39 0.0077
HP:0001611 Nasal Speech 3 6.36 0.0110
HP:0100803 Abnormality of the periungual region 2 11.87 0.0115
HP:0000954 Single transverse palmar crease 5 3.37 0.0152
HP:0000829 Hypoparathyroidism 2 9.89 0.0165
HP:0001339 Lissencephaly 4 3.96 0.0174
HP:0001805 Thick nail 2 9.13 0.0193
HP:0200039 Pustule 2 9.13 0.0193
HP:0011061 Abnormality of dental structure 7 250 0.0198
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