Appendix S1: Model details

Population initiation

Table S1.1: Initial number of individuals of each genotype placed in each climate zone. Forplastic single-genotype scenarios, the number of individuals equals the total number for thegenetically-diverse scenario

Climates:	10	9	8	7	6	5	4	3	2
Trees (saplings)									
A ₁ A ₁					10	30	100	50	30
A ₁ A ₂			10	20	40	100	60	26	10
A ₂ A ₂		2	15	25	45	25	15	2	
A ₁ A ₃		2	15	25	45	25	15	2	
A ₂ A ₃	10	26	50	100	50	20	10		
A ₃ A ₃	30	50	100	30	10				
Total	40	80	200	200	200	200	200	80	40
Annuals (s	eeds) an	d peren	nials (s	mall adı	ults)		1		1
A ₁ A ₁					100	300	1000	500	300
A ₁ A ₂			100	200	400	1000	600	260	100
A ₂ A ₂		20	150	250	450	250	150	20	
A ₁ A ₃		20	150	250	450	250	150	20	
A ₂ A ₃	100	260	500	1000	500	200	100		
A ₃ A ₃	300	500	1000	300	100				
Total	400	800	2000	2000	2000	2000	2000	800	400

Dispersal probabilities

The steps to calculate the probability of dispersing seed or pollen from a given landscape to patch to any other were as follows:

1) Identify the dispersal parameter that would yield the correct mean dispersal. Because the equation for the 2D-t dispersal kernel is

$$prob.disp = \frac{1}{\left(\pi u \left(1 + \frac{d^2}{u}\right)^2\right)}$$

where *d* is the dispersal distance, this is given by:

 $u = (mean.disp \times 2/\pi)^2$

2) Calculate probability of dispersing to a range of distances from 0 to 2010 m, at 0.1 m intervals using 2D-t kernel.

3) Add up probabilities within 20 m categories, and divide by the total sum over all distances to ensure probabilities add up to 1.

4) Calculate the number of patches within 20 m distance categories to a source patch.

5) Within each distance category, divide total dispersal probability by number of patches.

6) Calculate a distance matrix showing the distance between the center of each patch in the landscape and the center of every other patch.

7) Using this distance matrix, fill in a dispersal probability matrix of dimensions (number of patches) x (number of patches).

The results for dispersal from a single source patch for two different mean dispersal distances (probabilities multiplied by 5000 seeds to show expected number of seeds dispersing to each patch) is shown in Figure S1.1 below.

For the plastic species, because all individuals have the same genotype we need only calculate the numbers of seeds traveling different distances and can ignore pollen dispersal. For the locally adapted species, we must first calculate how much pollen carrying which alleles will be received by each patch. The ovules produced in each patch carry one of the two alleles of the mother plant, with equal probability. For example, the number of ovules in a patch carrying allele A₁ is equal to the total seed production of A₁A₁ individuals plus half the total seed production of A₁A₂ and A₁A₃ individuals. The probability that an A₁ ovule will result in an A₁A₁ seed is equal to the proportion of the pollen arriving in the patch that carries the A₁ allele, and likewise for all other seed genotypes. The numbers of seeds of each

genotype are calculated, the seeds are dispersed according to the probabilities explained above.

Climate effects:

 Table S1.1: Climate effects on fecundity and/or survival probabilities

Scenario	Optimum	± 1	± 2	± 3	± 4	± 5	± ≥6
Locally adapted:	0.9 (1 band each)	0.5	0.3	0.15	0	0	0
$A_1A_1 \& A_3 A_3$							
Locally adapted:	1 (1 band each)	0.7	0.4	0.25	0.1	0	0
A ₁ A ₂ , A ₂ A ₂ , A ₁ A ₃ , & A ₂ A ₃							
LA perennial,	0.95 (1 band each)	0.75	0.65	0.575	0.25	0	0
weak climate effects:							
$A_1A_1 \& A_3 A_3$							
LA perennial,	1 (1 band each)	0.85	0.7	0.625	0.55	0.25	0
weak climate effects:							
A_1A_2 , A_2A_2 , A_1A_3 , & A_2A_3							
Standard plastic	1 (1 band)	0.9	0.75	0.4	0.1	0	0
Widely plastic	1 (3 bands)	0.7	0.5	0.2	0.1	0	0

Table S1.2: Climate effects on germination and/or transition probabilities

Scenario	Optimum	± 1	± 2	± 3	± 4	± 5	±≥6
Locally adapted	1 (1 band/genotype)	0.7	0.5	0.2	0.1	0	0
LA perennial,	1 (1 band/genotype)	0.85	0.75	0.6	0.55	0.25	0
weak climate effects							
Standard plastic	1 (1 band)	0.85	0.7	0.4	0.2	0	0
Widely plastic	1 (4 bands)	0.7	0.5	0.2	0.1	0	0

Figure S1.2: Fitness of broadly plastic perennial species across climates in terms of survival and fecundity (A) and in terms of transition and germination (C). Fitness of perennial with weakened climatic responses in terms of survival and fecundity (B) and in terms of transition and germination (D).

Appendix S2: Additional model results

Table S2.1: Percent change in landscape occupancy at the end of the climate change period ("Shift") and at the end of the restabilization period ("Restab"). MD indicates mean seed dispersal (m). Standard deviation over 4 runs given in brackets. Numbers in italics indicate range loss due to loss of suitable habitats from landscape. An asterix indicates losses of over 5% not due to loss of suitable habitat. Example range shift maps for scenarios shown in red are given in Figures S2.1 through S2.21.

		% change to original range					
		Locally	adapted	Pla	Plastic		
Life-form	MD	Shift	Restab	Shift	Restab		
Annual, standard	1	-5.84	-11.08	-27.75*	<u>20 yr</u> :		
		[0.18]	[0.09]	[0.14]	-29.29*		
					[0.16]		
					<u>200 yr</u> :		
					-33.89*		
	20	-7.33	-10.36	-7.87*	-0.15		
		[0.1]	[0.21]	[0.71]	[0.13]		
	50	-9.95	-10.02	-0.09	-0.26		
		[0.01]	[0.01]	[0.17]	[0.22]		
Perennial, standard	20	0.74	0.79	-9.25*	-0.07		
		[0.63]	[0.38]	[1.27]	[0.35]		
	80	0.15	-3.20	-4.16	-0.29		
		[0.26]	[0.38]	[0.26]	[0.32]		
Perennial, weaker	20	-2.07	-10.84	N/A	N/A		
climate effects		[0.44]	[0.25]				
Perennial, wider	20	N/A	N/A	0.08	-7.74		
tolerance				[0.45]	[0.52]		
Tree, standard	40	-2.49	-0.27	-16.13*	-0.05		

		[0.84]	[0.43]	[0.16]	[0.32]
	80	-4.02	-0.17	-8.32*	-0.2
		[0.34]	[0.53]	[0.63]	[0.53]
Tree, 2x shift rate,	40	-43.21*	-23.62	N/A	N/A
standard landscape		[1.88]	[0.33]		
	80	-31.46*	-25.56	N/A	N/A
		[1.48]	[0.19]		
Tree, 2x shift rate,	40	-42.42*	-0.2	-32.36*	0.28
extended landscape		[0.84]	[0.49]	[0.45]	[0.17]
	80	-31.94*	-0.09	-19.97*	-0.08
		[1.16]	[0.31]	[0.64]	[0.25]
Tree, 4x wider climate	40	-15.34*	0.15	-27.07*	0.01
bands		[0.42]	[0.13]	[0.27]	[0.05]
	80	-8.7*	-0.07	-22.77*	0.02
		[0.58]	[0.16]	[0.12]	[0.12]

Figure S2.1: Locally adapted annual with 1 m average seed dispersal after 20 year initialization period. Distribution of each allele indicated, with colors indicating allele frequencies from 10-30% (light yellow) to >70% (dark green). Fourth panel indicates initial distribution of climates.

Figure S2.2: Locally adapted annual with 1 m average seed dispersal after 20 years of climate change. Distribution of each allele indicated, with colors indicating allele frequencies from 10-30% (light yellow) to >70% (dark green). Fourth panel indicates final distribution of climates.

Figure S2.3: Locally adapted annual with 1 m average seed dispersal after 20 years of restabilization following climate change. Distribution of each allele indicated, with colors indicating allele frequencies from 10-30% (light yellow) to >70% (dark green). Fourth panel indicates final distribution of climates.

Figure S2.4: Plastic annual with 1 m average seed dispersal after 20 year initialization period. Green indicates occupied patch. Second panel indicates initial distribution of climates.

Figure S2.5: Plastic annual with 1 m average seed dispersal after 20 years of climate change. Green indicates occupied patch. Second panel indicates final distribution of climates.

Figure S2.6: Plastic annual with 1 m average seed dispersal after 200 years of restabilization. Green indicates occupied patch. Second panel indicates final distribution of climates.

Figure S2.7: Locally adapted perennial with 20 m average seed dispersal after 100 year initialization period. Distribution of each allele indicated, with colors indicating allele frequencies from 10-30% (light yellow) to >70% (dark green). Fourth panel indicates initial distribution of climates.

Figure S2.8: Locally adapted perennial with 20 m average seed dispersal after 20 years of climate change. Distribution of each allele indicated, with colors indicating allele frequencies from 10-30% (light yellow) to >70% (dark green). Fourth panel indicates final distribution of climates.

Figure S2.9: Locally adapted perennial with 20 m average seed dispersal after 100 years of restabilization. Distribution of each allele indicated, with colors indicating allele frequencies from 10-30% (light yellow) to >70% (dark green). Fourth panel indicates final distribution of climates.

Figure S2.10: Plastic perennial with 20 m average seed dispersal after 100 year initialization period. Green indicates occupied patches. Second panel indicates initial distribution of climates.

Figure S2.12: Plastic perennial with 20 m average seed dispersal after 100 years of restabilization. Green indicates occupied patches. Second panel indicates final distribution of climates.

Figure S2.13: Locally adapted tree with 40 m average seed dispersal after 200 year initialization period. Distribution of each allele indicated, with colors indicating allele frequencies from 10-30% (light yellow) to >70% (dark green). Fourth panel indicates initial distribution of climates.

Figure S2.14: Locally adapted tree with 40 m average seed dispersal after 20 years of climate change. Distribution of each allele indicated, with colors indicating allele frequencies from 10-30% (light yellow) to >70% (dark green). Fourth panel indicates initial distribution of climates.

Figure S2.15: Locally adapted tree with 40 m average seed dispersal after 200 years of restabilization. Distribution of each allele indicated, with colors indicating allele frequencies from 10-30% (light yellow) to >70% (dark green). Fourth panel indicates final distribution of climates.

Figure S2.16: Locally adapted tree with 40 m average seed dispersal after 200 year initialization period on landscape with extra cold-climate bands. Distribution of each allele indicated, with colors indicating allele frequencies from 10-30% (light yellow) to >70% (dark green). Fourth panel indicates initial distribution of climates.

Figure S2.17: Locally adapted tree with 40 m average seed dispersal after 20 years of 2x faster climate change. Distribution of each allele indicated, with colors indicating allele frequencies from 10-30% (light yellow) to >70% (dark green). Fourth panel indicates final distribution of climates.

Figure S2.18: Locally adapted tree with 40 m average seed dispersal after 200 years of restabilization after rapid climate shift. Distribution of each allele indicated, with colors indicating allele frequencies from 10-30% (light yellow) to >70% (dark green). Fourth panel indicates final distribution of climates.

Figure S2.19: Locally adapted tree with 40 m average seed dispersal after 200 year initialization period on shallow-gradient landscape (climate bands 4x wider). Distribution of each allele indicated, with colors indicating allele frequencies from 10-30% (light yellow) to >70% (dark green). Fourth panel indicates initial distribution of climates.

Figure S2.20: Locally adapted tree with 40 m average seed dispersal after 20 years of climate change on shallow-gradient landscape. Distribution of each allele indicated, with colors indicating allele frequencies from 10-30% (light yellow) to >70% (dark green). Fourth panel indicates final distribution of climates.

Figure S2.21: Locally adapted tree with 40 m average seed dispersal after 200 years of restabilization on shallow-gradient landscape. Distribution of each allele indicated, with colors indicating allele frequencies from 10-30% (light yellow) to >70% (dark green). Fourth panel indicates final distribution of climates.