
Notations

In this section, we define the settings of the following methods, and intro-
duce the frequently used identities.

• IJ denotes a J × J identity matrix.

• 1I×J denotes a I × J matrix whose elements are all 1.

• MVN (µ,Σ) denotes a multivariate normal distribution with a mean
µ and a variance-covariance matrix Σ.

• For any a × b matrix A, the b × a matrix A† denotes the Moore-
Penrose pseudo-inverse of A.

• For any a×b matrix A and a×b matrix B, the a×b matrix C = A◦B
denotes the Hadamard product between A and B.

• For any a × a square matrix A, the expression |A|+ denotes the
pseudo-determinant of A. If A is positive semi-difinite, |A|+ will be
computed as the product of non-zero eigen values of A.

• y denotes a n× 1 vector of phenotypic values.

• X denotes a n × p covariate matrix with full column rank p where
n ≥ p.

• β denotes a p× 1 vector of fixed effects for covariates.

• Zc denotes a n ×mc design matrix corresponding to random effects
uc for family relatedness.

• uc denotes a mc × 1 vector of random effects for family relatedness.
We assume uc ∼ MVN(0,Kcσ

2
c ) where Kc is the additive genetic

relationship matrix estimated from marker genotype W̃c and σ2
c is

the additive genetic variance.

• Zri denotes a n×mri design matrix corresponding to random effects
uri for each SNP-set.

• uri denotes a mri × 1 vector of random effects for each SNP-set.
We assume uri ∼ MVN(0,Kriσ

2
ri) where Kri is the Gram matrix

computed from marker genotype in SNP-set of interest W̃ri and σ2
ri

is the genetic variance of each SNP-set.
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• ϵ denotes a n× 1 vector of residuals. We assume ϵ ∼ MVN(0, Inσ
2
e )

where σ2
e is the residual variance.

• V is a n × n phenotypic variance-covariance matrix. In this paper,
V = ZcKcZ

T
c σ

2
c + ZriKriZ

T
riσ

2
ri + Inσ

2
e . Under the null hypothesis

σ2
ri = 0 since σ2

ri is the parameter to be tested. V is assumed to be
a full rank (n) matrix.

• H is a n×nmatrix which satisfiesH = V/σ2
c = ZcKcZ

T
c +ZriKriZ

T
riγri+

Inδe where γri = σ2
ri/σ

2
c and δe = σ2

e/σ
2
c to be estimated.

• S = In−X
(
XTX

)−1
XT is a n×n symmetric covariance orthogonal

projection matrix with rank n− p.

• P = In −X
(
XTV−1X

)−1
XTV−1 = In −X

(
XTH−1X

)−1
XTH−1

is a n× n matrix with rank n− p.

• w = Py is a n × 1 vector used for the REML estimation. We also
define wL, wR, PL and PR by

w =

[
wL

wR

]
=

[
PL

PR

]
y = Py,

where wL (or wR) stands for a linearly independent (or redundant)
part of w, and PL (or PR) denotes the corresponding partition of P.
Here, PL should satisfy PT

LPL = S and PLP
T
L = In−p [1, 2, 3]. We

also define the eigen decomposition of SHS as

SHS = ULΛLU
T
L ,

where ΛL is a n − p × n − p diagnonal matrix whose elements are
non-zero eigen values of SHS in the decreasing order, and UL is a
n × n − p eigen vector matrix whose each eigen vector corresponds
to each eigen value. Here, UL is the part of the unitary matrix with
first n − p columns of eigen vectors, and it satisfies ULU

T
L = S and

UT
LUL = In−p (Proposition 7). Therefore, we can say PL = UT

L .

• Q = H−1 −H−1X
(
XTH−1X

)−1
XT = H−1P = PTH−1 is a n× n

symmetry matrix with rank n− p.

• Wri is a mri × Mi marker genotype matrix belonging to the i-th
SNP-set. Here, Mi is the number of SNPs in the i-th SNP-set.

Multi-kernel linear mixed model

In this study, the alternative model can be written as the multi-kernel
mixed model.

y = Xβ + Zcuc + Zriuri + ϵ (1)
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On the other hand, the null model can be written as

y = Xβ + Zcuc + ϵ (2)

Therefore, we somehow test the null hypothesis H0 : σ2
ri = 0 for evaluating

the significance of the effects of SNP-set of interest.

Restricted maximum likelihood (REML)

For the multi-kernel linear mixed model described above, the restricted log
likelihood of y can be regarded as the log likelihood of wL, and it can be
expressed as a quite simple format by only using Q.

lR(y;σc, γri , δe) = −n− p

2
log(2π)− 1

2
log
∣∣PLVPT

L

∣∣− 1

2
yPT

L

(
PLVPT

L

)−1
PLy

= −n− p

2
log(2π) +

1

2
log
∣∣PTV−1P

∣∣
+
− 1

2
yTV−1Py

= −n− p

2
log(2πσ2

c ) +
1

2
log |Q|+ − 1

2σ2
c

yTQy (3)

by using Proposition 8 and 9.
In addition, by using Proposition 10, this restricted log likelihood is same
as the well known format [4, 5, 6] as follows.

lR(y;σc, γri , δe) = −n− p

2
log(2πσ2

c ) +
1

2
log |Q|+ − 1

2σ2
c

yTQy

= −n− p

2
log(2πσ2

c )−
1

2
log |H|+ 1

2
log
∣∣XTX

∣∣
− 1

2
log
∣∣XTH−1X

∣∣− 1

2σ2
c

yTQy (4)

Plugging σ̂2
c = yTQy/(n− p) into Eq 3, we get

lR(y; σ̂c, γri , δe) = −n− p

2

{
log

(
2πe

n− p

)
+ log

(
yTQy

)}
+

1

2
log |Q|+

(5)

Efficient likelihood ratio test used in RAIN-
BOW

In this section, we describe how to implement computationally efficient
algorithm for the likelihood ratio (LR) test [7, 8] for the two kernel linear
mixed model.

In this study, we assume the Gram matrix for each SNP-set ZriKriZ
T
ri

is low rank, so rank(ZriKriZ
T
ri) ≪ n. Then, H can be written as

H = ZcKcZ
T
c + ZriKriZ

T
riγri + Inδe

= ZcKcZ
T
c + W̃riΓ̃riW̃

T
ri + Inδe, (6)

where W̃ri is a n× k matrix and Γ̃ri is a k × k square matrix. Here, k is
the rank of ZriKriZ

T
ri , so k ≪ n. Concrete examples of W̃ri and Γ̃ri will

be described later.
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Low rank update of Q

One of the drawbacks of the LR test is a large amount of computation
because the LR test requires the maximization of restricted likelihood for
each SNP-set. To reduce the computational complexity, [9, 10] proposed
the efficient computation of the restricted log likelihood Eq 5 by using low
rank update of Q as follows.

First, the low-rank update of Q is

Q = PTH−1P

= (SHS)
†

=
(
S
(
ZcKcZ

T
c + W̃riΓ̃riW̃

T
ri + Inδe

)
S
)†

=
(
S
(
ZcKcZ

T
c + Inδe

)
S+ SW̃riΓ̃riW̃

T
riS
)†

=
(
UL (Λc + In−pδe)U

T
L +ULU

T
LW̃riΓ̃riW̃

T
riULU

T
L

)†
=
(
UL

(
Λc + In−pδe +UT

LW̃riΓ̃riW̃
T
riUL

)
UT

L

)†
= UL

(
Λc + In−pδe +UT

LW̃riΓ̃riW̃
T
riUL

)−1

UT
L

= UL (Λc + In−pδe)
−1

UT
L

−UL (Λc + In−pδe)
−1

UT
LW̃ri

·
(
Γ̃−1
ri + W̃T

riUL (Λc + In−pδe)
−1

UT
LW̃ri

)−1

· W̃T
riUL (Λc + In−pδe)

−1
UT

L

= Oc −OcW̃ri

(
Γ̃−1
ri + W̃T

riOcW̃ri

)−1

W̃T
riOc (7)

Here, we use Proposition 6, 5, 2, 7 and the Woodbury identity, and we de-
fine the eigen decomposition of SZcKcZ

T
c S = ULΛcU

T
L where Λc is a n−

p×n−p diagonal matrix and n×n matrix Oc = UL (Λc + In−pδe)
−1

UT
L to

shorten the notation. Assuming that the eigen decomposition of S
(
ZcKcZ

T
c + In−pδe

)
S

has been pre-computed, the additional computation required will beOcW̃ri ,
an O(n2k) operation.

Update of the squared form yTQy

Since we know the derivation of the low-rank update of Q (Eq 7) now, we
can plug this into the squared form.

yTQy = yTOcy − yTOcW̃ri

(
Γ̃−1
ri + W̃T

riOcW̃ri

)−1

W̃T
riOcy (8)
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Update of the determinant log |Q|+
Since the update matrix is not necessarily positive semi-definite, we have
to slightly modify Eq 7 to avoid numerical instability.

log |Q|+ = − log
∣∣UT

LHUL

∣∣
= − log

∣∣∣In−pδe +Λc +UT
LW̃riΓ̃riW̃

T
riUL

∣∣∣
= − log |In−pδe +Λc +AB|

= − log
(
|In−pδe +Λc| ·

∣∣∣In−p + (In−pδe +Λc)
−1

AB
∣∣∣)

= − log |In−pδe +Λc| − log
∣∣∣Ik +B (In−pδe +Λc)

−1
A
∣∣∣ (9)

Here, we used Proposition 5, 6, 7 and the Sylvester’s determinant identity,
and we also define a n − p × k matrix A = UT

LW̃riΓ̃ri and a k × n − p
matrix B = W̃T

riUL. When calculating the second term of Eq 9, we have

to be careful about the possibility that Ik + B (In−pδe +Λc)
−1

A is not
necessarily positive semi-definite. Since the matrix Q is positive semi-
definite, it is possible to calculate the second term of Eq 9, however, the
matrix Ik + B (In−pδe +Λc)

−1
A has an even numbers of negative eigen

values, so instead of simply computing the determinant of this matrix, we
have to avoid taking logarithms of such negative eigen values.

Estimation of variance components

Now we can derive the efficient computation of the restricted log likelihood
from Eq 5, Eq 8 and Eq 9, we can optimize γri and δe over maximazation
of Eq 5 by using L-BFGS optimzation method as we introduce in the paper
[11].

Then, we calculated the weighted variance-covariance matrix by γri , and
reestimate variance components by using EMMA (efficient mixed model
association) or GEMMA (genome wide efficient mixed model association)
[6, 12].

Discussion on the identity of W̃ri and Γ̃ri

In this subsection, we discuss on what W̃ri and Γ̃ri correspond to depend-
ing on the kind of the kernels for Kri .

For the case where Kri is the linear kernel

Here, we discuss the case where Kri is calculated as the linear kernel of the
marker genotype Wri belonging to the i-th SNP-set.

For example, if we assume Kri is the additive genetic matrix of Wri ,
W̃ri corresponds to

W̃ri =
Zri

(
Wri + 1mri

×Mi
− 2 ·Φ

)
2 ·
∑Mi

m=1 pm (1− pm)
, (10)

where pm is the allele frequency of the 1 allele at marker m and Φ is a
mri ×Mi matrix whose mth column equals to Φ = pm · 1mri

×1 [13].

On the other hand, Γ̃ri corresponds to

Γ̃ri = IMi
γri , (11)
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so in this case, Γ̃ri is a Mi ×Mi diagonal matrix. Here, k in Eq 7 equals
to the number of SNPs in the i-th SNP-set, Mi.

For the case where Kri is the exponential or gaussian kernel

Here, we discuss the case where Kri is calculated as the exponential or
gaussian kernel of the marker genotype Wri belonging to the i-th SNP-set.

First, we calculated the Euclidean distance matrix Dri from the marker
genotype Wri belonging to the i-th SNP-set. Then for the case where Kri

is the exponential kernel, Kri is calculated as

Kri = exp

(
−hriDri√

Mi

)
, (12)

where hri is a hyperparameter calculated as the inverse of median of the
off-diagonal elements of D2

ri/Mi for the default setting of RAINBOW. To
scale the distance matrix, the distance matrix is divided by

√
Mi in the

exponential. Similarly, for the case where Kri is the gaussian kernel, Kri

is calculated as

Kri = exp

(
−
hriD

2
ri

Mi

)
, (13)

where the term in the exponential is also deivide by Mi to fit its scale to
the linear kernel.

In this case, we cannot apply the decomposition of Kri as seen in the
linear kernel case, however, it is assumed that the rank of Kri is still much
smaller than the number of observations, n. This is because, since there
should be strong linkage disequilibrium between SNPs in each SNP-set
and many accessions share the same SNPs in that SNP-set, the number of
genotypes in that SNP-set mri may be much smaller than n. Therefore, in
such case,

W̃ri = Zri , (14)

Γ̃ri = Kriγri (15)

Here, k in Eq 7 equals to the number of SNPs in the genotypes in the ith
SNP-set, mri . We should be careful about that Γ̃ri is not a diagonal matrix
in this case.

Efficient likelihood ratio test for dominance
and epistatic effects

In this section, we extend the efficient LR test for the one random effect of
each SNP-set to that for multiple random effects of the SNP-set. In this
case, the multi-kernel mixed model will be

y = Xβ + Zcuc +

L∑
l=1

Zri,luri,l + ϵ, (16)

where uri,l is the lth random effect of the ith SNP-set and Zri,l is a n×mri,l

design matrix which correspond to uri,l. Examples of multiple random
effects are additive effects, dominance effects and epistatic effects, and the
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test for the significance of these effects will be described later.
The restricted log likelihood is still Eq 5, however, here

H = ZcKcZ
T
c +

L∑
l=1

Zri,lKri,lZ
T
ri,lγri,l + Inδe

= ZcKcZ
T
c +

L∑
l=1

W̃ri,lΓ̃ri,lW̃
T
ri,l + Inδe, (17)

where Kri,l, γri,l, W̃ri,l and Γ̃ri,l are the extensions of Kri , γri , W̃ri and

Γ̃ri for the lth random effect.

Low rank update of Q(L)

In this case, the low rank update of Q is realized by extending Eq 7 to

Q(L) = PTH−1P

= (SHS)
†

=

(
S

(
ZcKcZ

T
c +

L∑
l=1

W̃ri,lΓ̃ri,lW̃
T
ri,l + Inδe

)
S

)†

=

(
S
(
ZcKcZ

T
c + Inδe

)
S+

L∑
l=1

SW̃ri,lΓ̃ri,lW̃
T
ri,lS

)†

=

(
UL (Λc + In−pδe)U

T
L +

L∑
l=1

ULU
T
LW̃ri,lΓ̃ri,lW̃

T
ri,lULU

T
L

)†

=

(
UL

(
Λc + In−pδe +

L∑
l=1

UT
LW̃ri,lΓ̃ri,lW̃

T
ri,lUL

)
UT

L

)†

= UL

(
Λc + In−pδe +

L∑
l=1

UT
LW̃ri,lΓ̃ri,lW̃

T
ri,lUL

)−1

UT
L

= UL

(
Λc + In−pδe +

L−1∑
l=1

W̃ri,lΓ̃ri,lW̃
T
ri,l

)−1

UT
L

−UL

(
Λc + In−pδe +

L−1∑
l=1

W̃ri,lΓ̃ri,lW̃
T
ri,l

)−1

UT
LW̃ri,L

·

Γ̃−1
ri,L

+ W̃T
ri,LUL

(
Λc + In−pδe +

L−1∑
l=1

W̃ri,lΓ̃ri,lW̃
T
ri,l

)−1

UT
LW̃ri,L

−1

· W̃T
ri,LUL

(
Λc + In−pδe +

L−1∑
l=1

W̃ri,lΓ̃ri,lW̃
T
ri,l

)−1

UT
L

= Q(L−1) −Q(L−1)W̃ri,L

(
Γ̃−1
ri,L

+ W̃T
ri,LQ

(L−1)W̃ri,L

)−1

W̃T
ri,LQ

(L−1)

(18)

Here, we use Proposition 6, 5, 2, 7 and the Woodbury identity, and we
define Q(L) as the Q matrix for the L random effects of the SNP-set, so
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Q(L) = UL

(
Λc + In−pδe +

∑L
l=1 U

T
LW̃ri,lΓ̃ri,lW̃

T
ri,l

UL

)−1

UL. To com-

pute Q(L), we set Q(0) = UL (Λc + In−pδe) first, and repeat Eq 18 for L

steps. The computation of Q(L) will be an O(n2
∑L

l=1 kl) operation and it

is much efficient if all kl ≪ n where kl is the rank of W̃ri,l.

Update of the determinant log
∣∣Q(L)

∣∣
+

We also extend Eq 9 to

log
∣∣∣Q(L)

∣∣∣
+
= − log

∣∣UT
LHUL

∣∣
= − log

∣∣∣∣∣In−pδe +Λc +

L∑
l=1

UT
LW̃ri,lΓ̃ri,lW̃

T
ri,lUL

∣∣∣∣∣
= − log

∣∣∣∣∣In−pδe +Λc +

L−1∑
l=1

A(l)B(l) +A(L)B(L)

∣∣∣∣∣
= − log

∣∣∣∣∣In−pδe +Λc +

L−1∑
l=1

A(l)B(l)

∣∣∣∣∣
− log

∣∣∣∣∣∣In−p +

(
In−pδe +Λc +

L−1∑
l=1

A(l)B(l)

)−1

A(L)B(L)

∣∣∣∣∣∣
= log

∣∣∣Q(L−1)
∣∣∣
+
− log

∣∣∣IkL
+B(L)Q(L−1)A(L)

∣∣∣ (19)

Here, we used Proposition 5, 6, 7 and the Sylvester’s determinant identity,
and we also define a n−p×kL matrix A(L) = UT

LW̃ri,LΓ̃ri,L and a k×n−p

matrix B(L) = W̃T
ri,L

UL. Computation of log
∣∣Q(L)

∣∣
+

can be realized by

repeating Eq 19 after setting log
∣∣Q(0)

∣∣
+
= − log |In−pδe +Λc|. Here, when

calculating the second term of Eq 19, the notes mentioned for Eq 9 still
exists in this case.

The LR test for dominance and epistatic effects

To test the dominance or epistatic effects of each SNP-set, it should be
assumed that the term of additive effects of each SNP-set is included both
in the null model and the alternative model. Therefore we should assume
the model such as Eq 16 for the alternative model in this case.

If we define Kri,d is the dominance genetic matrix of Wri , W̃ri,d (W̃ri

for the dominance effects) corresponds to

W̃ri,d =
Zri

(
1mri

×Mi
− ||Wri ||

)
2 ·
∑Mi

m=1 pm (1− pm) (1− pm (1− pm))
, (20)

and Γ̃ri,d is

Γ̃ri,d = IMi
γri,d, (21)

where γri,d is the weight for the dominance effect of ith SNP-set to be
estimated [14]. Therefore, to test the significance of dominance effects,
compare the restricted log likelihood of the model including both additive
and dominance effects such as Eq 16 (l = 2) with that of the model includ-
ing only additive effects such as Eq 1.
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For the random effects of epistatic effects between two SNP-sets con-
sisting of the same number of SNPs M , W̃rij ,aa, W̃rij ,ad, W̃rij ,da and

W̃rij ,dd(W̃rij for additive × additive, additive × dominance, dominance
× additive and dominance × dominance epistatic effects between the ith
and the jth SNP-sets of interest respectively) correspond to

W̃rij ,aa = W̃ri,a ◦ W̃rj ,a, (22)

W̃rij ,ad = W̃ri,a ◦ W̃rj ,d, (23)

W̃rij ,da = W̃ri,d ◦ W̃rj ,a, (24)

W̃rij ,dd = W̃ri,d ◦ W̃rj ,d, (25)

where W̃ri,a is defined by Eq 10 and W̃rj ,d is defined by Eq 20 [15, 14].

On the other hand, correponding Γ̃rij ,aa, Γ̃rij ,ad, Γ̃rij ,da and Γ̃rij ,dd are

Γ̃rij ,aa = IMγrij ,aa, (26)

Γ̃rij ,ad = IMγrij ,ad, (27)

Γ̃rij ,da = IMγrij ,da, (28)

Γ̃rij ,dd = IMγrij ,dd, (29)

where γrij ,aa, γrij ,ad, γrij ,da and γrij ,dd are weights for each epistatic effects
to be estimated. In this case, to test the significance of these epistatic
effects, compare the restricted log likelihood of the model including additive
and dominance effects of two SNP-set and four epistatic effects such as Eq
16 (l = 8) with that of the model including only additive and dominance
effects of two SNP-set such as Eq 16 (l = 4).
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Propositions

Proposition 1. SX = 0, PX = 0 and UT
LX = 0.

Proof.

SX = X−X
(
XTX

)−1
XTX = 0,

PX = X−X
(
XTH−1X

)−1
XTH−1X = 0,

and because PX = 0, PLX = 0. Therefore, UT
LX = 0.

Proposition 2. S2 = S.

Proof.

S2 =
(
In −X

(
XTX

)−1
XT
)(

In −X
(
XTX

)−1
XT
)
,

= In − 2 ·X
(
XTX

)−1
XT +X

(
XTX

)−1
XTX

(
XTX

)−1
XT

= In −X
(
XTX

)−1
XT

= S

This characteristic is called idempotent.

Proposition 3. PS = P and SP = S.

Proof.

PS =
(
In −X

(
XTV−1X

)−1
XTV−1

)(
In −X

(
XTX

)−1
XT
)

= In −X
(
XTV−1X

)−1
XTV−1 −X

(
XTX

)−1
XT

+X
(
XTV−1X

)−1
XTV−1X

(
XTX

)−1
XT

= In −X
(
XTV−1X

)−1
XTV−1

= P,

and

SP =
(
In −X

(
XTX

)−1
XT
)(

In −X
(
XTV−1X

)−1
XTV−1

)
= In −X

(
XTV−1X

)−1
XTV−1 −X

(
XTX

)−1
XT

+X
(
XTX

)−1
XTX

(
XTV−1X

)−1
XTV−1

= In −X
(
XTX

)−1
XT

= S

Proposition 4. P2 = P.

Proof.

P2 =
(
In −X

(
XTV−1X

)−1
XTV−1

)(
In −X

(
XTV−1X

)−1
XTV−1

)
= In − 2×X

(
XTV−1X

)−1
XTV−1

+X
(
XTV−1X

)−1
XTV−1X

(
XTV−1X

)−1
XTV−1

= In −X
(
XTV−1X

)−1
XTV−1

= P
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Proposition 5. PTH−1P = (SHS)
†
.

Proof.
From Proposition 3 and 4,

(SHS)
(
PTH−1P

)
(SHS) = SHPTH−1PHS

= SPPHS

= SHS,

and (
PTH−1P

)
(SHS)

(
PTH−1P

)
= PTH−1PHPTH−1P

= PTH−1PPP

= PTH−1P.

Moreover, the product of PTH−1P and SHS is commutative and becomes
a Hermitian (in this case, real symmetric) matrix.

(SHS)
(
PTH−1P

)
=
(
PTH−1P

)
(SHS) = S

Therefore, from the definition of Moore-Penrose peudo-inverse matrix,

PTH−1P = (SHS)
†
= ULΛ

−1
L UT

L

Proposition 6. Q = PTH−1P.

Proof.
By using Proposition 4,

PTH−1P = H−1PP = H−1P = Q

Proposition 7. ULU
T
L = S.

Proof.
By using Proposition 5,

S = (SHS)
(
PTH−1P

)
= (SHS) (SHS)

†

= ULΛLU
T
LULΛ

−1
L UT

L

= ULU
T
L

Proposition 8. log
∣∣PLVPT

L

∣∣ = − log
∣∣PTV−1P

∣∣
+
.

Proof.
First,

PLVPT
L = UT

LHULσ
2
c = ΛLσ

2
c ,

11



because

ULU
T
LHULU

T
L = SHS = ULΛLU

T
L ,

from Proposition 7. Then, by using Proposition 5

log |ΛL| = − log
∣∣Λ−1

L

∣∣
= − log

∣∣ULΛ
−1
L UT

L

∣∣
+

= − log
∣∣PTH−1P

∣∣
+

Therefore,

log
∣∣PLVPT

L

∣∣ = log
∣∣ΛLσ

2
c

∣∣ = − log
∣∣PTV−1P

∣∣
+

Proposition 9. PT
L

(
PLVPT

L

)−1
PL = V−1P.

Proof. By using Proposition 8 and 6,

PT
L

(
PLVPT

L

)−1
PL = UL

(
UT

LVUL

)−1
UT

L

= UL

(
ΛLσ

2
c

)−1
UT

L

= PTH−1P/σ2
c

= Q/σ2
c = V−1P

Proposition 10. 1
2 log |Q|+ = − 1

2 log |H|+ 1
2 log

∣∣XTX
∣∣− 1

2 log
∣∣XTH−1X

∣∣.

12



Proof. By using Proposition 6, 5 and 7,

|Q|+ =
∣∣PTH−1P

∣∣
+

= |SHS|−1
+

= |ΛL|−1 ·
∣∣XTH−1X

∣∣ · ∣∣XTH−1X
∣∣−1

=
∣∣UT

LHUL

∣∣−1 ·
∣∣∣(XTH−1X

)−1
XTH−1X

(
XTH−1X

)−1
∣∣∣−1

·
∣∣XTH−1X

∣∣−1

=
∣∣UT

LHUL

∣∣−1 ·
∣∣∣(XTH−1X

)−1
XTH−1HH−1X

(
XTH−1X

)−1
∣∣∣−1

·
∣∣XTH−1X

∣∣−1

=

∣∣∣∣[UT
LHUL 0

0
(
XTH−1X

)−1
XTH−1HH−1X

(
XTH−1X

)−1

]∣∣∣∣−1

·
∣∣XTH−1X

∣∣−1

Here, we define M =
(
XTH−1X

)−1
XTH−1 to shorten the notation.

=

∣∣∣∣[UT
LHUL UT

LHMT

MHUL MHMT

]∣∣∣∣−1

·
∣∣XTH−1X

∣∣−1

MHUL = 0 because XTUL = 0 (Proposition 1).

=

∣∣∣∣∣
[
UT

L

M

]
H

[
UT

L

M

]T∣∣∣∣∣
−1

·
∣∣XTH−1X

∣∣−1

= |H|−1 ·

∣∣∣∣∣
[
UT

L

M

] [
UT

L

M

]T∣∣∣∣∣
−1

·
∣∣XTH−1X

∣∣−1

= |H|−1 ·
∣∣∣∣[UT

LUL UT
LM

T

MUL MMT

]∣∣∣∣−1

·
∣∣XTH−1X

∣∣−1

Using the well-known formula for the determinant of block-matrix,

= |H|−1 ·
∣∣UT

LUL

∣∣−1 ·
∣∣∣MMT −MUL

(
UT

LUL

)−1
UT

LM
T
∣∣∣−1

·
∣∣XTH−1X

∣∣−1

= |H|−1 ·
∣∣MMT −MSMT

∣∣−1 ·
∣∣XTH−1X

∣∣−1

= |H|−1 ·
∣∣∣MX

(
XTX

)−1
XTMT

∣∣∣−1

·
∣∣XTH−1X

∣∣−1

= |H|−1 ·
∣∣XTX

∣∣ · ∣∣XTH−1X
∣∣−1

Therefore,

1

2
log |Q|+ = −1

2
log |H|+ 1

2
log
∣∣XTX

∣∣− 1

2
log
∣∣XTH−1X

∣∣
If we plus the both sides of the equation by −(n− p) log(σ2

c )/2, we get

1

2
log
∣∣Q/σ2

c

∣∣
+
= −1

2
log |V|+ 1

2
log
∣∣XTX

∣∣− 1

2
log
∣∣XTV−1X

∣∣ ,
which is also the frequently used form of the formula.
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Details about the material and sumulations

Details about the simulation of phenotype data

As described in the main text, the model as Eq 30 was used for the simu-
lation of phenotypic values.

y = X1β1 +X2β2 +X3β3 + Zu+ e, (30)

where y is the vector of simulated phenotypic values of 414 accessions,
X1, X2 and X3 correspond to three quantitative trait nucleotides (QTNs)
scored as -1, 0 or 1 (hereinafter, referred to as “QTN1”, “QTN2” and
“QTN3” respectively), β1, β2 and β3 are scalars representing the effects of
the three QTNs, u is the vector of polygenetic effects, and e is the vector
of the residuals. Here, we will explain the details about the last two terms.

The polygenetic effects u in Eq 31 were sampled from the multivari-
ate normal distribution whose variance-covariance matrix was the additive
genetic relationship matrix A, and were normalized so that their variance
was equal to that of three QTN effects.

u ∼ MVN(0,G) (31)

G = Aσ2
A is the genetic covariance matrix, and the additive genetic vari-

ance σ2
A is automatically determined from the relationship with the heri-

tability. In this study, the additive numerator relationship matrix was es-
timated based on the marker genotype of 112,630 SNPs using the “A.mat”
function of the R package “rrBLUP” version 4.6 [16].

The residual e in Eq 32 was sampled identically and independently from
a normal distribution, and then was normalized so that the narrow-sense
heritability was equal to 0.6.

e ∼ MVN(0, Iσ2
e ), (32)

where I is an identity matrix, and σ2
e is the residual variance determined

so that the heritability is equal to 0.6.

Details about the evaluation of RAINBOW

Details of four methods

Here, we will explain the details of four methods for the evaluation of the
RAINBOW performance.

Single-SNP GWAS The single-SNP GWAS model was similar to Eq
2, but this method regarded each SNP as a fixed effect and tested the
significance of each SNP effect one by one [17]. In this study, we used the
method called “P3D”, which first estimated σ2

c and σ2
e by solving the mixed

model without SNP effects (Eq 2) by REML, and then tested each marker
using the information of the estimated variance σ̂2

c and σ̂2
e [6, 18, 19]. We

used the “GWAS” function of the R package “rrBLUP” version 4.6 [16].
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HGF method HGF tests the significance of each haplotype block ef-
fect. In this method, all accessions were divided into kri groups based on
the haplotypes. The haplotype groups were then represented by dummy
variables. The significance of the haplotype effect was tested by regard-
ing a matrix of dummy variables as fixed effects [20]. In this study, the
k-medoids method (the “pam” function of the R package “cluster” version
2.0.6) [21] or UPGMA (unweighted pair group method with arithmetic
mean, “hclust” and “cutree” function of the R package “stats”) [22] were
employed to group haplotypes. We set the number of groups kri as 2,3 or
4. Therefore, we applied 6 different HGF models in total. To apply HGF
models, we modified the R package “rrBLUP” version 4.6 to enable the use
of a matrix of dummy variables as fixed effects [16].

SKAT The SKAT is a SNP-set GWAS method, and is widely used in
human genetics [23]. This method was invented to detect rare alleles, but
the SKAT model does not include the random effects term that accounts for
family relatedness, which may cause false positives for GWAS in materials
with a strong population structure or family relatedness. In this study,
we used the “SKAT” function of the R package “SKAT” version 1.3.2.1
and performed SNP-set GWAS by regarding each haplotype block as each
SNP-set.

RAINBOW The methods for RAINBOW were described in the main
text. In this study, we performed haplotype-based GWAS for RAINBOW
by regarding each haplotype block as each SNP-set. We used the linear
kernel of each haplotype block for the Gram matrix Kri .
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