Simulation of phenotypic values (100 iterations)

 $\mathbf{y} = \mathbf{X}_1\beta_1 + \mathbf{X}_2\beta_2 + \mathbf{X}_3\beta_3 + \mathbf{Z}\mathbf{u} + \mathbf{e}, (\text{Eq. 1})$

y: phenotypic values $X_1\beta_1$, $X_2\beta_2$, $X_3\beta_3$: fixed effects (marker effects)Zu: random effects (polygene effects)e: residuals

one haplotype block

Χ.

• X_1 and X_2 belong to the same haplotype block.

We assumed 2 scenarios.

(1) **Coupling** : cor($\mathbf{X}_1, \mathbf{X}_2$) > 0 -> $\beta_1 = \beta_2$, cor($\mathbf{X}_1, \mathbf{X}_2$) < 0 -> $\beta_1 = -\beta_2$

(2) **Repulsion** : cor($\mathbf{X}_1, \mathbf{X}_2$) > 0 -> $\beta_1 = -\beta_2$, cor($\mathbf{X}_1, \mathbf{X}_2$) < 0 -> $\beta_1 = \beta_2$

- Perform GWAS with 4 methods.
- 1 Our proposed method, **RAINBOW** (R package RAINBOWR)
- 2 The **single-SNP** method (R package rrBLUP)
- 3 Haplotype-based method introduced by Yano et al., 2016
- ④ SNP-set method, SKAT (R package SKAT)

- Evaluate the results with the following summary statistics
- (1) $-\log_{10}(p)$ and $-\log_{10}(p_a)$, correspond to the **detection power**
- 2 Recall, Precision, and F-measure
- 3 AUC (area under the curve) for regions around causals