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1 Edge-count probabilities

Consider a large and sparse undirected graph. Large means that the graph order (number n of
vertices) is at least a few thousands. Sparse means here that the average vertex degree 〈k〉 is small
compared to the graph size m (total number of edges): 〈k〉 /m≪ 1. Call xu,i the observed number
of edges between a vertex vu and a prescribed set Si of i vertices. Call xt,i the similar quantity for
another vertex vt and xu,j that for another vertex set Sj . The problem at hand is that of comparing
xu,i, xt,i and xu,j.

Fair comparison should take into account vertex degrees kt and ku, as well as numbers of vertices
in Si and Sj , and degrees of their elements. This can be achieved by replacing quantity xu,i
with the probability of observing at least that many edges under a model of random graph which
exactly preserves vertex degrees (Random Graph with Fixed Degree Sequence, or RGFDS). Namely,
quantity xu,i is replaced with Pr (Xu,i ≥ xu,i), where Xu,i is the corresponding random variable,
and the concept of probability is defined by counting over all possible realizations of the RGFDS.
Individual realizations of the RGFDS can be obtained numerically by rewiring edges: two edges
{va, vb} and {vc, vd} are randomly selected and transformed into {va, vd} and {vc, vb}, provided
va 6= vd, vc 6= vb and the new edges do not already exist in the graph. A similar numerical process
was for instance utilized to identify subgraphs which are overrepresented in some networks [24].
This numerical process is however costly, as drawing one realization of the RGFDS required rewiring
10m pairs of edges. This is illustrated with Figure 1.

Figure 1: Relative overlap of edges between original and rewired networks (ratio of cardinalities of
intersection to union of edges) as a function of the number of pairs of edges that are rewired relative
to graph size m. Dots display average values over 100 random graphs and vertical lines correspond
to plus/minus one standard deviation. Red curve represents local polynomial regression fit (LOESS,
[8, 31]) used to estimate counts of rewired edge pairs that on average preserve approximately 80%,
50% and 20% of the original edges in the network as indicated by varying shades of blue on the
plot. The network is here STRING [13] restricted to edges of confidence level c ≥ 0.7.
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Analytical approximations for the probability or certain small subgraphs under the RGFDS have
been obtained [18]. The problem of finding some of these expressions is greatly simplified by
considering a different model of random graph, where vertex degrees are only preserved on average
over the set of all random graph realizations. This null model of network is known as the Random
Graph with Given Expected Degrees (RGGED) [7]. In this model, an edge between vertices vt and
vu is represented by a Bernoulli random variable of parameter ptu = min (1, ktku/2m). The key
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advantage of the RGGED model is to treat different edges as independent random variables. This
both greatly simplifies analytical treatment and acknowledges the fact that exactly preserving kt
and ku is not the most conservative model. In the RGGED, degree of vertex vt is now a random
variable with expected value kt and standard deviation

√
kt [28], thus introducing a reasonable

uncertainty on kt.

Call Xu,i the RGGED random variable corresponding to association (number of edges) between ver-
tex vu and vertex set Si. This random variable is the sum of i independent Bernoulli variables, one
for each possible edge. Because Bernoulli variables have small parameters, Xu,i has approximately
Poisson distribution [20] and one obtains [28, 27]:

Pr (Xu,i ≥ xu,i) ≃
e−λu,i

αu,i

i
∑

h=xu,i

λh
u,i

h!
with αu,i = e−λu,i

i
∑

h=0

λh
u,i

h!
and λu,i =

ku
2m

∑

t∈Si

kt. (1)

Note that the upper bound i is utilized when summing Poisson terms, even if i > ku. This is
because vertex degrees are only fixed on average in the RGGED.

Computation of the above edge-count p-values is performed based on the following pseudo-code:

Edge-Count-PValue(x, λ, z)

1 if z = 0
2 then return 1
3 lp← −λ
4 p← exp (lp)
5 P ← 0
6 α← p
7 if λ ≥ 100

8 then t← (x− λ) /
√
λ

9 return Gaussian-PValue (t)
10 for y ← 1 to m
11 do lp← lp+ log (λ)− log (y)
12 p← exp (lp)
13 α← α+ p
14 if y ≥ x
15 then P ← P + p
16 if p/P < 10−16

17 then break

18 P ← P/α
19 return P

2 Efficient computation of association profiles

Call Pi the edge-count p-value Pr (Xu,i ≥ xu,i), where xu,i is the observed number of edges (associ-
ation) between vertex vu and the i vertices of vertex set Si. Since values of Pi are conditional to all
vertex degrees they can be compared, and one can state that the best association of vertex vu to
Differentially Expressed Genes (DEGs) is given by mini Pi, when DEGs are ordered by ascending
differential expression.

A naive approach to compute all values of Pi for all n vertices would be O
(

n2m
)

, where m is the
graph size. However, computation of all Pi values for all vertices can be done in O (m):
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Best-Attachment-PValues

1 for i← 1 to n ✄ initialization
2 do P [i]← 1
3 x [i]← 0
4 sK ← 0 ✄ running sum of degrees
5 for i← 1 to n ✄ all vertices
6 do sK ← sK + k [i]
7 for j ← 1 to |Hi| ✄ neighborhood of vertex i
8 do x [Hi [j]]← x [Hi [j]] + 1
9 t← sK

10 z ← i ✄ the max attachment is |Si|
11 if Hi [j] ≤ i ✄ avoids counting a vertex twice
12 then t← t− k [Hi [j]]
13 z ← z − 1
14 λ← tk [Hi [j]] /2m
15 d← Edge-Count-PValue (x [Hi [j]] , λ, z)
16 if d < P [Hi [j]]
17 then P [Hi [j]]← d

where Hi [j] is the index of the vertex which is the jth neighbor of vertex i and k [i] is the degree
of vertex i.

3 Bias by degree

3.1 Numerical results

Figure 2: Average vertex degree, over a set of 104 random orders of DEGs, as a function of WAP
score rank; the network is here restricted to edges of confidence level c ≥ 0.7. The horizontal line
corresponds to the average vertex degree.
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While edge-count p-values Pi are conditional to vertex degrees and thus can be compared to each
other, possible values of mini Pi are significantly affected by vertex degree. One reason for this
is that the vertices with larger degrees present larger set of values to choose minimum from. For
instance, a vertex of degree k = 100 has 100 more possible values of mini Pi than a vertex of degree

4



Enhancing reproducibility of gene-expression analysis with known protein functional relationships: the concept of well-associated protein.

Supplementary material. JR Pradines, V Farutin, NA Cilfone, A Ghavami, E Kurtagic, J Guess, AM Manning & I Capila

Figure 3: Average values µ of mini Pi (crosses), over a set of 104 random orders of DEGs, as a
function of vertex degree k. Lines show fitted linear models for log µ = f (log k).
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k = 1. Additionally, vertices with larger degrees can attain lower values of Pi than vertices with
smaller numbers of neighbors on the graph. For example, for a vertex of degree k = 1 in the
graph with m edges the lowest possible value of Pi is 1/ (2m) when/if this vertex is connected to
another vertex of degree k = 1 that is at the very top (i = 1) of the list of vertices ordered by
their differential expression. For a vertex of degree k the lowest possible value of Pi is achieved
when/if it is connected to k other vertices, all of degree k = 1, all among top k in the list of vertices
ordered by their differential expression (i = k). In this case, such value of Pk = mini Pi can be

approximated (disregarding e−λu,k ≈ 1 and αu,k ≈ 1 when λu,k = k2

2m ≪ 1) as Pk ≃
[

k2/ (2m)
]k

/k!
that even for moderate values of k is geometrically smaller than 1/ (2m). More informally, vertices
with higher degrees can potentially achieve much more striking (with respect to the RGGED null
model) connectedness to the sets of other vertices as compared to the vertices with smaller numbers
of neighbors in the graph.

To study this bias, vertices (DEGs) are randomly and uniformly ordered and values of mini Pi

estimated. Figure 2 shows vertex degree averaged over 104 random orders and as a function of
WAP score rank. There is a clear correlation between WAP score rank and vertex degree, vertices
with large degrees being more likely to yield small values of mini Pi.

While clearly visible with WAP score ranks, bias by degree does not result in very large difference
of mini Pi values on average. This is shown with Figure 3, which displays values of mini Pi averaged
over the same 104 random orders and as a function of vertex degree k. Average values vary by a
factor 3 to 5 from k = 1 to k ≃ 4000. Further estimation of these factors is provided next.

3.2 Poisson model to study bias by degree

Bias of mini Pi by vertex degree was illustrated by randomly and uniformly ordering DEGs. While
this model does not preserve co-expression between genes, it is very general, i.e. data set indepen-
dent. It also has the advantage of enabling fast simulations and exact calculation of average mini Pi

values.

When considering random uniform ordering of DEGs and the average value of mini Pi over orders,
the exact sequence of DEG degrees no longer matters. The probability that a vertex of degree k
connects to any DEG simply becomes k/n where n is the total number of DEGs. Each potential
connection can now be seen as a Bernoulli random variable of parameter p = k/n ≪ 1. The

5



Enhancing reproducibility of gene-expression analysis with known protein functional relationships: the concept of well-associated protein.

Supplementary material. JR Pradines, V Farutin, NA Cilfone, A Ghavami, E Kurtagic, J Guess, AM Manning & I Capila

Figure 4: (a) Approximation of mini Pi averaged over 104 random DEG orders (crosses) with
simulations based on a Poisson model (dots). (b) Relative difference is defined as the ratio of
absolute value difference between the two methods to their average.
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attachment Xi of a vertex of degree k to the top i DEGs is therefore modeled as the sum of i
Bernoulli variables of same parameter p. This sum has probability generating function:

UXi
(t) = (1− p (1− t))i (2)

Because p≪ 1, UXi
(t) can be approximated with the probability generating function of a Poisson

distribution:

log (UXi
(t)) = i log (1− p (1− t)) ≃ −λi (1− t) with λi = ip = ik/n (3)

This means that the following Poisson p-value

Pr (Xi ≥ x) = e−λi

i
∑

y=x

(λi)
y

y!
(4)

is equivalent to edge-count probability Pj,i (if kj = k) but only in the context of averaging over
random uniform DEG orders. The advantage of the above model is not only to simplify calculation
of attachment p-values but also that it allows for fast simulation: randomly select k indices between
1 and n, sort them in increasing order i1 < . . . < ij < . . . < ik and the best attachment is
minj Pr

(

Xij ≥ j
)

. All Poisson p-values can be pre-computed once in O (nk). The estimation of
average attachment p-value with N simulations can then be done in O (Nk log k), where k log k
accounts for sorting of ij values.

Panel (a) of Figure 4 visually illustrates that simulations with the Poisson model seem to provide
good approximations of average mini Pi values, except for very large degrees k. Panel (b) provides
a more quantitative assessment. The absolute value of the difference between the two estimates of
average mini Pi over 104 random orders is divided by the average of the two estimates and displayed
as a function of vertex degree k. One can see that relative differences based on 104 simulations
are of the order of 1% when k ≤ 500. This result is in agreement with the hypothesis that the
Poisson model provides good approximations of average mini Pi values when DEGs are randomly
and uniformly ordered. Under the Poisson model it is also possible to exactly estimate values
〈mini Pi〉 of average mini Pi.
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3.3 Exact calculation of 〈mini Pi〉 under the Poisson model

Figure 5: Illustration of the calculation of 〈mini Pi〉 for k = 2. Left: mini Pi occurs at position i1
and for the first edge. For this to happen, the second edge must occur at position i2 ≥ b2, where
b2 is the smallest value of i such that Pr (Xb2 ≥ 2) > Pr (Xi1 ≥ 1). Bound b2 therefore determines
the number of graphs for which mini Pi can occur at i = i1. Right: for mini Pi to occur at position
i2 and for the second edge, the first edge must occur at i ≥ b1, where b1 is the smallest integer such
that Pr (Xb1 ≥ 1) > Pr (Xi2 ≥ 2).
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For vertex degree k = 1, the average value of mini Pi is

〈

min
i

Pi

〉

=
1

n

n
∑

i=1

Pr (Xi ≥ 1)

=
1

n

n
∑

i=1

(

1− e−i/n
)

=
e−1/n

n

1− e−1

1− e−1/n
.

For k ≥ 2, calculation of 〈mini Pi〉 becomes more complex. This is first illustrated with k = 2 and
Figure 5. The strategy consists in enumerating the number w of graphs for which Pr (Xix ≥ x)
corresponds to mini Pi for x = 1 or 2 and for all possible edge positions ix. The left panel of
Figure 5 illustrates the case where mini Pi occurs at position i1 and for the first edge. For i1 to
correspond to a minimum, the second edge must occur at position i2 ≥ b2, where b2 is the smallest
integer such that Pr (Xb2 ≥ 2) > Pr (Xi1 ≥ 1). Because Pr (Xi ≥ 2) is a monotonic function of i,
bound b2 can be efficiently found via binary search in O (log n). Note that if binary search returns
b2 > n − 1, it means that i1 cannot correspond to mini Pi, and the number of graphs realizing
a minimum at i1 is then w = 0. Otherwise, the number of graphs is w = n + 1 − b2, and the
contribution to 〈mini Pi〉 via i1 is wPr (Xi1 ≥ 1). The right panel of Figure 5 depicts the case
where mini Pi occurs at position i2 and for the second edge. For the minimum to occur at i2, the
first edge must occur at position i1 with b1 ≤ i1 < i2 and where b1 is the smallest integer such
that Pr (Xb1 ≥ 1) > Pr (Xi2 ≥ 2). The value of b1 can be found via binary search in O (log n). The
contribution of i2 to 〈mini Pi〉 is then wPr (Xi2 ≥ 2) with w = i2− b1. Performing these operations
for all possible values of i1 and i2, and dividing by the sum of weights w yields 〈mini Pi〉.
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For k > 2 the problem is summarized by the following array:

1 Pr (X1 ≥ 1)
2 Pr (X2 ≥ 1) Pr (X2 ≥ 2)
...

...
k Pr (Xk ≥ 1) . . . Pr (Xk ≥ j) . . . Pr (Xk ≥ k)
...

...
i Pr (Xi ≥ 1) . . . Pr (Xi ≥ j) . . . Pr (Xi ≥ k)
...

...
n Pr (Xn ≥ 1) . . . Pr (Xn ≥ j) . . . Pr (Xn ≥ k)

The array can be computed in approximately O (nk) by utilizing the fact that Pr (Xi ≥ j − 1) =
Pr (Xi ≥ j) + e−λiλj−1

i / (j − 1)!. Binary search can be utilized within columns since values are
strictly increasing when going down.

Say event ij (jth edge at position i) yields mini Pi. As previously illustrated for k = 2, this can
happen only under certain conditions. Going left (j ← j − 1) and up (i ← i− 1) we must be able
to find a bound bj−1 on i: the largest positive integer such that Pr

(

Xbj−1
≥ j − 1

)

> Pr
(

Xij ≥ j
)

.
If such a bound does not exist, then ij cannot realize a minimum. Bounds need to be found for
j − 1, j − 2, . . . 1. Likewise, going right (j → j + 1) and down (i → i + 1), we look for bounds
bj+1, bj+2, . . . , bk. Again, if they do not exist, then ij cannot realize a minimum. Because of
monotonicity within columns, binary search is utilized and the cost is O (log n) for each bound.
So, finding all bounds is O (nk log n). Given ij , estimated bounds yield a set of conditions on edge
positions Il:

I1 ≥ b1, I2 ≥ b2, . . . , Ij−1 ≥ bj−1, Ij = ij , Ij+1 ≥ bj+1, . . . , Ik ≥ bk
with I1 < I2 < . . . < Ij−1 < ij < Ij+1 < . . . < Ik

. (5)

The remaining task is then to efficiently enumerate the number of graphs which satisfy these
conditions.

As a first example, consider bounds for minimum at i1 with k = 3, b2 = 1, b3 = 4 and n− i1 = 8,
and where values of b2 and b3 are relative to i1. Enumeration is summarized by the following array:

3 7 12 18 25
1 2 3 4 5 6 7
b2 b3

f (2, 4) f (2, 5) f (2, 6) f (2, 7) f (2, 8)
f (1, 1) f (1, 2) f (1, 3) f (1, 4) f (1, 5) f (1, 6) f (1, 7)

b2 b3

Enumeration goes from left to right and bottom to top, calling f (j, i) the total number of graphs,
given i1, that can be created up to position i from b2 − 1 and with j edges. For j = 2 and i = 1
there is only one graph. For j = 2 and i = 2 there are two graphs... up to i = 4 there are 4 graphs
with only one edge (j = 2). But then the third edge might appear at i = 4 = b3, if so the second
edge must have been made before, so that the number of possibilities is f (3, 4) = f (2, 3) = 3. At
i = 5 the third edge might also appear, in which case the number of possible graphs is f (2, 4) and
the total number of graphs is f (3, 5) = f (3, 4) + f (2, 4).

As a second example, consider now the same problem with one more edge and bound: k = 4,
b2 = 1, b3 = 4, b4 = 6 and n− i1 = 9:
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7 19 37 62
3 7 12 18 25

1 2 3 4 5 6 7
b2 b3 b4

More generally, the total number f (j, i) of graphs which can be created up to position i from b2−1
and with j edges is given by the recurrence

f (j, i) = f (j, i − 1) + f (j − 1, i − 1) , with f (1, i) = i and f (j, i) = 0 if i ≤ bj . (6)

Applying it up to i = n− b2 +1 yields the number wr of possible graphs on the right of position i.
The same method is utilized to calculate the number wl of graphs on the left by replacing the first
bound with b1 and n with i, and the number of graphs is w = wlwr.

Figure 6: Comparison of calculated (c) and simulated (s) average values of mini Pi under the
Poisson model (106 simulations for each vertex degree k and n = 104). (a) visual comparison. (b)
relative error r = |c− s| /c as a function of vertex degree k.
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Figure 6 compares values of average mini Pi values estimated with 106 simulations of the Poisson
model (s) for each vertex degree k to values calculated (c) by enumerating graphs. Both sets of
values are in good agreement, since the relative error r = |s− c| /c (panel (b)) tends to be less than
10−3, which is the expected standard deviation for estimations based on 106 simulations.

Exact calculation of 〈mini Pi〉 under the Poisson model is approximately O
(

n2k2
)

and thus becomes
prohibitive for n > 100 and k > 100.

There is another way of exactly calculating the number w of graphs given bounds b1, b2, . . . , bk.
This method is based on combinatorics and briefly explained as follows. Call zl the number of
edges between bounds bl and bl+1, with l < k. Call F (l, j) the number of possible graphs with j
edges and with l bounds after b1, i.e. up to bl+1 with bk+1 = n. Then, it can be shown that

F (l, j) =
∑

z1 + . . .+ zl = j
0 ≤ z1 + . . . + zr ≤ r

1 ≤ r ≤ l − 1

l
∏

r=1

(

br+1 − br
zr

)

. (7)
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Quantities F (l, j) can then be shown to obey the following recurrence relation:

F (l, j) =

j
∑

r=0

F (l − 1, j − r)

(

bl+1 − bl
r

)

. (8)

Because there must be at least one edge to a vertex in in {bk, . . . , n}, the total number of graphs
given bounds b1, . . . , bk is:

w (k) =
k

∑

r=1

F (k − 1, k − r)

(

n− bk
r

)

. (9)

It can be shown calculation of w (k) is of the order of O
(

k3
)

.

Figure 7: Linear model for 〈mini Pi〉 correction based on 106 simulations of the Poisson model.
(a) Utilized degrees k (dots) and linear models (lines) of log (〈mini Pi〉) as a function of log k for
n = 1000, 2000, . . . , 20000. (b) values of linear model R2 as a function of n (dots) and numbers of
different degrees k used for fitting.
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3.4 Simple model of correction factor

Since computation of exact values of 〈mini Pi〉 under random and uniform ordering of DEGs remains
computationally expensive for large values of k even under the Poisson model (O

(

n2k2
)

or O
(

k3
)

),
the choice is made to provide a simple linear model approximation, which is estimated with 106

simulations of the Poisson model for each utilized pair (n, k).

Values of n vary from 1,000 to 20,000 by step of 1,000. Values of k are 1,2,3,4 and then are based
on a geometric sequence of factor ρ = 1.5, i.e. ki+1 = ⌊ρki⌋. Given n, only values of k such that
k/n < 0.1 are utilized, so that numbers k values vary from 12 to 19.

Panel (a) of Figure 7 shows utilized values of k and n, and displays estimated values of 〈mini Pi〉
(dots). Lines correspond to fitted linear models of log (〈mini Pi〉) as a function of log k. Estimated
parameter values are given in table 1. Panel (a) of Figure 7 suggests that linear models provide
good approximations of log (〈mini Pi〉).
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Table 1: Parameters of fitted linear models of log (〈mini Pi〉) as a function of log k and for different
values of n.

n α β R2 max k
1000 -0.1779 -1.048 0.9857 94
2000 -0.1799 -1.049 0.9896 141
3000 -0.1778 -1.056 0.9890 211
4000 -0.1742 -1.064 0.9873 316
5000 -0.1699 -1.074 0.9841 474
6000 -0.1720 -1.071 0.9865 474
7000 -0.1734 -1.068 0.9878 474
8000 -0.1687 -1.079 0.9845 711
9000 -0.1699 -1.077 0.9858 711

10000 -0.1709 -1.075 0.9872 711
11000 -0.1658 -1.087 0.9825 1066
12000 -0.1668 -1.085 0.9843 1066
13000 -0.1675 -1.083 0.9849 1066
14000 -0.1680 -1.082 0.9859 1066
15000 -0.1686 -1.081 0.9864 1066
16000 -0.1634 -1.094 0.9817 1599
17000 -0.1640 -1.093 0.9825 1599
18000 -0.1645 -1.092 0.9832 1599
19000 -0.1649 -1.091 0.9839 1599
20000 -0.1656 -1.090 0.9845 1599

This is confirmed by panel (b), which shows that values of R2 are all greater than 0.981. Note
that for n ≥ 2000 values of R2 follow a regular pattern when n or the number m of utilized vertex
degrees increase. Increasing m decreases R2, i.e. introduces more deviation from a linear model.
However, at a given value of m, increasing n increases R2. From this one concludes that deviation
from a linear model is caused by large values of k/n.

Based on the above it is reasonable to utilize the linear model estimated for n = 2000. This model
provides conservative (small) values of log (〈mini Pi〉) for large values of k. Values of 〈mini Pi〉
estimated under the linear model approximate values that are expected under random uniform
order of the DEGs. Therefore, an actual observed value of mini Pi can be corrected as follows

min
i

Pi ← min
i

Pi × c (k) /c (1) , with c (k) =
(

kα × eβ
)−1

,

α = −0.1799, and β = −1.056.
(10)

Values of 〈mini Pi〉 estimated with 104 random uniform orders of DEGs and after correction (10)
are displayed with blue dots as a function of vertex degree k in Figure 8. Unlike values without
correction (red crosses), corrected values change very little with vertex degree k. One can discern
the slight over-correction for values of k near 500, which is caused by the approximation via a linear
model.

3.5 Effect of the correction for permuted and original sample annotation

To demonstrate numerically the utility of the correction factor, average ranks of mini Pi with and
without correction have been calculated for all NCBI-GEO datasets that were analyzed herein
(as described in Sections 4 and 5) under the null model of randomizing the assignment of sample
annotation to gene expression profiles. Unlike the model randomizing order of DEGs, the random-
ization of sample annotation preserves correlation structure of gene expression data and represents
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Figure 8: Values of 〈mini Pi〉 estimated with 104 random uniform orders of DEGs with (blue dots)
or without (red crosses) correction (10) and as a function of vertex degree k.
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permutation test under the assumption of interchangeability of the individual samples. Therefore,
average ranks of genes or vertices tested under this permutation are expected to be close to 0.5
(for ranks scaled to be between 0 and 1) for well-behaving methods and deviations from this value
indicate genes or vertices that tend to be scored higher or lower than average in the comparisons
of random sets of samples.

Figure 9 a) depicts average ranks of genes and vertices across 22 NCBI-GEO datasets evaluated
in this study comparing random groups of samples in each dataset (104 sample permutations per
dataset) binned by their degree on the network. Genes and vertices were ranked both by their
differential expression scores regardless of their network connectivity (DEG) and by mini Pi with
and without correction for the vertex degree using the model introduced above. Ranks of zero and
one represent respectively the most and the least significant mini Pi or DEG scores. As expected,
average ranks of genes scored only by their differential expression (DEG) between random groups
of samples are close to 0.5 regardless of their degree in the pathway network. Genes (vertices)
ranked by their mini Pi without the correction for vertex degree manifest clearly discernible bias
with the vertices of degree k = 1 on average falling near the least significant tertile or quartile of
the ranked list, while the vertices with high numbers of neighbors on average falling near the most
significant tertile or quartile. The correction for vertex degree markedly alleviates this bias with
the average ranks now falling within 0.45 – 0.55 range regardless of the vertex degree so that the
ranking of the genes by their mini Pi when comparing random sets of samples is far less influenced
by their degree.

Despite this systematic effect of vertex degree on average rank of mini Pi value under the null
model of randomly scrambled sample annotation, the genes that are scored the most prominently
in the original comparison of healthy and diseased samples in the NCBI-GEO datasets analyzed
in this study tend to appear in approximately the same order when sorted by the corrected and
uncorrected values of mini Pi. Figure 9 b) depicts the ranks of mini Pi as ordered by their corrected
(Y axis) vs. uncorrected (X axis) values. Ranks of zero and one represent the lowest and the
highest values of mini Pi respectively. Ranks shown in Figure 9 b) are pooled over 22 NCBI-GEO
datasets used in this publication – the top 1-10% of the most striking WAPs appear nearly in the
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Figure 9: Ranks of mini Pi with and without correction for degree bias in NCBI-GEO datasets.
Ranks of zero and one correspond to the lowest and highest values of mini Pi respectively. Error bars
represent standard deviations across all datasets of the within-dataset averages of ranks binned by
their degree. (a) Average ± standard deviation of gene ranks binned by vertex degree for two-groups
comparison with randomized sample annotation (104 permutations). (b) Ranks of corrected versus
uncorrected mini Pi pooled over the same datasets with the original sample annotation. Lighter
color indicates higher density of the points in the plot.
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same order regardless of whether corrected or uncorrected mini Pi are used to sort them.

4 Systemic Sclerosis data sets

Four published studies, where gene expression in skin samples is compared between Systemic Scle-
rosis (SSc) patients and non-SSc subjects, were utilized: GSE58095 [1] (1), GSE32413 [25] (2),
GSE9285 [23] (3) and GSE45485 [15] (4).

4.1 Overlap statistics for WAP scores and DEG scores

Overlap statistics maxR and AUC for DEG scores, WAP scores and WAP scores with randomly
rewired networks are displayed in Figure 10 for the six resulting pairs of data sets. Both statistics
maxR and AUC are higher with WAP scores as compared to DEG scores. WAP scores based on
randomly rewired networks tend to have lower reproducibility than DEG scores.

Overlap profiles over the six data set pairs are displayed in Figure 11. Solid lines correspond to
DEGs ordered by descending values of absolute t-statistic (SSc versus control). Reproducibility of
WAP scores (blue) is higher than that of DEG scores. Reproducibility of WAP scores obtained with
randomly rewired protein networks (brown) tends to be lower than that of DEG scores. Dashed
lines correspond to DEGs ordered by the average of two ranks: that of the absolute value of the t-
statistic and that of the absolute value of the log-ratio (fold change) between the two group means.
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Figure 10: Overlap statistics maxR and AUC for WAP scores, DEG scores and WAP scores with
randomly rewired networks and over six pairs of data sets (four SSc studies).
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As was already shown in [22], taking into account fold change tends to improve reproducibility of
DEG scores: green dashed lines tend to be above solid ones. Notice that, qualitatively, WAP scores
also tend to become more reproducible when taking into account fold change (blue dashed lines),
and their reproducibility remains higher than that of DEGs.
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Figure 11: Overlap profiles for six pairs of SSc data sets. Blue is for WAP scores, green for DEG
scores and brown for WAP scores with randomly rewired protein networks. Solid lines correspond to
DEGs ranked by the absolute value of a t-statistic for SSc versus control. Dashed lines correspond
to DEGs ordered by the average of absolute t-statistic value and fold change ranks.
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4.2 Effect of edge confidence level

Figure 12: Overlap statistic maxR for WAP (blue) and DEG (green) scores as a function of lower
bound θ on edge-confidence level c of utilized STRING edges. Results are displayed for six pairs
of SSc data sets.
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Interactions in STRING [13, 39] are provided with a confidence level 0.15 ≤ c ≤ 1 [41], where
1 corresponds to the highest likelihood of an interaction. The default utilized protein network is
extracted from STRING by keeping only interactions with c ≥ θ and θ = 0.7. Figures 12 (statistic
maxR) and 13 (statistic AUC) show that superior robustness of WAP scores versus DEG scores is
robust to changing the value of θ, for the considered six pairs of SSc data sets.

The dependency of reproducibility metrics maxR and AUC on the value of θ used as a threshold
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Figure 13: Overlap statistic AUC for WAP (blue) and DEG (green) scores as a function of lower
bound θ on edge-confidence level c of utilized STRING edges. Results are displayed for six pairs
of SSc data sets.
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appears to be dependent on the datasets compared. For instance, for the three comparisons in-
volving dataset GSE9285 (right columns in Figures 12 and 13) the values of both AUC and maxR
increase with the increase in θ from about 0.2 to about 0.8, while for the remaining three pairs
of datasets (left columns in Figures 12 and 13) the corresponding change is less pronounced or in
the opposite direction. (The drastic decrease in AUC and maxR values at the highest end of the
θ values regardless of the datasets involved likely reflects rapid change of the network size where
change from θ = 0.9 to 0.95 corresponds to approximately five-fold decrease in the number of edges
in the graph – from about 200K to 40K edges respectively.)
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4.3 Study of co-expression effect on WAP scores and their reproducibility

4.3.1 Introduction

Part of the evidence accumulated for interactions represented in STRING [41] is based on co-
expression of genes across gene-expression data sets deposited in the Gene Expression Omnibus
database [2]. It is informative to examine whether such information plays a crucial role in enhancing
reproducibility of WAP scores versus DEG scores or not. It is shown below that, while co-expression
is likely to contribute to WAP score robustness, it is unlikely to be a determinant factor. Evidence
is provided by utilizing data set GSE58095 [1]: comparison of skin samples of SSc patients and
non-SSc subjects.

4.3.2 Co-expressed gene pairs and edges in STRING

The utilized STRING network is that with edges of confidence level c ≥ 0.7. Genes are restricted
to those represented both in GSE58095 and the protein network. The resulting network has n =
14, 439 gene products and m = 292, 128 edges. All n (n− 1) /2 gene pairs are ordered by decreasing
absolute value of covariance across GSE58095.

Figure 14: Representation of STRING edges among the most co-expressed gene pairs in GSE58095.
(a) Representation of any STRING edge. (b) Edges are restricted to those of the top 418 WAPs in
GSE58095 (PFP < 0.1).
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Panel (a) of Figure 14 shows that ordering gene pairs by decreasing covariance (blue) yields higher
representation of STRING edges than just choosing random pairs of genes (orange). This repre-
sentation is however in general below 2%. Note that the maximum value of 6% is actually obtained
with the first 17 most co-expressed pairs which overlap with 1 edge of STRING (1/17 ≃ 0.06).
Overall, one can state that the most co-expressed pairs of genes in GSE58095 have low representa-
tion as interactions in STRING (below 2%). In panel (b) of Figure 14, STRING edges are restricted
to those involving any of the top 418 WAPs for SSc vs. control in GSE58095 (PFP values less than
0.1). The most co-expressed pairs of genes (blue) have higher representation in the edge set than
random pairs of genes (orange). But again, this representation is low: less than 0.9%.
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Figure 15: Distributions of overlap statistic maxR over 1,000 random partitions of GSE58095 in
two data sets and after removing the top x% edges of STRING ordered by decreasing co-expression
in GSE58095. Blue if for WAP scores and green for DEG scores. Vertical bars show 99% bootstrap
confidence intervals for median values of maxR.
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4.3.3 Removal of edges having highly co-expressed genes

In order to test the effect of co-expression in GSE58095 on higher reproducibility of WAP scores
versus DEG scores, edges of the protein network are ranked by decreasing co-expression (absolute
value of covariance over GSE58095) and the top x% edges are removed. Reproducibility of DEG
and WAP scores is assessed by the distributions of overlap statistics over 1,000 random partitions of
GSE58095 in two data sets. Results are presented in Figure 15 for statistic maxR and in Figure 16
for statistic AUC. Vertical bars display 99% confidence intervals of median values (maxR or AUC),
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Figure 16: Distributions of overlap statistic AUC over 1,000 random partitions of GSE58095 in two
data sets and after removing the top x% edges of STRING ordered by decreasing co-expression in
GSE58095. Blue if for WAP scores and green for DEG scores. Vertical bars show 99% bootstrap
confidence intervals for median values of AUC.
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as estimated by bootstrapping with 106 samples. One can see that while removing the most co-
expressed network edges reduces reproducibility of WAP scores, it still remains on average higher
than that of DEG scores, even after removing almost 105 edges (x = 30%).

4.3.4 Conclusions

Pairs of genes which are co-expressed across GSE58095 represent only a small fraction (less than 2%)
of STRING edges and an even smaller fraction (less than 0.9%) of edges of significant WAPs for SSc
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versus control in this data set. It is therefore unlikely that co-expression over GSE58095 explains
the observed large proportion of significant WAP scores. Likewise, while removing the most co-
expressed pairs of genes from the protein network decreases the average WAP score reproducibility,
it still remains higher than that of DEG scores. Robustness of WAP scores is therefore likely to
result from the combination of several types of functional relationships within the protein network,
co-expression being only one of these.

4.4 Partitions of GSE58095

Reproducibility of DEG and WAP score rankings between random partitions of GSE58095 dataset
in two was evaluated for original and rewired STRING network as well as upon random addition
or removal of network edges and for the network filtered by edge confidence level. Figures 17 a)
and b) display distributions of overlap statistics maxR, left panel a), and AUC, right panel b),
for WAP scores (blue), DEG scores (green), WAP scores sorted by their PFP values (pink) and
WAP scores with randomly rewired networks (brown), as estimated with 1,000 random partitions
of GSE58095 in two data sets. For randomly rewired networks (brown) different styles of the curves
represent different extents of rewiring. Solid brown curves (10x) correspond to the WAPs obtained
for completely rewired protein interaction networks (that according to Figure 1 show negligible edge
overlap with the edges in the original network after 10m attempts at rewiring edge pairs, where
m is the total number of edges in the network, i.e. the size of the graph). Brown curves formed
by the long dashes, short dashes and dots depict reproducibility results for WAPs obtained on less
extensively rewired protein interaction networks, that on average preserve 20%, 50% and 80% of the
original edges respectively (and corresponding to the numbers of attempted rewiring of edge pairs
as indicated in Figure 1 by long dashes, short dashes and dotted lines of varying shades of blue).
Such limited amount of rewiring can be seen as an approximation for simultaneous introduction
of controlled fraction of false negatives (removed original edges) and false positives (newly formed
interactions between randomly chosen nodes in the network) in the protein interaction network.

On average, WAP scores yield better (larger) overlap statistics than DEG scores, and WAP scores
with completely rewired networks (10x, solid brown curves) yield low reproducibility, lower than
that obtained with DEG scores. On the other hand, WAPs obtained for the networks with moderate
amount of rewiring (as an approximation for simultaneous introduction of randomly chosen false
negative and false positive edges in protein interaction graph) appear to be fairly resilient to this
kind of limited perturbation. When on average 80% of edges are preserved upon rewiring (brown
dotted curves) the reproducibility of the resulting WAPs is roughly comparable to that of the
WAPs computed on the original network. For the rewiring that preserves on average 50% of the
original edges (that can be seen as replacing half of the randomly chosen edges in the network with
same number of randomly chosen false positive connections) – brown curves formed by the short
dashes – the reproducibility of the resulting WAPs is qualitatively better than that of the DEGs
and worse than that of WAPs calculated on the original network. And once only 20% of the original
edges remain intact upon rewiring (long brown dashes) the reproducibility becomes approximately
comparable to or slightly worse than that of DEGs and marginally better than that of the WAPs
obtained on fully rewired network. Lastly, ordering WAPs by their PFP values in the examples
shown in Figure 17 panels a) and b) (pink curves) virtually did not impact their reproducibility
as quantified by AUC (right panel) and moderately decreased it when quantified by maxR (left
panel).

While partial rewiring of pathway network can be viewed as adding controlled amount of noise to
the network by simultaneously introducing approximately the same amount of false negatives (by
breaking existing pairs of edges selected at random) and false positives (by reconnecting resulting
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Figure 17: Distributions of maxR (left) and AUC (right) overlap statistics over 1,000 random
partitions of GSE58095 in two data sets. (a)-(b): reproducibility of DEG and WAP score rankings
for original and rewired STRING networks. (c)-(d): medians and 99% confidence intervals of
overlap statistics for STRING network with randomly added (FP) and removed (FN) edges. (e)-
(f): medians and 99% confidence intervals of overlap statistics for STRING network filtered by
edge confidence level, θ. See text for further details.
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stubs to form new edges not existing in the network yet), it is also instructive to compare repro-
ducibility of the WAP scores’ rankings when only false positives (new edges between randomly
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chosen vertices) or only false negatives (breaking randomly selected edges) are introduced. Pan-
els c) and d) in Figure 17 summarize these results for 1,000 random partitions of GSE58095 into
two sets of samples as described above. For every partition of this dataset in two, random sets of
edges were added to or removed from the STRING network and the result was used to obtain WAP
scores and rank network vertices for each of the two subsets of the data. Reproducibility of the
resulting two lists of genes ranked by their WAP scores has been assessed by maxR, Figure 17 c),
and AUC, Figure 17 d). Horizontal axis represents fraction of edges randomly added to or removed
from the STRING network. Overlap between gene lists sorted by their DEG scores are shown for
reference (green). Consistently with the results presented above in Figure 17, panels a) and b),
they display lower overlap than when scored by WAP and, as expected, do not change with the
fraction of the edges added to or removed from the network.

Interestingly, the reproducibility of the WAPs trends differently with the fraction of edges added
at random (false positives, FP, red in Figure 17 c) and d)) from how it changes with the fraction
of edges randomly removed from the network (false negatives, FN, brown in Figure 17 c) and d)).
Although median (over 1,000 permutations, error bars represent 99% confidence intervals estimated
by 104 bootstraps) values of both maxR and AUC decrease with the increase of noise in the network
both when false positives and false negatives are introduced to the network, such decrease is far more
profound for the increase in the fraction of false negatives (randomly removed edges) as compared
to that due to false positives (randomly added edges). This suggests that reproducibility of WAP
observations is less sensitive to the amount of false positives than to the amount of false negatives
introduced to the network and is consistent with the results reported in the Section 6 below where
survey of 23 pathway networks provided by [17] shows on average greater reproducibility of WAP
findings for the larger networks.

Random partitions of GSE58095 were further used to assess the impact of edge confidence level,
θ on the reproducibility of the rankings of WAP scores. Figures 17 e) and f) represents (blue
color) median and 99% CI of maxR and AUC respectively for the overlap between WAP findings
in 1,000 random partitions of GSE58095 as function of confidence threshold θ used to subset edges
in STRING network. For reference, the reproducibility of DEG scores as quantified by maxR and
AUC for random partitions of GSE58095 is shown in Figures 17 e) and f) as well (green). Values of
maxR achieve broad maximum for values of 0.5 . θ . 0.7 while AUC values gradually increase with
the decrease in θ (and increase in the resulting network size) at the lower end of the range of the
values of θ. For both maxR and AUC the differences between their highest and lowest values across
the range of edge confidence scores evaluated here (except for the high end of θ resulting in markedly
sparse networks as explained above in Section 4.2) are small comparing to the difference between
their values for WAPs and DEGs. Depending on the metric selected for quantifying reproducibility
of the WAP score rankings, such evaluation may suggest either thresholding edge confidence score
at the level corresponding to the maximum of maxR (e.g. θ ≈ 0.6) or using the entire set of edges
in the network regardless of their confidence score as maximizing AUC for random partitions of
the data. Such an assessment might be useful to conduct when presented with a new dataset from
a transcriptional profiling study and/or a new compendium of PPI data that includes quantitative
measure of edge confidence/reliability/etc.

5 Cancer, endometriosis and psoriasis data sets

Figures 18, 19, 20, 21, 22, and 23 display distributions of overlap statistics maxR and AUC over
1,000 random partitions of each data set in two. WAP scores for disease versus control (blue) are on
average more reproducible than DEG scores (green) and than WAP scores obtained with randomly
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rewired networks (brown). Brief descriptions of the eighteen data sets are as follows.

1. GSE41258 [35]: colon cancer, 53 normal samples and 55 tumors

2. GSE44076 [9]: colon cancer, 97 normal samples and 97 tumors

3. GSE44861 [33]: colorectal cancer, 50 normal samples and 48 tumors. Notice that, for this
data set WAP scores with the actual protein network yield reproducibility similar to that of
WAP scores with randomly rewired networks. Reproducibility of DEG scores is also very low
(maxR ≃ 0.1)

4. GSE51981 [40]: 72 endometriosis samples and 33 control samples

5. GSE13195 [43]: gastric cancer, 25 normal samples and 25 tumors

6. GSE19826 [42]: gastric cancer, 12 normal samples and 12 tumors

7. GSE27342 [11]: gastric cancer, 75 normal samples and 75 tumors

8. GSE30727 [14]: gastric cancer, 30 normal samples and 30 tumors

9. GSE63089 [44]: gastric cancer, 45 tumors and 43 normal samples

10. GSE79973 [34]: gastric cancer, 10 normal samples and 10 tumors

11. GSE36376 [21]: hepatocellular carcinoma, 193 normal liver samples and 240 tumors

12. GSE19188 [16]: non-small-cell lung carcinoma, 15 normal samples and 17 tumors

13. GSE43458 [19]: lung adenocarcinoma, 38 tumors and 29 normal samples

14. GSE30784 [6]: oral squamous cell carcinoma, 165 tumors and 35 control samples

15. GSE13355 [38]: psoriasis, skin samples, 120 no-lesion samples and 58 lesions

16. GSE30999 [37]: psoriasis, skin samples, 81 no-lesion samples and 83 lesions

17. GSE34248 [4]: psoriasis, skin samples, 14 no-lesion samples and 14 lesions

18. GSE41662 [5]: psoriasis, skin samples, 22 no-lesion samples and 24 lesions
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Figure 18: Distributions of maxR (left) and AUC (right) overlap statistics over 1,000 random
partitions of a data set in two. Green is for DEG scores, blue for WAP scores, brown for WAP
scores with randomly rewired protein networks and pink for WAP PFP values. Vertical lines display
99% confidence intervals (bootstrap) of median values. Dashes represent results for protein network
randomly rewired to preserve on average approximately 50% of the original edges.
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Figure 19: Distributions of maxR (left) and AUC (right) overlap statistics over 1,000 random
partitions of a data set in two. Green is for DEG scores, blue for WAP scores, brown for WAP
scores with randomly rewired protein networks and pink for WAP PFP values. Vertical lines display
99% confidence intervals (bootstrap) of median values. Dashes represent results for protein network
randomly rewired to preserve on average approximately 50% of the original edges.
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Figure 20: Distributions of maxR (left) and AUC (right) overlap statistics over 1,000 random
partitions of a data set in two. Green is for DEG scores, blue for WAP scores, brown for WAP
scores with randomly rewired protein networks and pink for WAP PFP values. Vertical lines display
99% confidence intervals (bootstrap) of median values. Dashes represent results for protein network
randomly rewired to preserve on average approximately 50% of the original edges.
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Figure 21: Distributions of maxR (left) and AUC (right) overlap statistics over 1,000 random
partitions of a data set in two. Green is for DEG scores, blue for WAP scores, brown for WAP
scores with randomly rewired protein networks and pink for WAP PFP values. Vertical lines display
99% confidence intervals (bootstrap) of median values. Dashes represent results for protein network
randomly rewired to preserve on average approximately 50% of the original edges.
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Figure 22: Distributions of maxR (left) and AUC (right) overlap statistics over 1,000 random
partitions of a data set in two. Green is for DEG scores, blue for WAP scores, brown for WAP
scores with randomly rewired protein networks and pink for WAP PFP values. Vertical lines display
99% confidence intervals (bootstrap) of median values. Dashes represent results for protein network
randomly rewired to preserve on average approximately 50% of the original edges.
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Figure 23: Distributions of maxR (left) and AUC (right) overlap statistics over 1,000 random
partitions of a data set in two. Green is for DEG scores, blue for WAP scores, brown for WAP
scores with randomly rewired protein networks and pink for WAP PFP values. Vertical lines display
99% confidence intervals (bootstrap) of median values. Dashes represent results for protein network
randomly rewired to preserve on average approximately 50% of the original edges.
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Figure 24: Summary of distributions of overlap statistics maxR (top) and AUC (bottom) differences
between WAP and DEG scores over 1,000 random partitions and for 18 data sets. Paired values
(WAP - DEG) over each partition were utilized to estimate distributions.
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6 Reproducibility of WAP findings across pathway networks

Recent publication by Huang et al. [17] made several datasets representing PPI readily available
through NDEx [30, 26, 29] that were used to evaluate reproducibility of the WAP findings across
wide variety of PPI network sizes and contents. Specifically, from the NCBI-GEO datasets described
above, the following have been selected as multiple representations of the same disease vs. healthy
comparison:

• colon cancer: GSE41258 and GSE44076

• gastric cancer: GSE13195, GSE19826, GSE27342, GSE30727, GSE63089 and GSE79973

• psoriasis: GSE13355, GSE30999, GSE34248 and GSE41662

• systemic sclerosis: GSE58095, GSE32413, GSE9285 and GSE45485

For each of these four sets of NCBI-GEO datasets, genes were ranked by their DEG and WAP scores
(prior to the correction for the degree bias) for each of the networks deposited to the NDEx by
Huang et al. (as listed under “Deposited Data” in “Key Resources Table” in [17]). Then, for each
of these four diseases, for each pair of the datasets representing the same disease the reproducibility
of the gene ranking by their DEG and WAP scores was compared for the subset of the genes present
in both datasets and on a given network using maxR and AUC metrics.

Results of this assessment are summarized in Figure 25 as average difference between maxR for
DEGs and WAPs: maxR (WAP )−maxR (DEG) (and similarly, AUC (WAP )−AUC (DEG)) for
each of the four diseases evaluated herein per each PPI network analyzed. To account for a wide
range of the number of edges spanned by these networks: a) the values of maxR and AUC were
calculated over top 5% of the most highly scoring WAPs and DEGs in each case, and b) in case of
AUC, the overlap statistic was normalized to the number of genes involved in calculation so that
it assumes values within [0,1] interval. Horizontal dashes in the figure correspond to no difference
in maxR (or AUC) values between WAP and DEG score rankings.

Overall, across 16 datasets, four diseases and 23 PPI networks evaluated in this assessment re-
producibility of gene rankings by WAP scores tends to be higher than by DEG scores with the
values plotted spanning greater range of positive as compared to negative values. This tendency
is more pronounced for the networks with the larger number of edges. All but one average values
of maxR (WAP )−maxR (DEG) and AUC (WAP )−AUC (DEG) that are below zero (therefore
indicating higher reproducibility of DEG rankings than WAPs) have been observed for the networks
with . 3 × 105 edges. This suggests that higher volume of information encoded in PPI networks
tends to yield more reproducible findings by WAP methodology. This observation is consistent
with: a) the results reported above in Section 4.4 regarding greater impact of false negatives on the
reproducibility of WAP observations, and b) the findings in [17] concluding that “general tendency
is that performance scales with network size, suggesting that new interaction discovery currently
outweighs the detrimental effects of false positives”.
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Figure 25: Average and standard deviation of the WAP-DEG difference for overlap statistics (AUC
– top panel, maxR – bottom panel) among four diseases represented by multiple NCBI-GEO
datasets evaluated in this study: colon cancer (Col), gastric cancer (Gas), psoriasis (Pso) and
systemic sclerosis (SSc) across pathway networks evaluated and generated (PCNet and FCNet)
in [17]. Positive values on the y-axis correspond to higher reproducibility of WAP score rankings
between different datasets characterizing the same disease. The results for individual diseases are
plotted with a horizontal offset within each network size to decrease overplotting. See text for
further details.
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7 Ranking of WAPs and DEGs by differential expression prior

Recent publication by Crow and colleagues [10] has introduced ranking of genes on Affymetrix
Human Genome U133 Plus 2.0 Array by their frequency of passing cutoffs for differential expression
(BH-FDR, < 0.05; absolute log2 fold change, > 2) across large compendium of uniformly analyzed
gene expression data (> 600 datasets, > 27K samples) that spanned wide variety of biological
phenomena. Resulting empirical estimate of the prior probability of differential expression (DE)
of individual genes (termed “DE prior” by Crow and colleagues) was highly predictive of genes
passing above significance cutoffs in leave-one-out benchmarking performed in [10] yielding mean
area under the receiver operating characteristic curve (AUROC) of 0.83 ± 0.1.

In order to evaluate the capacity of DE prior for identifying significant WAPs, DE prior AUROC
values have been calculated for the significant WAPs (PFP < 0.05) and compared to the corre-
sponding DE prior AUROC values for the significant DEGs (BH-FDR < 0.05; absolute log2 fold
change > 2). Figure 26 represents graphically the results of this comparison across 22 NCBI-GEO
datasets evaluated in this study. Individual gene ranking by DE prior was provided by the sup-
plementary Dataset S2 from [10]. PFP values for WAPs have been calculated as described in the
subsection “The concept of well-associated protein” of the “Materials and methods” in the main
text. BH-FDR values and log base 2 fold-change for individual genes have been calculated using
R/Bioconductor package “limma” [32]. For each dataset only the overlap between genes included
in DE prior ranking and those present in this dataset was considered. The calculation of DE prior
AUROC values for the significant WAPs or DEGs was performed by R library “ROCR”.

Figure 26: DE prior AUROC values for the significant WAPs and DEGs across NCBI-GEO datasets
evaluated in this study. Diagonal dashes represent identity y = x line. Three NCBI-GEO datasets
(GSE9285, GSE44861 and GSE58095) for which no significant DEGs have been detected are omitted
from display. See text for further details.
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For the 19 out of 22 NCBI-GEO datasets evaluated herein that had greater than zero number
of significant DEGs (passing the cutoffs specified above) average prior DE AUROC of DEGs was
AUROC(DEG) = 0.84 ± 0.02 consistently with a similarly high value cited above as reported by
[10]. This suggests generalizability of DE prior as calculated in [10] for predicting differential gene
expression for platforms other than HGU-133 Plus 2.0, as over half of the datasets evaluated here
have been characterized using transcriptional profiling approaches other than HGU-133 Plus 2.0
technology.
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Values of DE prior AUROC for the significant WAPs for each of these 19 datasets were invariably
lower than those for the significant DEGs in the same dataset (average AUROC(WAP) = 0.60±0.05;
median AUROC(DEG) −AUROC(WAP) = 0.19, IQR = 0.37). Systematically lower values of DE
prior AUROC for the significant WAPs suggest that DE prior is less predictive of the significance
of WAPs as compared to its predictive power for the significance of DEGs.

Three remaining NCBI-GEO datasets (GSE9285, GSE44861 and GSE58095) were omitted from
Figure 26 as none of the genes in these datasets passed the threshold of log base 2 fold-change
> 2 used as described above for the identification of the significant DEGs. Corresponding DE prior
AUROC values for the significant WAPs in these three datasets are 0.53, 0.55 and 0.67 respectively,
also indicating low information content of DE prior for the detection of the significant WAPs in
these three datasets where no significant DEGs have been identified.

Summarily, these results imply that the increased reproducibility of WAPs as compared to that
of DEGs for the datasets evaluated herein does not amount to enriching WAPs for the genes
ranked highly by DE prior. Therefore, this plausibly reflects relevance of pathway knowledge for
reproducibly detecting network neighborhoods significantly perturbed in transcriptional profiling
studies comparing disease tissue to healthy controls. Such decrease in predictability of significant
WAPs by the DE prior ranking (as compared to its capacity for identifying significant DEGs)
suggests the potential of WAPs to yield not only findings that are more reproducible (for within-
dataset and within-disease comparisons as illustrated above), but that such WAPs could be also
more specific for a given disease than DEGs. More systematic assessment of this possibility across
suitably broad collection of transcriptional datasets represents another intriguing opportunity for
further research.
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8 Necessary conditions for WAP score robustness

8.1 Sampling of perturbed data set pairs

Figure 27: Distance to a uniform distribution over 2× 500 points for average PFP values (over the
top 200 WAPs) and MVT p-values as a function of perturbation parameter ρ.
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Data set GSE58095 is randomly partitioned in two data sets, each one having half of the SSc
samples and half of the control samples. Each data set tends to have high signal for SSc versus
control: small average PFP value over the top 200 WAPs and small MVT p-value. In order to
sample a wider range of average PFP values or MVT p-values, each data set can be randomly
perturbed for its SSc/control composition. Disease labels of samples are copied into an array, the
index identifying a sample. Then at each index, a label is randomly selected with probability ρ.
If chosen, the label is swapped with another one at a uniformly randomly chosen index. Setting
ρ = 0 does not perturb disease labels and ρ = 1 yields maximal perturbation with this scheme. For
each value of ρ, 500 pairs of data sets are generated and distance to a uniform distribution in [0; 1]
is estimated:

d (x) =
1

1000

1000
∑

i=1

∣

∣

∣

∣

x(i) − i

1001

∣

∣

∣

∣

,

where x(i) is the ith smallest value of average PFP or MVT p-value.

Figure 27 shows that, as one expects because the MVT p-value is estimated via permutation testing
on SSc/control, uniform sampling of MVT p-values is best achieved by setting ρ = 1 (orange dots).
For the average PFP value (red dots), close to uniform sampling is achieved by setting ρ = 0.41.

A total of 2 × 105 pairs of data sets are generated: 2 × 104 with ρ = 0, 9 × 104 with ρ = 0.41 for
uniform sampling of average PFP values and 9 × 104 with ρ = 1 for uniform sampling of MVT
p-values. Estimated distributions of overlap statistics maxR and AUC, for DEG and WAP scores
are presented in Figures 28, 29 and 30 as functions of characteristics of data set pairs (average PFP
values or MVT p-values).
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8.2 Overlap statistics as a function of data set pair characteristics

Figure 28: Average overlap statistics (maxR and AUC) of DEG and WAP scores over 2 × 105

partitions of GSE58095 in two data set, and as function of the average PFP value in each data set.
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Figure 29: Average overlap statistics (maxR and AUC) of DEG and WAP scores over 2 × 105

partitions of GSE58095 in two data set, and as function of the MVT p-value in each data set.
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Figure 30: Average overlap statistics (maxR and AUC) of DEG and WAP scores over 2 × 105

partitions of GSE58095 in two data set, and as function of the MVT p-value in one data set and
the average PFP value in the other.
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Tables 2, 3 and 4 display summary statistics for matrices presented in Figures 28, 29 and 30. Notice
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Table 2: Summary statistics for matrices of Figure 28.

matrix maximum average maximum average matrix
maxR WAP 0.611 0.089 360 49 AUC WAP
maxR DEG 0.222 0.030 185 16 AUC DEG

maxR(WAP) - maxR(DEG) 0.400 0.059 183 33 AUC(WAP) - AUC(DEG)

Table 3: Summary statistics for matrices of Figure 29.

matrix maximum average maximum average matrix
maxR WAP 0.547 0.055 311 29 AUC WAP
maxR DEG 0.202 0.028 167 14 AUC DEG

maxR(WAP) - maxR(DEG) 0.345 0.027 144 15 AUC(WAP) - AUC(DEG)

that the average maxR or AUC statistics for differences (WAP - DEG) are always, by definition,
equal to the difference of individual estimations (WAP or DEG) of average maxR or AUC values.
This is not necessarily true for maximum values of maxR(WAP)-maxR(DEG) (or AUC(WAP)-
AUC(DEG)) because maximum values of these differential variables do not necessarily coincide
with maximum values of the individual ones.

8.3 Correlation between MVT p-value and average gene FDR value

Call dij the Pearson dissimilarity between two samples i and j, based on all array spots. Values
of dij close to 0 mean that the two samples have similar expression values across all genes, and
values close to 1 indicate dissimilarity. Call D and C disease and control groups of samples. The
Multi-Variate T statistic [12, 36], is defined by

mvt (D, C) = d (D, C)
s (D) + s (C) with d (D, C) =

∑

i∈D,j∈C dij

|D| |C| and s (D) =
2
∑

i<j∈D dij

|D| (|D| − 1)
. (11)

Statistic, mvt is the ratio of difference between groups (d) to their spread (s). Large values of
mvt therefore indicate separation of the two groups. To define what large is, permutation testing is
utilized. The observed value (mvt) is compared to values (MVT) obtained when randomly shuffling
samples between groups D and C, and the p-value

p = Pr (MVT ≥ mvt) (12)

is small compared to 1 if the two groups are markedly different.

Figure 31 shows that MVT p-values are relatively well correlated with average DEG FDR values,
FDR values being estimated as in [3]. One thousand (200 now) perturbed data sets were sampled
from GSE58095, with perturbation parameter (ρ = 0.3) for SSc/control skin samples. For each
perturbed data set the MVT p-value was estimated via permutation testing and FDR values (on
two-sided t-test p-values) were estimated for all genes as in [3]. Figure 31 displays, in log scale,
scatterplots of MVT p-value and average FDR value over the top n smallest ones. Correlation
between the two variables tends to increase with n. Applying a two-sided Spearman correlation
test yields the following estimates s: s = 0.934 (A), s = 0.949 (B), s = 0.958 (C) and s = 0.961
(D). Given the large number of pairs (1000) all estimated p-values are reported as 0.
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Table 4: Summary statistics for matrices of Figure 30.

matrix maximum average maximum average matrix
maxR WAP 0.574 0.068 327 37 AUC WAP
maxR DEG 0.216 0.028 179 14 AUC DEG

maxR(WAP) - maxR(DEG) 0.364 0.040 170 22 AUC(WAP) - AUC(DEG)

Figure 31: Correlation between MVT p-value and average FDR value over the top n genes. One
thousand perturbed data sets (ρ = 0.3) were sampled from GSE58095 (SSc skin samples versus
control samples). A: n = 200. B: n = 500. C: n = 1000. D: n = 5000.
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