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Supplementary Note I: Device Parameters

Supplementary Table I shows device performance for
all five qubits on the sample. Note for the experiment
presented only Q1, Q2 and Q3 were used. All gate times
are 80 ns.

Qubit f01 (GHz) T ∗2 (µs) T1 (µs) ZZ (kHz)

Q1 5.3067 21± 5 43± 9
30 (Z1Z4);
25 (Z1Z2)

Q2 5.2125 11± 3 8.3± 0.3 8 (Z2Z3)
Q3 5.357 43± 9 50± 6 35 (Z3Z5)
Q4 5.4177 20± 7 44± 6 32 (Z2Z4)
Q5 5.4123 22± 6 45± 3 72 (Z2Z5)

Supplementary Table I. Qubit frequencies and coherence
times. Q4 and Q5 were not used in this experiment. Co-
herence times are quoted as average and standard deviation
of the values measured over a ∼ 16 h span. A window of
2 h was not included in the statistics for Q1, during which T1

was suppressed most likely due to a TLS moving into reso-
nance with the qubit [1]. Static ZZ interaction strengths are
reported for qubit pairs that are coupled through a common
bus resonator.

Supplementary Note II: Pseudocode for PAPA

Algorithm 1 PAPA reconstruction of an N qubit quan-
tum process E
1: Pairwise process tomography:
2: for j < N do
3: for k < j do
4: S = {j, k}
5: Prepare spectator qubits in Î/2
6: σS = Two-qubit QPT of E for pair S
7: k += 1
8: end for
9: j += 1

10: end for
11:
12: Boostrapping reconstruction:
13: define ~χ = χ-matrix PAPA free parameters
14: define [cost(~χ)]nm =

∣∣[σS ]nm − [ρS(~χ)]nm

∣∣2
15: define constraints(~χ) = CPTP constraints
16: ~χest = arg min cost(~χ) + constraints(~χ)
17: return ~χest

See Supplementary Note VI for details on the con-
straints used in the minimization.

Supplementary Note III: PAPA+GST N-qubit
Gates

In this appendix we discuss the set of N -qubit
gates that can be characterized via bootstrapping with
PAPA+GST. We will focus on the N = 3 case since the
extension to N > 3 is straightforward from the three-
qubit results. Consider an ideal three-qubit gate written
as

Û =
∑
ijk

uijkÛi ⊗ Ûj ⊗ Ûk, (1)

where Tr(ÛiÛ
†
j ) = 2δij such that {Ûi} is an orthonor-

mal basis for one-qubit operator space. We will label
the ideal process for this gate as U , and label the im-
perfect experimental implementation of this process as
Ũ . For notational simplicity we break slightly from the
nomenclature used in the main text, and throughout this
appendix processes without tildes will be ideal, and those
with tildes will be experimental implementations of the
ideal process.

The Choi state of the ideal process is

ρU =
1

8

∑
µν

|ψµ〉〈ψν | (2)

⊗
∑
ijk
i′j′k′

uijkui′j′k′Ûi ⊗ Ûj ⊗ Ûk |ψµ〉〈ψν | Û†i′ ⊗ Û
†
j′ ⊗ Û

†
k′ .

Then, as an example, the two-qubit reduction for qubits
1-2 is given by

ρU1,2 =
1

4

∑
µν

|ψµ〉〈ψν |

⊗
∑
ij
i′j′

∑
k

uijkui′j′kÛi ⊗ Ûj |ψµ〉〈ψν | Û†i′ ⊗ Û
†
j′

=
1

4

∑
µν

|ψµ〉〈ψν | ⊗ U12(|ψµ〉〈ψν |), (3)

where we have used the fact that Tr(ÛiÎÛ†j ) = 2δij , and
U12 is the two-qubit process defined by

U12(ρ) =
∑
k

uijkui′j′kÛi ⊗ ÛjρÛ†i′ ⊗ Û
†
j′ . (4)

The general PAPA approach would be to character-
ize the experimental implementation of the process U12,
i.e. Ũ12, via two-qubit QPT on qubits 1-2 when Ũ occurs.
The PAPA+GST approach is the situation where one
does not want to perform two-qubit QPT for every un-
known three-qubit process, but would rather bootstrap
characterizations of three-qubit processes from existing
two-qubit gate set characterizations.

In the PAPA+GST approach, the two-qubit reduction
ρŨ1,2 can be experimentally characterized if the ideal pro-
cess U12 can be described as a convex sum of unitary
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processes

U12(ρ) =
∑
i

ciĜiρĜ
†
i , (5)

with each Ĝi in the GST characterized gate set. If this
is the case, then

ρŨ1,2 =
∑
i

ciσG̃i , (6)

where G̃i is the experimental implementation of the gate
Ĝi, and each σG̃i can be obtained from the GST gate set
which contains all G̃i.

For the ideal gate set we have used in the main
text, CNOT + {Î, X̂, Ŷ , Ẑ}⊗2, we will now show that
any three-qubit quantum gate consisting of a single-
layer circuit of these gates can be characterized using
PAPA+GST. Three-qubit gates of the form Ĝ1 ⊗ Ĝ2 ⊗
Ĝ3 ∈ {Î, X̂, Ŷ , Ẑ}⊗3 can obviously be parameterized by
PAPA, as one can trivially show that the two-qubit pro-
cesses to be characterized are the unitary gates Ĝ1⊗ Ĝ2,
Ĝ1 ⊗ Ĝ3, and Ĝ2 ⊗ Ĝ3, which are all in the GST gate
sets.

For a three-qubit gate that involves a CNOT on two of
the qubits, a bit more effort is required to show that the
necessary two-qubit gates to be characterized are still in
the GST gate set. For example, consider the ideal gate
Û = CNOT12 ⊗ Î used in the main text. This has the
ideal two-qubit reduced dual states

ρU1,2 =
1

4

∑
µν

|ψµ〉〈ψν | ⊗ CNOT |ψµ〉〈ψν |CNOT (7)

ρU1,3 =
1

2
(ρI⊗I + ρZ⊗I) (8)

ρU2,3 =
1

2
(ρI⊗I + ρX⊗I) (9)

and therefore the necessary gates to characterize are
CNOT for qubits 1-2, Î⊗ Î and Ẑ⊗ Î for qubits 1-3, Î⊗ Î
and X̂ ⊗ Î for qubits 2-3. As all of these gates belong
to their respective GST gate sets, a characterization of
Û can be bootstrapped using PAPA+GST. It is straight-
forward to show that this generalizes to all arrangements
of the CNOT (i.e. on any pair of qubits), and any gate
on the qubit not involved in the CNOT.

So far we have only commented on the ideal two-qubit
gates that need to be characterized for a given N -qubit
process, and not on the other criteria for PAPA+GST,
namely tolerable error. The general criteria is not as
strong as all error needing to be gate-independent. For
instance, three-qubit gates such as Ĝ1⊗Ĝ2⊗Ĝ3 may have
error that is dependent on the specific single-qubit gates
implemented, as this will be captured in characterization
of the two-qubit reductions. Similarly, if the error in a
single-qubit gate depends on the gate implemented on
another qubit (i.e. context dependence) this will also be
captured by PAPA+GST.

II
I

II
X II
Y
IX
I

IX
X

IX
Y
IY
I

IY
X

IY
Y
X
II

X
IX
X
IY

X
X
I

X
X
X

X
X
Y

X
Y
I

X
Y
X

X
Y
Y
Y
II

Y
IX Y
IY

Y
X
I

Y
X
X

Y
X
Y

Y
Y
I

Y
Y
X

Y
Y
Y

Gate

10−3

10−2

A
v
e
ra
g
e
T
ra
c
e
D
is
ta
n
c
e

2-Qubit Distance From GST

Ideal

PAPA, GST Gauge opt.

PAPA, GST 1Q Gauge opt.

Supplementary Figure 1. Comparison of the GST measured
process matrices to the ideal process matrices, and to the
PAPA reconstructions with or without additional gauge opti-
mization to bring the pairwise GST gate sets into consistent
single-qubit gauges. Red circles are the data points from the
main text with GST gauge optimization, and orange triangles
are the PAPA reconstruction with the single-qubit gauge op-
timization. PAPA data points are the average trace distance
of the three reduced processes from there corresponding GST
characterizations.

The fact that both gate-dependent and context-
dependent error fits within the PAPA+GST framework
for simultaneous single-qubit gates comes from the fact
that the physical implementation of the simultaneous
single-qubit gates on N qubits is the same as on two-
qubits. This is often not the case for an entangling gate
such as CNOT12⊗ Î, where the physical implementation,
such as a CR-CNOT, could be vastly different than the
physical implementation of the gates in its reduced two-
qubit decomposition, cf. Supplementary Eqs. (7)-(9).

This is especially true in the case of the CR-CNOT
where the error model assumed – over-rotation plus cross-
talk – is intrinsic to the CR interaction. As such, GST
characterization of the simultaneous single-qubit gates
Ẑ⊗ Î and X̂ ⊗ Î (on qubit pairs 1-3 and 2-3 respectively)
would not contain any signature of this error. This makes
PAPA+GST impossible, as two qubit tomography from
GST would be inconsistent across qubit pairs. Even a
large difference in gate-length between entangling and
single-qubit gates can result in an error discrepancy due
to decoherence, and this is enough to make PAPA+GST
inapplicable. In such situations standard PAPA should
be used in combination with other SPAM-insensitive two-
qubit QPT techniques.



4

Supplementary Note IV: Single Qubit Gauge Op-
timization

It is not possible to gauge optimize the pairwise GST
characterized gate sets to one another, since they are two-
qubit gate sets that are on different pairs of qubits, with
at most one qubit shared between gate sets. With that
in mind, what can be done is to ensure that gates shared
by different pairwise gate sets are gauge consistent. For
the gate set we considered in our experiment, the shared
gates are those with one non-identity gate. For example,
in a three-qubit system, the gate X̂1 ⊗ Î2 in gate set 1-2
is the same as the gate X̂1 ⊗ Î3 in the gate set 1-3.

For every pairwise gate set we create two single qubit
gate sets by calculating the reduced single-qubit gates
from two-qubit gates of the form GGk,In and GIk,Gn

, which
results in (N2−N) single-qubit gate sets total. For each
qubit we choose one of these gate sets to be the “true
gauge”, and gauge optimize the other single-qubit gate
sets to this one. This requires (N2 − 2N) total gauge
optimizations.

Using the calculated gauge transformations, we bring
the GST gate sets into a consistent single-qubit gauge.
For example, in our three qubit system, we take gate set
1-3 to be in the true gauge for qubits 1 and 3 and gate
set 2-3 to be in the true gauge for qubit 2. We therefore
define the single-qubit gauge consistent gate sets

GS′13 = GS13 (10)

GS′12 = T̂−11 ⊗ T̂−12 GS12T̂1 ⊗ T̂2 (11)

GS′23 = Î⊗ T̂−13 GS23Î⊗ T̂3 (12)

where T̂k is the gauge transformation for qubit k. We use
these new gate sets in a PAPA reconstruction, the results
of which are shown in Supplementary Fig. 1. As can be
seen, the single-qubit gauge optimization improves the
quality of the reconstruction for three-qubit gates with
only one non-identity gate, but does worse for gates with
multiple non-identity components.

Supplementary Note V: Further Numerical Sim-
ulations

To further test our PAPA approach for multi-qubit
QPT, we numerically simulate “unknown” three-qubit
processes, and then reconstruct the PAPA characteriza-
tion of these processes. We consider several example pro-
cesses formed by one of the ideal three-qubit gates Î⊗Î⊗Î,
CNOT12⊗ Î, or X̂⊗ Ŷ ⊗X̂, followed by either a coherent
or incoherent error process.

In standard PAPA reconstruction, pairwise two-qubit
QPT is used to characterize the reduced two-qubit
process, and obtain σS for each qubit pair. With
PAPA+GST this is circumvented by using a GST charac-
terized gate set for each qubit pair to calculate σS , pro-
vided the ideal reduced two-qubit process can be built
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Supplementary Figure 2. a) Simulated trace distance between
the actual three-qubit process Choi state and either the PAPA
reconstructed Choi state (black +) or the ideal gate (red ×),
see Supplementary Eq. (16). b) The average trace distance
between the reduced two-qubit Choi states, see Supplemen-
tary Eq. (17). Processes i), ii) are the all identity gate of
length 50 ns and 400 ns; iii), v), and vi) are X̂ ⊗ Ŷ ⊗ X̂

of length 50 ns; iv) and vii) are CNOT12 ⊗ Î of length 400
ns. i), ii), iii), and iv) have single-qubit decoherence with
T1 = T2 = 50 µs; v) and vii) have coherent error φ = 0.02
and vi) has φ = 0.2.

from gates in the ideal gate set. For the example three-
qubit ideal gates chosen, the required two-qubit gates are
contained in the ideal gate set CNOT + {Î, X̂, Ŷ , Ẑ}⊗2.
We follow the PAPA+GST approach for these numeri-
cal tests, simulating the implementation of this gate set
on all qubit pairs, including the error process, and use
results of these simulations as our GST reconstructed
two-qubit gate sets. We then use the characterized two-
qubit gate sets to calculate σS for each qubit pair. In
Supplementary Note III we discuss the three-qubit gate
decompositions describing the two-qubit gate sets to be
characterized.

For the results shown in Supplementary Fig. 2 we con-
sider two cases of gate-independent error processes, either
a coherent error described by single-qubit rotations on all
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three qubits

ĜCoh. Error = X̂φ ⊗ Ŷφ ⊗ X̂φ (13)

X̂φ = cos(φ)Î+ i sin(φ)X̂ (14)

Ŷφ = cos(φ)Î+ i sin(φ)Ŷ (15)

or single-qubit decay and pure dephasing implemented
by their standard Kraus operator representations [2].

We compare the PAPA+GST reconstruction for a
noisy gate to the actual simulated noisy gate by calcu-
lating the trace distance between the Choi state of the
PAPA-reconstructed three-qubit process, ρE , and that for
the actual process, ρactE

Trace Dist. =
1

2
Tr

[√
(ρE − ρactE )

†
(ρE − ρactE )

]
. (16)

In experiment we do not have access to the actual full
three-qubit process, and cannot use the N -qubit trace
distance as a performance metric. Instead, in the main
text we compared each of the reduced two-qubit processes
from PAPA, to the actual two-qubit reduced processes
from GST, and we do the same for our numerical tests,
via the expression used in the main text

Trace Dist. =
1

2
Tr

[√
(ρS − σS)† (ρS − σS)

]
. (17)

The results of both trace distance calculations are shown
in Supplementary Fig. 2 for the seven candidate processes
listed in the caption.

As the results show, the PAPA reconstructed process
always improves upon the initial guess (ideal gate), both
in terms of the trace distance for the full three-qubit
process reconstruction, Supplementary Fig. 2a), and the
average of the trace distances for the two-qubit recon-
structions, Supplementary Fig. 2b). This improvement
is typically around one order of magnitude, except in the
case of the CNOT gate, which was the most difficult to
reconstruct of the gates tested. The PAPA reconstruc-
tions for these numerical simulations were done using the
MATLAB implementation.

Supplementary Note VI: Numerical Implementa-
tion

The computational task in PAPA characterization is
the simultaneous solution of ρS = σS for each pairwise
reduction, from which we obtain the elements of the two-
qubit χ-matrices, χjk,n

ik,n
. These equations are nonlinear

in general, and must be solved under the constraint that
each of the two-qubit χ-matrices describes a completely-
positive and trace-persevering (CPTP) map.

This implies that the χ-matrix is a positive semi-
definite matrix with trace 4 (dimension of two-qubit

Supplementary Figure 3. Absolute value of the element-
wise difference between the “measured” Choi state, σ12, and
the PAPA reconstructed Choi state, ρ12, for the effective
process experienced by qubit pair 1-2 during a CNOT gate
with single-qubit decoherence. Simulation parameters for the
three-qubit process are the same as in the main text.

Hilbert space). Further, TP requires an additional con-
straint, which to describe we need to parameterize a two-
qubit process on the set S in the usual way via its χ-
matrix

ES(ρ) =
16∑
p,r

[χS ]p,rÊrρÊ
†
p, (18)

where {Êp} is a basis for two-qubit operator space. The
TP constraint is then [2]

16∑
p,r

[χS ]p,rÊ
†
pÊr − Î⊗ Î = 0. (19)

Comparing this to our previous parameterization of a
two-qubit process in terms of one-qubit processes used in
the main text,

ES =

16∑
i,jk,n

χ
jk,n

ik,n
A(k)
ik,n
⊗A(k+n)

jk,n
, (20)

for S = {k, k+n}, we see that the two parameterizations
are related by splitting each index ik,n and jk,n into two
parts via the equations

A(k)
ik,n
⊗A(k+n)

jk,n
(ρ) = Êr1 ⊗ Êr2ρÊ†p1 ⊗ Ê

†
p2 = ÊrρÊ

†
p,

ik,n → (i, i′) jk,n → j, j′,

r = (r1, r2) = (i, j) p = (p1, p2) = (i′, j′),

[χS ]p,r = χ
(r2,p2)
(r1,p1)

.
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Supplementary Figure 4. Trace distance between the sim-
ulated Choi state and PAPA reconstructed Choi state for
the three-qubit process, and reduced two-qubit processes as
a function of the solver tolerance, εtol. The CNOT gate with
coherent error (red + and ×) and decoherence (blue trian-
gles and circles) were used for these simulations. The vertical
dashed line indicates the tolerance used for the simulations
presented in the main text.

To solve for the χ-matrix elements under the CPTP
constraints, we use a least-squares minimization ap-
proach implemented in MATLAB [3]. Here, the cost
function for the least-squares minimization consists of
two parts. The first encodes the experimental character-
izations of the two-qubit reductions, and simply consists
of the element-wise difference between the two-qubit re-
duced Choi state for each pair of qubits and the current
estimate for the two-qubit reduced Choi state generated
by PAPA,

C1 [~χ] =
∑
S

∑
k,n

∣∣∣[ρS(~χ)]k,n − [σS ]k,n

∣∣∣2, (21)

where ~χ is a vector of the χ-matrices for the processes
on all qubit pairs that make up the PAPA, and the sum
over S runs over all qubit pairs.

The second part of the cost function, C2 [~χ], encodes
the CPTP constraints, and consists of the difference be-
tween the trace of each χ-matrix estimate and the Hilbert
space dimension (in this case 4), the sum of all negative
eigenvalues of the χ-matrix estimate (to constrain posi-
tivity), and the elements of Supplementary Eq. (19). The

least-squares minimization solves the problem

~χest = argmin
~χ

(C1 [~χ] + C2 [~χ]) . (22)

Even with the CPTP constraints imposed, the χ-
matrix estimates returned by the numerical solver will
not necessarily be positive semi-definite. As such, we ap-
ply a post-processing step where we diagonalize each χ-
matrix estimate, generating a set of eigenvalues λi with
corresponding eigenvectors |vi〉. We can then create a
positive semi-definite χ-matrix estimate for each two-
qubit process

χ̃est
S =

∑
λi≥0

λi |vi〉〈vi| /N , (23)

where N is a normilization factor to ensure Tr(χ̃est
S ) = 4.

These are what we use in the PAPA construction of the
N -qubit gate.

Supplementary Fig. 3 shows an example of the output
from our implementation of the PAPA algorithm. For
the CNOT gate with single-qubit decoherence described
earlier, it plots the difference between the measured (ex-
perimentally or in this case by simulation) Choi state,
σ12, and the PAPA reconstructed Choi state, ρ12, for
the effective process experienced by qubit pair 1-2. The
element-wise difference is consistent with the magnitude
of the trace distance reported in Supplementary Fig. 2b).

Least-squares minimization requires an initial guess for
the χ-matrices, and we choose a decomposition of the
ideal three-qubit gate as the initial guess. For the re-
constructions presented in the main text, we found that
their accuracy was mostly limited by numerical issues,
such as the trade-off between the minimization tolerance
and computation time. We observed a saturation in the
trace distance for solver tolerance below a threshold value
of εtol = 10−7, which we attribute to the solver becoming
stuck in a local minimum, see Supplementary Fig. 4.

In future work we hope to explore these numerical is-
sues, and implement more efficient and accurate classical
algorithms for the PAPA reconstruction. For instance,
we would aim to prevent the solver from getting stuck in
regions where the gradient of the cost function is below
the tolerance threshold, but the solution accuracy is not.
One route forward would be to adapt to PAPA more
sophisticated optimization algorithms tailored for opti-
mization over positive definite matrices, such as those
using gradient descent [4, 5].
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