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1 Datasets

The Pancreatic cancer dataset (downloadable from ArrayExpress Archive [1],
accession number E-MEXP-2780) consists of microarray gene expression data
from 30 patients that suffer from pancreatic ductal adenocarcinoma. Follow-
ing [2], patients are split into the two groups good prognosis (GP; 15 patients)
and poor prognosis (PP; 15 patients), depending on their time of survival. Pa-
tients are labelled as PP if their time of survival is below 17.5 months, otherwise
the label is GP. Since the accurate prediction of PP patients is usually more in-
teresting, they are treated as “positive patients” belonging to the group VC ⊂ V
under study.

The data have been normalized using the Robust Multi-array Average (RMA)
method [3]. We filtered out the genes with low expression and low variance,
retaining only the probe sets with the highest mean expression for each gene
(refer to [2] for more details about dataset pre-processing, filtering and labelling
steps).

The gene expression datasets Breast cancer (GSE2990), Colorectal cancer
(GSE17536), Colon cancer (GSE17538), are all downloadable from GEO, and
have been normalized through RMA. The GSE2990 dataset is composed of
189 invasive breast cancer patients and 64 among them are unlabeled. The
remaining ones are divided into the classes high and low risk of recurrence. The
GSE17536 includes gene expression data for 177 colorectal cancer patients and
the patients are divided into three groups “recurrence”, “no recurrence” and
“unlabeled”. Finally, the GSE17538 dataset is made up of 213 colon cancer
patients which are divided into the same three classes.

2 Efficient implementation of P-Net

The P-Net algorithm uses an optimized leave-one-out (LOO) procedure to eval-
uate both the generalization performance of the algorithm and to select the
optimal threshold τ to filter out the least relevant edges of the network. In this
section are detailed both the implementation of the efficient LOO procedure to
filter the network, and the double LOO procedure to both estimate the general-
ization performance and to filter the network. Finally a cross-validated imple-
mentation of P-Net is provided. The R code implementing all these procedures
is available from GitHub (https://github.com/GliozzoJ/P-Net).

2.1 An efficient procedure to compute the “optimal” thresh-
old

Using the trick which allows us to run just once the P-Net algorithm for the loo,
we can introduce the procedure Optimize thresh by loo which exploits the effi-
cient implementation of the internal loo to select the optimal network threshold
τ (Fig. S1).
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Figure S1: Optimize thresh by loo: a procedure to find the
“optimal” filtering threshold τ.

Input:
- K: a n× n kernel matrix of the graph
- VT ⊆ V : the set of patients to be tested
- VC ⊂ V : patients having the C phenotype
- S: a score function
- T : a set of thresholds to be tested
begin

01: diag (K) := 0
02: AUC∗ := 0; t∗ := 0
03: for each t ∈ T
04: K ′ := Filter (K, t)
05: for each i ∈ VT
06: si := S(i,K ′i, VC)
07: end for

08: AUC := Compute AUC(s, VC)
09: if (AUC > AUC∗)
10: AUC∗ := AUC
11: t∗ := t
12: end if

13: end for

end.
Output:
- t∗: the “optimal” threshold
- AUC∗: the AUC obtained by filtering the net with t∗

At first the diagonal of the kernel matrix K is set to zero (row 01). It is
worthwhile to note that the input matrix in the algorithm can be or a kernel or a
correlation matrix, but it has to be a symmetric matrix representing similarities
between patients. In row 02 we initialize the optimal Area Under the Curve
(AUC∗) and the optimal threshold t∗ to zero. In the main for loop (rows 03−13)
a set of pre-selected thresholds t ∈ T is tested to find the optimal threshold t∗

which is the threshold that gives the best performances in term of AUC when it
is used to filter the graph. We used a set of quantiles as pre-selected thresholds.
In this loop, the algorithm computes a different filtered Kernel matrix K ′ at
each iteration by choosing a different threshold t each time. The Filter function
removes all the edges with a weight below the selected threshold. In the following
inner for loop (rows 05−07) the score function S is applied to the filtered kernel
matrix to compute the score si of each node i. Only the nodes included in the
subset VT are tested. At row 08 the function Compute AUC computes the AUC
exploiting the vector of scores s obtained from the previous for loop. Then if the
computed AUC is higher of the current maximal Area Under the Curve (AUC∗),
the AUC∗ and the corresponding threshold t∗ are updated (rows 09 − 12). At
the end of the procedure the “optimal” threshold and the corresponding AUC
are returned. The complexity of the algorithm Optimize thresh by loo is O(n2)
if |Q| << n, otherwise the complexity is O(n3). Indeed, within the for each
loop the most expensive procedures are Filter (row 04) and the for loop at rows
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05− 07, both with complexity O(n2).

2.2 A double loo procedure for the network-based ranking
of patients with P-Net.

Fig. S2 shows the pseudo-code of the P-Net algorithm.

Figure S2: P-Net: double loo for network filtering and pa-
tient ranking

Input:
- K: a n× n kernel matrix of the graph
- VC ⊂ V : patients having the C phenotype
- S: a score function
- T : a set of thresholds to be tested
begin

01: for i from 1 to m
02: ti := Optimize thresh by loo (K, V \ {i}, VC \ {i}, S, T )
03: K ′i := Filter (Ki, ti)
04: k′ii := 0
05: si := S(i,K ′i, VC)
06: end for

end.
Output:
- the score vector s
- the threshold vector t

The double loo procedure is characterized by a main for loop (rows 01 − 06)
necessary to obtain a score for each node i of the input matrix K . So, the P-
Net algorithm computes the “optimal” threshold ti and the score si for each
node applying the same steps node by node. In row 02 the function Opti-
mize thresh by loo implements the internal loo to select the “optimal” thresh-
old for the ith node. In this loo the node i is left out and it is not considered
in the computation. Then the threshold ti is exploited to filter the ith row of
the matrix K. In the ith row all the elements below to ti are set to zero and
this is equivalent to cut the edges incident to the node i in the corresponding
graph. In row 04 the element k′ii is set to zero: this is needed to implement the
external loo through the main for loop (rows 01 − 06). The last step (row 05)
of the loop computes the score si using the filtered row K ′i. The outputs of this
procedure are: a vector s which contains the scores for each node computed by
external loo; a vector t which contains all the “optimal” thresholds selected for
each sample by internal loo.

It is worthwhile to note that the double loo procedure seems to be computa-
tionally intensive but using the efficient implementation of the loo technique,
the overall complexity of P-Net is O(n3). Indeed, the Optimize thresh by loo
procedure has complexity O(n2) when |Q| << n is iterated n times.
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2.3 A cross-validation-based implementation of P-Net

In this section we present another efficient implementation of P-Net by which
the generalization performances are assessed through a classical k-fold cross-
validation technique, while the selection of the “optimal” threshold is performed
through the efficient implementation of the loo procedure.

The pseudocode of the cross-validated implementation of P-Net is presented
in Fig S3. In row 01 the function Split divides randomly the vertices V in k
folds. The main for loop evaluates the scores of the patients by external cross-
validation (rows 02− 08). More precisely, inside the main for loop, the optimal
threshold tj is selected by internal loo through the Optimize thresh by loo func-
tion. Then the matrix K is filtered using the optimal threshold for the fold Vj .
Finally, in the second loop (rows 05− 07) the score for each node belonging to
the test fold Vj is computed.

It is easy to see that the hold-out version of P-Net, by which data are split
in training and test set, can be obtained from the cross-validation version of
Fig. S3. Indeed we can substitute the Split function at row 01 of Fig. S3 with a
simpler splitting of the vertices V in training and test set. Then the outer for
loop can be eliminated: it is sufficient a single iteration of the for loop at rows
02− 08, and finally Vj can be substituted with the test set.

Figure S3: P-Net using cross-validation for network filter-
ing and patient ranking

Input:
- K: a n× n kernel matrix of the graph
- VC ⊂ V : patients having the C phenotype
- k: number of folds for the cross-validation
- S: a score function
- T : a set of thresholds to be tested
begin

01: {V1, . . . , Vk} := Split (V, k)
02: for j from 1 to k
03: tj := Optimize thresh by loo (K, V \ Vj , VC \ Vj , S, T )
04: K ′ := Filter (K, tj)
05: for each i ∈ Vj
06: si := S(i,K ′i, VC \ Vj)
07: end for

08: end for

end.
Output:
- the score vector s
- the threshold vector t
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3 A non parametric test to validate patient rank-
ing

To evaluate whether the ranking of the patients has been obtained by chance, we
can apply a classical non parametric test based on random shuffling of patients’
labels. Having a kernel matrix K we can apply multiple random shufflings (e.g.
k times) of the set of the labels of patients. Then we apply P-Net with both the
“unshuffled” and with the shuffled set of labels, and we compute the AUC and
the scores for each patient for both the unshuffled and shuffled version of the
labels. More precisely at each iteration i of the shuffling we compare the AUC
obtained by P-Net with the “true labels” (AUCT ) with respect to the AUC

obtained with the “shuffled labels” (AUC
(i)
S ). We can obtain the following p-

value of the ranking, by counting how many times the AUC computed with
the shuffled labels is larger or equal than the AUC computed with the true
labels:

p-value =
1

k

k∑
i=1

{AUCT ≤ AUC(i)
S } (1)

where the operator {P} returns 1 if the predicate P is true, otherwise 0.

4 Experimental set-up with Pancreatic cancer
data

The generalization performances have been evaluated through a Monte Carlo
cross-validation technique (MCCV), i.e. a hold-out procedure repeated 1000
times (see Fig. S4).
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Figure S4: One step of the Monte Carlo cross-validation procedure
with P-Net.
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The main steps of the P-Net MCCV can be summarized as follows:

1. The data are randomly split into training set and test set using a stratified
approach to obtain a balanced representation of the two considered classes
(GP and PP) into the sets.

2. Student’s t-test is applied to the training set data only, and the 1000 genes
with the smallest p-value are selected.
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3. P-Net is executed using only the features selected in the precedent step.
The optimization of the edge threshold τ is carried out by internal leave-
one-out on the training set data and the estimation of the scores is per-
formed on the test set.

4. P-Net assigns a score to each patient, and the “optimal” score threshold
to separate PP from GP patients is assessed on the training set.

5. The above score threshold is then used to classify each patient of the
test set: patients having a score above the threshold are classified as PP,
otherwise as GP.

6. Predicted and “true” labels are compared to calculate the accuracy as
fraction of correctly predicted patients.

After 1000 rounds of the above procedure, the average accuracy across the
rounds is computed.

5 Experimental set-up for the analysis of Breast,
Colorectal and Colon cancer patients

Park et al. compared their method with three supervised classification algo-
rithms (Support Vector Machine, Näıve Bayes, Random Forest) and with the
semi-supervised version of SVM (TSVM). Following the same approach of [4],
the performances have been evaluated through a 10-fold cross validation proce-
dure repeated 15 times on each dataset, using as metrics the accuracy, sensitiv-
ity, specificity and AUC averaged across all the repetitions.

Park et al. used PPI information to filter out genes having no known interactions
and to identify the most informative pairs of genes [4]. Even if PPI interactions
can be useful to identify functional relationships between genes, to avoid filtering
genes only on the basis of their known interactions with other genes, we simply
applied a t-test to select informative genes to be used with P-Net. The following
steps summarize the set-up we used for a single repetition of the 10-fold cross
validation with P-Net:

1. We applied the Student’s t-test on each independent probe using all the
gene expression data from the labeled patients of the dataset. Then we
retained all the probes having a Bonferroni corrected p-value < 0.05.

2. We constructed the similarity matrix W using Pearson correlation be-
tween all the available patients (labeled and unlabeled ones).

3. Then we applied a Random Walk Kernel on the resulting similarity matrix
W .

4. The resulting Kernel matrix is filtered to remove all the edges having a
weight below the selected threshold τ.

5. The performances on the test set are evaluated using accuracy, sensitivity,
specificity and AUC averaged across the repetitions of the cross validation.
To find the optimal score threshold in an unbiased way, we computed the
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scores on the training set and we tested an arbitrary vector of quantiles
to classify the patients and to compute the corresponding accuracy. The
optimal score threshold is equal to the quantile that returns the best ac-
curacy on the training set.

6. A score function is then used to compute the scores on the test set and
the optimal score threshold is employed to classify the patients of the test
set according to their scores.

7. Finally, we compared our predictions with the labels and we computed all
the metrics for a single repetition of the 10-fold cross validation

8. The procedure is repeated 15 times and all the metrics are averaged across
the repetitions to get the final results.

6 Summary of P-Net results

Table S1 shows the average AUROC, AUPRC, Accuracy and F-score and their
respective standard deviation obtained using P-Net on the considered datasets.
Results obtained with Breast, Colorectal and Colon data sets are significantly
more stable than those obtained with Pancreatic cancer data: this is not sur-
prising since the cardinality of the first three datasets is significantly larger than
that of Pancreatic cancer. For this latter data set we reported also the results
for different sizes of the training set, according to the set-up proposed in [2]:
by reducing the test size, as expected, the standard deviation significantly in-
creases, since the Monte-Carlo cross-validation, with a very small data set tends
to behave like a leave-one-out procedure, that is known to be characterized by
a large variance.

Table S1: Summary of P-Net AUROC, AUPRC, Accuracy and F-
score results. For each dataset we provide the average value and the standard
deviation (in brackets) achieved with different metrics.

Dataset AUROC AUPRC Accuracy F-score

Breast 0.915 (0.019) 0.848 (0.036) 0.841 (0.026) 0.793 (0.034)
Colorectal 0.784 (0.021) 0.499 (0.049) 0.790 (0.017) 0.352 (0.053)
Colon 0.744 (0.018) 0.516 (0.045) 0.764 (0.012) 0.360 (0.043)
Pancreatic (Training set size 0.5) 0.688 (0.149) 0.662 (0.128) 0.642 (0.111) 0.639 (0.137)
Pancreatic (Training set size 0.6) 0.704 (0.160) 0.679 (0.139) 0.649 (0.122) 0.644 (0.144)
Pancreatic (Training set size 0.7) 0.722 (0.175) 0.701 (0.155) 0.660 (0.130) 0.658 (0.146)
Pancreatic (Training set size 0.8) 0.753 (0.220) 0.755 (0.193) 0.680 (0.185) 0.697 (0.186)
Pancreatic (Training set size 0.9) 0.781 (0.404) 0.833 (0.297) 0.781 (0.404) 0.786 (0.401)
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Poor

prognosis

Good

prognosis

Figure S5: Breast cancer graph constructed by P-Net. Square nodes
represent “high risk”, circles “low risk” of recurrence patients, while triangles
represent unlabeled patients. The scores predicted by P-Net are represented in
red (high risk) and white (low risk) with intermediate scores represented in pink.
Two high risk subgroups of patients are outlined in red, while two subgroups of
low risk patients are outlined in green. Unlabeled patients are predicted as low
risk patients (outlined in gray).
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Table S2: P-Net methods applied to each dataset. “RWK” stands for
Random Walk Kernel followed by the number of steps.

Dataset Kernel Score Function

Pancreatic RWK 8-steps Nearest Neighbour

Breast RWK 1-step Differential Normalized

Colorectal RWK 1-step Differential

Colon RWK 1-step Differential

Table S3: Results with Breast, Colorectal and Colon cancer pa-
tients. The results for each method are presented in the form accu-
racy(sensitivity/specificity) and the highest values for each dataset are in
bold. For the TSVM only the accuracy values are provided. With P-Net, the
Random Walk Kernel 1-step resulted the best choice for all the datasets; the
differential normalized score achieved the highest accuracy in the Breast cancer
dataset and the differential score the best results with the other datasets.

Method Breast (GSE2990) Colorectal (GSE17536) Colon (GSE17538)

P-Net 0.841 (0.778/0.884) 0.790 (0.233/0.974) 0.764 (0.253/0.954)

Park Method 0.725 (0.617/0.795) 0.807 (0.485/0.906) 0.756 (0.163/0.977)

TSVM 0.543 (-/-) 0.752 (-/-) 0.728 (-/-)

SVM 0.528 (0.671/0.306) 0.772 (0.889/0.389) 0.796 (0.917/0.469)

Näıve Bayes 0.592 (0.605/0.571) 0.759 (0.844/0.500) 0.707 (0.826/0.388)

Random Forest 0.664 (0.921/0.265) 0.752 (0.963/0.111) 0.713 (0.955/0.061)

Table S4: KEGG terms overrepresented in the hypergeometric test
on Breast cancer dataset. KEGG terms are linked to the corresponding
pathway. The last column shows the reference supporting the association.

KEGG IDs p-value Term References

03010 0.000 Ribosome [5,6]

03050 0.000 Proteasome [7,8]

04141 0.003 Protein processing in endoplasmic reticulum [9,10]

00190 0.003 Oxidative phosphorylation [11]

03040 0.009 Spliceosome [12]

04510 0.013 Focal adhesion [13,14]

00480 0.025 Glutathione metabolism [15,16]

00970 0.028 Aminoacyl-tRNA biosynthesis [17]

03013 0.029 RNA transport [18]

00270 0.048 Cysteine and methionine metabolism [19]
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Table S5: GO BP terms overrepresented in the hypergeometric test
on Breast cancer dataset. GO BP terms are linked to the corresponding
entry in AmiGO 2 website. The last column shows the reference supporting the
association.

GO IDs p-value Term References

GO:0002479 0.000 antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent [20]

GO:0090263 0.000 positive regulation of canonical Wnt signaling pathway [21]

GO:0044770 0.000 cell cycle phase transition [22]

GO:0038061 0.000 NIK/NF-kappaB signaling [23]

GO:0006413 0.000 translational initiation [24]

GO:0000375 0.000 RNA splicing, via transesterification reactions [12]

GO:0033209 0.000 tumor necrosis factor-mediated signaling pathway [25]

GO:0035026 0.001 leading edge cell differentiation [26,27]

GO:0097435 0.001 supramolecular fiber organization [28]

GO:0097190 0.001 apoptotic signaling pathway [29]

GO:0030511 0.001 positive regulation of transforming growth factor beta receptor signaling pathway [30]

GO:2000819 0.003 regulation of nucleotide-excision repair [31]

GO:0072331 0.005 signal transduction by p53 class mediator [32]

GO:0098869 0.006 cellular oxidant detoxification [33]

GO:0006338 0.006 chromatin remodeling [34]

GO:0048863 0.009 stem cell differentiation [35]

Table S6: KEGG terms overrepresented in the hypergeometric test
on Colon cancer dataset. KEGG terms are linked to the corresponding
pathway.

KEGG IDs p-value Term References

00061 0.002 Fatty acid biosynthesis [36]

00640 0.012 Propanoate metabolism [37]

00620 0.015 Pyruvate metabolism [37]

04920 0.025 Adipocytokine signaling pathway [38,39]

05160 0.049 Hepatitis C [40]
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Table S7: GO BP terms overrepresented in the hypergeometric test
on Colon cancer dataset. GO BP terms are linked to the corresponding
entry in AmiGO 2 website.

GO IDs p-value Term References

GO:2001295 0.001 malonyl-CoA biosynthetic process [41]

GO:0031999 0.003 negative regulation of fatty acid beta-oxidation [42]

GO:0038110 0.003 interleukin-2-mediated signaling pathway [43]

GO:0038113 0.003 interleukin-9-mediated signaling pathway [44,45]

GO:0071104 0.004 response to interleukin-9 [44]

GO:0070669 0.005 response to interleukin-2 [46]

GO:0006853 0.006 carnitine shuttle [47]

GO:0006768 0.006 biotin metabolic process [48,49]

GO:0035723 0.008 interleukin-15-mediated signaling pathway [50]

GO:0070672 0.008 response to interleukin-15 [50,51]

GO:0006346 0.010 methylation-dependent chromatin silencing [52,53]

GO:2000738 0.010 positive regulation of stem cell differentiation [54]

GO:0010884 0.011 positive regulation of lipid storage [55]

GO:1903672 0.011 positive regulation of sprouting angiogenesis [56]

GO:0045922 0.013 negative regulation of fatty acid metabolic process [42]

GO:0060334 0.014 regulation of interferon-gamma-mediated signaling pathway [57]

GO:0046320 0.016 regulation of fatty acid oxidation [58]

GO:0006084 0.019 acetyl-CoA metabolic process [59]

GO:0038111 0.019 interleukin-7-mediated signaling pathway [60,61]

GO:0097009 0.019 energy homeostasis [62]

GO:0098760 0.020 response to interleukin-7 [61]

GO:0045540 0.024 regulation of cholesterol biosynthetic process [63]

GO:0060338 0.025 regulation of type I interferon-mediated signaling pathway [64]

GO:0035384 0.028 thioester biosynthetic process [65]

GO:0050994 0.028 regulation of lipid catabolic process [66]

GO:0035722 0.031 interleukin-12-mediated signaling pathway [67]

GO:0070671 0.031 response to interleukin-12 [67]

GO:0016126 0.041 sterol biosynthetic process [68]

GO:0051304 0.042 chromosome separation [69]

GO:0038094 0.047 Fc-gamma receptor signaling pathway [70]

GO:0046620 0.047 regulation of organ growth [71]

GO:0071357 0.048 cellular response to type I interferon [64]

GO:0015908 0.050 fatty acid transport [72]
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Table S8: KEGG terms overrepresented in the hypergeometric test
on Colorectal cancer dataset. KEGG terms are linked to the corresponding
pathway.

KEGG IDs p-value Term References

05130 0.006 Pathogenic Escherichia coli infection [73,74]

00533 0.037 Glycosaminoglycan biosynthesis - keratan sulfate [75,76]

Table S9: GO BP terms overrepresented in the hypergeometric test
on Colorectal cancer dataset. GO BP terms are linked to the corresponding
entry in AmiGO 2 website.

GO IDs p-value Term References

GO:0060294 0.001 cilium movement involved in cell motility [77]

GO:0098581 0.001 detection of external biotic stimulus [78]

GO:1904886 0.002 beta-catenin destruction complex disassembly [79]

GO:0035411 0.002 catenin import into nucleus [80]

GO:1904793 0.003 regulation of euchromatin binding [81]

GO:1900170 0.003 negative regulation of glucocorticoid mediated signaling pathway [82]

GO:0001539 0.003 cilium or flagellum-dependent cell motility [77]

GO:0070434 0.003 positive regulation of nucleotide-binding oligomerization domain containing 2 signaling pathway [83]

GO:0045429 0.005 positive regulation of nitric oxide biosynthetic process [84]

GO:0002537 0.006 nitric oxide production involved in inflammatory response [84,85]

GO:0050702 0.006 interleukin-1 beta secretion [86]

GO:0045976 0.006 negative regulation of mitotic cell cycle, embryonic [87]

GO:0036413 0.006 histone H3-R26 citrullination [88]

GO:1901895 0.008 negative regulation of calcium-transporting ATPase activity [89]

GO:0010909 0.008 positive regulation of heparan sulfate proteoglycan biosynthetic process [90]

GO:0002357 0.011 defense response to tumor cell [91]

GO:0045950 0.011 negative regulation of mitotic recombination [87]

GO:0002322 0.014 B cell proliferation involved in immune response [92]

GO:1904885 0.014 beta-catenin destruction complex assembly [93]

GO:0007197 0.014 adenylate cyclase-inhibiting G-protein coupled acetylcholine receptor signaling pathway [94]

GO:1900227 0.014 positive regulation of NLRP3 inflammasome complex assembly [95]

GO:0070269 0.022 pyroptosis [96]

GO:0061448 0.025 connective tissue development [97]

GO:0051091 0.028 positive regulation of DNA binding transcription factor activity [98]

GO:0051770 0.039 positive regulation of nitric-oxide synthase biosynthetic process [84]

GO:0007252 0.041 I-kappaB phosphorylation [99]

GO:0001906 0.049 cell killing [100]
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