Synthesis of phospho-amino acid analogues as tissue adhesive cement additives

Christopher D. Spicer,*^{a,b,c} Michael Pujari-Palmer,^d Hélène Autefage,^a Gerard Insley,^d Philip Procter,^d Håkan Engqvist^d and Molly M. Stevens*^{a,e}

^aDepartment of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden.

^bDepartment of Chemistry, University of York, Heslington, YO10 5DD, UK.

°York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK.

^dApplied Material Science, Department of Engineering, Uppsala University, 75121 Uppsala, Sweden

^eDepartment of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, United Kingdom.

Table of contents

- **S2** Supplementary figures
- S2 General considerations
- S4 Substrate synthesis
- S14 General phosphorylation procedure
- **S15** Phosphorylation Tyrosine analogues
- **S20** Phosphorylation Serine analogues
- **S22** Unsuccessful phosphorylations
- **S23** General deprotection procedure
- **S23** Deprotection Tyrosine analogues
- **S24** Deprotection Serine analogues
- S25 Allyl-Boc sequential deprotection
- S26 Mechanical testing
- S27 Statistical analyses
- S29 References
- **S31** NMR spectra of novel compounds

Supplementary figures and tables

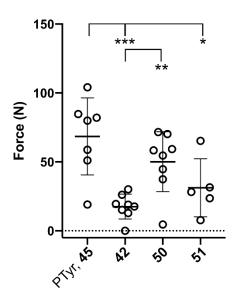
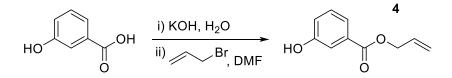


Figure S1: Comparison of cement adhesive strength when applied to bone cubes for representative compounds. Comparison between this graph and the data presented in Fig. 2b shows that trends match those observed for aluminium cube adhesion. Data are represented as scatter dot plots of each individual data point with the bars indicating the mean \pm SD. * represents significant differences between groups (* *p* < 0.05, ** *p* < 0.005, *** *p* < 0.001). Details of the statistical analysis are provided on page S25.

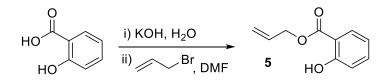
Compound	CPC	Ser	Tyr	L-PSer, 1	D/L-PSer, 1	PTyr, 45	PThr, 57	42	43
Force (N)	0.2	9.4	3.9	211.6	237.2	142.5	150.6	43.4	19.1
Deviation	0.4	12.9	3.9	30.1	26.9	31.2	48.3	12.1	10.4
Compound	47	48	50	51	52	53	54	55	56
Compound Force (N)	47 122.5	48 46.1	50 171.5	51 109.4	52 159.0	53 131.4	54 270.2	55 197.2	56 103.0

Table S1: Tabulated mean adhesive strengths (aluminium-aluminium) and standard deviations for all compounds tested.

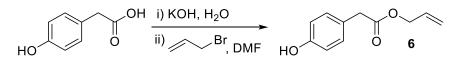
General considerations


Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a Bruker AV-400 (400 MHz) spectrometer. Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker AV400 (100 MHz) spectrometer. NMR shifts were assigned using COSY, HSQC and HMBC spectra. All chemical shifts are quoted on the δ scale in ppm using residual solvent as the internal standard (¹H NMR: CDCl₃ = 7.26; MeOD = 3.31; DMSO- d_6 = 2.50; D₂O = 4.79; and ¹³C NMR: CDCl₃ = 77.16, MeOD = 49.00, DMSO- d_6 = 39.52). Coupling constants (J) are reported in Hz with the following splitting abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, sept = septet, m = respective to the section of the section ofmultiplet, app = apparent, br = broad. Melting points (m.p.) were recorded on a Zeiss Axio Imager: Z1M microscope equipped with a Linkam LTS 420 temperature controlled microscope stage and are uncorrected. Infrared (IR) spectra were recorded on a Perkin Elmer Spectrum 100 spectrophotometer with a Universal ATR Sampling Accessory. Absorption maxima (u_{max}) are reported in wavenumbers (cm^{-1}) . Low resolution mass spectra (LRMS) were recorded on an Agilent 6130 Quadrupole mass spectrometer using electrospray ionization (ESI), connected to an Agilent 1260 Infinity liquid chromatography set-up with a Phenomenex Gemini-NX-C16 column. High resolution mass spectra (HRMS) were recorded on a Waters LCT Premier (ES-ToF) spectrometer connected to an Aquity-iClass UPLC. Matrix-assisted laser desorptionionization (MALDI) spectra were recorded on a Micromass MALDI-ToF spectrometer. Nominal and exact m/z values are reported in Daltons. Thin layer chromatography (TLC) was carried out using aluminium backed sheets coated with 60 F254 silica gel (Merck). Visualization of the silica plates was achieved using a UV lamp ($\lambda_{max} = 254$, 302, or 366 nm), and/or ammonium molybdate (5 % in 2M H₂SO₄), and/or potassium permanganate (5 % KMnO₄ in 1M NaOH with 5 % potassium carbonate). Flash column chromatography was carried out using Geduran Si 60 (40-63 µm) (Merck). Mobile phases are reported as % volume of more polar solvent in less polar solvent. Anhydrous solvents were purchased from Sigma-Aldrich and used as supplied. All other solvents were used as supplied (Analytical or HPLC grade), without prior purification. Reagents were purchased from Sigma-Aldrich and used as supplied, unless otherwise indicated. Brine refers to a saturated solution of sodium chloride. Anhydrous magnesium sulfate (MgSO₄) was used as the drying agent after reaction workup unless otherwise stated.

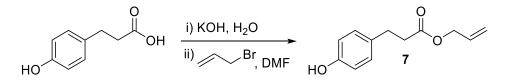
Cortical bovine cubes were created by cutting freshly harvested adult humerus into cubes 1 cm³, with a water cooled, diamond coated, band saw blade (IMEB, California, USA). Each cube was cut in two to yield matching surfaces, and were stored frozen until use. Steel test cubes were made to a final dimension of 1 cm³ +/-0.1 mm. The surfaces were polished with 80 grit polishing paper.


Substrate synthesis

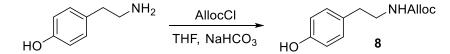
4-Hydroxybenzoic acid (2.76 g, 20 mmol) and potassium hydroxide (1.23 g, 22 mmol) were dissolved in water (20 mL) and stirred for 10 min. The mixture was then concentrated *in vacuo*. The residue was suspended in DMF (20 mL) and allyl bromide (1.9 mL, 22 mmol) was added. After stirring for 18 hrs, the mixture was diluted with EtOAc (150 mL) and the organics washed with brine (2 x 100 mL), dried with MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography, eluting with 20-30 % EtOAc:Hexane. Pure fractions were concentrated *in vacuo* to give the DP as a white solid. A yield of 2.8 g, 15.7 mmol (79 %) was obtained. Data were consistent with those previously reported.¹ ¹H NMR (400 MHz, CDCl₃): δ = 8.01 (2H, d, *J* = 8.8 Hz, ArH2), 6.89 (2H, d, *J* = 8.8 Hz, ArH3), 5.88 (1H, ddt, *J* = 17.2, 10.4, 5.5 Hz, -CH=CH₂), 5.42 (1H, dd, *J* = 17.2, 1.6 Hz, -CH=CH₂), 5.30 (1H, ddt, *J*₁ = 10.4 Hz, *J*₂ = *J*₃ = 1.6 Hz, -CH=CH₂), 4.82 (2H, dt, *J* = 5.5, 1.6 Hz, -CH=CH₂) ppm;



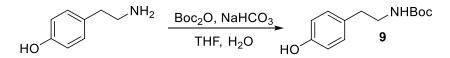
Run as described above on 3-hydroxybenzoic acid (2 g, 14.5 mmol). A yield of 2.3 g, 12.9 mmol (89 %) was obtained as a colourless oil. Data were consistent with those previously reported.¹ ¹H NMR (400 MHz, CDCl₃): δ = 7.60-7.68 (2H, m, ArH2 and ArH6), 7.32 (1H, dd, J_1 = J_2 = 7.9 Hz, ArH5), 7.10 (1H, d, J = 7.9 Hz, ArH4), 6.02 (1H, ddt, J = 17.2, 10.4, 5.5 Hz, - CH=CH₂), 5.42 (1H, d, J = 17.2, -CH=CH₂), 5.30 (1H, d, J = 10.4 Hz, -CH=CH₂), 4.84 (2H, d, J = 5.5, -CH₂CH=CH₂) ppm;



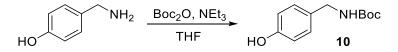
Run as described above on 2-hydroxybenzoic acid (2 g, 14.5 mmol). A yield of 2.2 g, 12.3 mmol (85 %) was obtained as a colourless oil. Data were consistent with those previously reported.¹ ¹H NMR (400 MHz, CDCl₃): δ = 10.78 (1H, s, -O<u>H</u>), 7.90 (1H, ddd, *J* = 7.6, 2.2, 0.4 Hz, Ar<u>H</u>6), 7.47 (1H, ddd, *J* = 7.1, 6.9, 1.4, 0.3 Hz, Ar<u>H</u>4), 7.00 (1H, ddd, *J* = 7.1, 0.8, 0.4 Hz, Ar<u>H</u>3), 6.9 (1H, ddd, *J* = 7.6, 7.1, 0.8 Hz, Ar<u>H</u>5), 6.05 (1H, ddt, *J* = 17.2, 10.4, 5.7 Hz, -C<u>H</u>=CH₂),


5.45 (1H, ddt, J = 17.2, 1.5, 1.4 Hz, -CH=CH₂), 5.30 (1H, ddt, J = 10.4, 1.5, 1.4 Hz, -CH=CH₂), 4.86 (2H, ddd, $J_1 = 5.5$ Hz, $J_2 = J_3 = 1.5$ Hz, -CH₂CH=CH₂) ppm;

Run as described above on 4-hydroxyphenylacetic acid (2 g, 13.2 mmol). Purified by flash column chromatography eluting with 30 % EtOAc:Hexane. A yield of 2.3 g, 11.9 mmol (91 %) was obtained as a colourless oil. Data were consistent with those previously reported.² ¹H NMR (400 MHz, CDCl₃): δ = 7.13 (2H, d, *J* = 7.6 Hz, ArH2), 6.78 (2H, d, *J* = 7.6 Hz, ArH3), 5.92 (1H, ddd, *J* = 17.2, 10.4, 5.6 Hz, -CH=CH2), 5.29 (1H, d, *J* = 17.2 Hz, -CH=CH2), 5.24 (1H, d, *J* = 10.4 Hz, -CH=CH2), 4.62 (2H, d, *J* = 5.6 Hz, -CH2CH=CH2), 3.59 (2H, s, -CH2Ar) ppm;



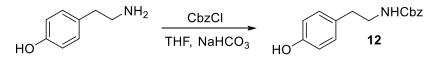
Run as described above on 3-(4-hydroxyphenyl)propionic acid (2 g, 12.0 mmol). Purified by flash column chromatography eluting with 30-40 % EtOAc:Hexane. A yield of 2.2 g, 10.6 mmol (88 %) was obtained as a colourless oil. Data were consistent with those previously reported.³ ¹H NMR (400 MHz, CDCl₃): δ = 7.08 (2H, d, *J* = 8.6 Hz, ArH2), 6.77 (2H, d, *J* = 8.6 Hz, ArH3), 5.91 (1H, ddt, *J* = 17.2, 10.4, 5.7 Hz, -CH=CH2), 5.29 (1H, ddt, *J*₁ = 17.2 Hz, *J*₂ = *J*₃ = 1.3 Hz, -CH=CH2), 5.25 (1H, ddt, *J*₁ = 10.4 Hz, *J*₂ = *J*₃ = 1.3 Hz, -CH=CH2), 4.59 (2H, dt, *J* = 5.7, 1.3 Hz, -CH₂CH=CH₂), 2.91 (2H, t, *J* = 15.4 Hz, -CH₂Ar), 2.65 (2H, t, *J* = 15.4 Hz, -CH₂CO₂All) ppm;



Tyramine (0.5 g, 3.6 mmol) and sodium bicarbonate (919 mg, 10.9 mmol) were dissolved in a mixture of water (10 mL) and THF (10 mL). Allyl chloroformate (422 μ L, 4.0 mmol) was added dropwise, and the reaction stirred for 2 hrs. The mixture was then diluted with hydrochloric acid (0.5 M, 50 mL) and extracted with ethyl acetate (2 x 50 mL). The combined organics were washed with brine (50 mL), dried with MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography, eluting with 30 % EtOAc:Hexane. Pure fractions were concentrated *in vacuo* to give the DP as a brown oil. A yield of 620 mg, 2.8 mmol (78 %) was obtained. ¹H NMR (400 MHz, CDCl₃): δ = 7.03 (2H, d, *J* = 8.4 Hz, ArH3), 6.80 (2H, d, *J* = 8.4 Hz, ArH4), 5.91 (1H, ddt, *J* = 17.2, 10.4, 5.5 Hz, -CH=CH₂), 5.30 (1H, d, *J* = 17.2 Hz, -CH=CH₂), 5.22 (1H, d, *J* = 10.4 Hz, -CH=CH₂), 4.91 (1H, br s, -NH), 4.58 (2H, d, *J* = 5.5 Hz, -

C<u>H</u>₂CH=CH₂), 3.42 (2H, td, *J* = 7.0, 6.4 Hz, -C<u>H</u>₂NHAlloc), 2.74 (2H, t, *J* = 7.0 Hz, -C<u>H</u>₂Ar) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 156.62 (-<u>C</u>O₂All), 154.82 (Ar<u>C</u>4), 132.69 (-<u>C</u>H=CH₂), 130.09 (Ar<u>C</u>1), 129.82 (Ar<u>C</u>2), 117.88 (-CH=<u>C</u>H₂), 115.58 (Ar<u>C</u>3), 65.75 (-<u>C</u>H₂CH=CH₂), 42.46 (-<u>C</u>H₂NHAlloc), 35.17 (-<u>C</u>H₂Ar) ppm; IR (u_{max}, film): 2939 (v br), 1695, 1614, 1596, 1509, 1441, 1365, 1219, 1170, 1134, 1106, 1053 cm⁻¹; HRMS m/z (ESI+): Found: 222.1124 (M+H), Calc.: 222.1130 (C₁₂H₁₆NO₃).

Tyramine (1 g, 7.2 mmol) and sodium bicarbonate (725 mg, 8.6 mmol) were dissolved in a mixture of water (20 mL) and THF (30 mL). A solution of di-*tert*-butyl dicarbonate (1.56 g, 7.2 mmol) in THF (20 mL) was then added dropwise, and the reaction stirred for 4 hrs. The mixture was then diluted with ethyl acetate (150 mL), and the organics washed with water (100 mL) and brine (100 mL), dried with MgSO₄, filtered, and concentrated *in vacuo* to give the DP as a colourless oil. A yield of 1.60 g, 6.7 mmol (93 %) was obtained. Data were consistent with those previously reported.⁴ ¹H NMR (400 MHz, CDCl₃): δ = 7.05 (2H, d, *J* = 7.3 Hz, ArH2), 6.79 (2H, d, *J* = 7.3 Hz, ArH3), 5.49 (1H, br s, -OH), 4.59 (1H, br s, -NH), 3.30-3.40 (2H, m, -CH₂NHBoc), 2.70-2.78 (2H, m, -CH₂Ar), 1.46 (9H, s, Boc) ppm.



A solution of di-*tert*-butyl dicarbonate (2.1 g, 9.7 mmol) in THF (20 mL) was added dropwise to a mixture of 4-hydroxybenzylamine (1 g, 8.1 mmol) and trimethylamine (2.28 mL, 16.2 mmol) in THF (50 mL). After stirring for 18 hrs, the THF was removed *in vacuo* and the residue diluted with ethyl acetate (100 mL). The organics were washed with water (100 mL), hydrochloric acid (1 M, 100 mL), and brine (100 mL), dried with MgSO₄, filtered, and concentrated *in vacuo* to give the DP as a colourless oil. A yield of 1.78 g, 7.9 mmol (98 %) was obtained. Data were consistent with those previously reported.^{5 1}H NMR (400 MHz, CDCl₃): δ = 7.15 (2H, d, *J* = 8.1 Hz, ArH2), 6.80 (2H, d, *J* = 8.1 Hz, ArH3), 5.67 (1H, br s, -OH), 4.82 (1H, br s, -NH), 4.24 (2H, d, *J* = 5.4 Hz, -CH2NHBoc), 1.48 (9H, s, Boc) ppm;

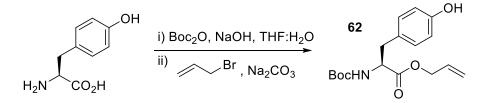


Tyramine (0.5 g, 3.6 mmol) and sodium bicarbonate (302 mg, 3.6 mmol) were dissolved in a mixture of water (20 mL) and THF (10 mL). A solution of fluorenylmethyloxycarbonyl chloride (1.03 g, 4.0 mmol) in THF (10 mL) was then added dropwise, and the reaction stirred for 4 hrs.

The mixture was then diluted with ethyl acetate (150 mL), and the organics washed with water (100 mL) and brine (100 mL), dried with MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by flash column chromatography, eluting with 30 % EtOAc:Hexane. Pure fractions were concentrated *in vacuo* to give the DP as a white solid. A yield of 1.07 g, 3.0 mmol (83 %) was obtained. Data were consistent with those previously reported.⁶ ¹H NMR (400 MHz, CDCl₃): δ = 7.75 (2H, d, *J* = 7.8 Hz, <u>Fmoc</u>), 7.52 (2H, d, *J* = 7.8 Hz, <u>Fmoc</u>), 7.38 (2H, dd, *J*₁ = *J*₂ = 7.8 Hz, <u>Fmoc</u>), 7.30 (2H, dd, *J*₁ = *J*₂ = 7.8 Hz, <u>Fmoc</u>), 7.02 (2H, d, *J* = 8.4 Hz, ArH3), 6.75 (2H, d, *J* = 8.4 Hz, ArH2), 4.71-4.79 (2H, m, -NH and -OH), 4.39 (2H, d, *J* = 6.9 Hz, <u>Fmoc</u>), 4.19 (1H, t, *J* = 6.9 Hz, <u>Fmoc</u>), 3.39 (2H, dt, *J*₁ = *J*₂ = 6.9 Hz, -CH₂NHFmoc), 2.72 (2H, t, *J* = 6.9 Hz, -CH₂Ar) ppm.

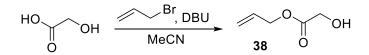
Tyramine (0.5 g, 3.6 mmol) and sodium bicarbonate (302 mg, 3.6 mmol) were dissolved in a mixture of water (20 mL) and THF (10 mL). A solution of benzyl chloroformate (575 µL, 4.0 mmol) in THF (10 mL) was then added dropwise, and the reaction stirred for 4 hrs. The mixture was then diluted with ethyl acetate (150 mL), and the organics washed with water (100 mL) and brine (100 mL), dried with MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by flash column chromatography, eluting with 30 % EtOAc:Hexane. Pure fractions were concentrated *in vacuo* to give the DP as a colourless oil that solidified on standing. A yield of 861 mg, 3.2 mmol (88 %) was obtained. Data were consistent with those previously reported.⁷ ¹H NMR (400 MHz, CDCl₃): δ = 7.29-7.41 (5H, m, <u>Cbz</u>), 7.03 (2H, d, *J* = 7.8 Hz, Ar<u>H</u>3), 6.76 (2H, d, *J* = 7.8 Hz, Ar<u>H</u>2), 5.09 (2H, s, <u>Cbz</u>), 4.76 (1H, br s, -N<u>H</u>), 3.42 (2H, dt, *J*₁ = *J*₂ = 6.7 Hz, -C<u>H</u>₂NHCbz), 2.74 (2H, t, *J* = 6.7 Hz, -C<u>H</u>₂Ar) ppm.

A solution of 2-(4-hydroxyphenyl)ethanol (1.38 g, 10 mmol) and imidazole (748 mg, 11 mmol) in THF (20 mL) was cooled to 0 °C. A solution of TBDMSCI (1.65 g, 11 mmol) in THF (5 mL) was added dropwise, the mixture warmed to room temperature, and stirring continued for 18 hrs. The solvent was then removed *in vacuo* and the residue redissolved in ethyl acetate (100 mL). The organics were washed with aqueous citric acid (10 %, 50 mL) and brine (50 mL), dried with MgSO₄, filtered, and concentrated *in vacuo* to give the DP as a colourless oil that solidified on standing. A yield of 1.92 g, 7.6 mmol (76 %) was obtained. Data were consistent with those previously reported.⁸¹H NMR (400 MHz, CDCl₃): δ = 7.06 (2H, d, *J* = 8.2 Hz, ArH3),

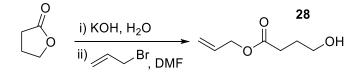

6.74 (2H, d, *J* = 8.2 Hz, Ar<u>H</u>2), 3.76 (2H, t, *J* = 7.1 Hz, -C<u>H</u>₂OR), 2.75 (2H, t, *J* = 7.1 Hz, -C<u>H</u>₂Ar), 0.88 (9H, s, <u>TBDMS</u>), 0.00 (6H, s, <u>TBDMS</u>) ppm.

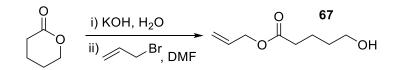
2-(4-hydroxyphenyl)ethanol (3 g, 21.7 mmol) was heated to 85 °C for 18 hrs in hydrobromic acid (48 %, 15 mL). After cooling to room temperature the mixture was diluted with water (75 mL) and extracted with DCM (3 x 100 mL). The combined organics were dried with MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by flash column chromatography, eluting with 20-30 % EtOAc:Hexane. Pure fractions were concentrated *in vacuo* to give the DP as a light brown solid. A yield of 4.2 g, 21.0 mmol (96 %) was obtained. Data were consistent with those previously reported.⁹ ¹H NMR (400 MHz, CDCl₃): 7.08 (2H, d, J = 7.2 Hz, ArH3), 6.79 (2H, d, J = 7.2 Hz, ArH2), 4.75 (1H, br s, -OH), 3.52 (2H, t, J = 7.6 Hz, -CH₂Br), 3.09 (2H, t, J = 7.6 Hz, -CH₂Ar) ppm.

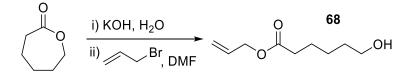
Potassium thioacetate (2.7 g, 24 mmol) was added to a solution of **61** (4 g, 20 mmol) in DMF (10 mL). After stirring for 18 hrs, the mixture was diluted with ethyl acetate (200 mL) and washed with brine (4 x 150 mL). The organics were dried with MgSO₄, filtered, and concentrated *in vacuo* to give the DP as a light brown oil. A yield of 3.6 g, 18.4 mmol (92 %) was obtained. ¹H NMR (400 MHz, CDCl₃): 7.06 (2H, d, J = 7.3 Hz, ArH3), 6.77 (2H, d, J = 7.3 Hz, ArH2), 5.63 (1H, s, -OH), 3.07 (2H, t, J = 7.3 Hz, -CH₂Ar), 2.78 (2H, t, J = 7.3 Hz, -CH₂SAc) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.77$ (-COMe), 154.32 (ArC4), 131.87 (ArC1), 129.67 (ArC2), 115.31 (ArC3), 34.81 (-CH₂Ar), 30.80 (-CH₂SAc), 30.67 (-COMe); IR (u_{max}, film): 3375, 3023, 2928, 1687, 1660, 1613, 1596, 1514, 1444, 1354, 1262, 1219, 1172, 1130, 1100, 1016 cm⁻¹; HRMS m/z (ESI+): Found: 219.0454 (M+Na), Calc.: 219.0450 (C₁₀H₁₂NaO₂S).


A solution of di-*tert*-butyl dicarbonate (3.97 g, 18.2 mmol) in THF (20 mL) was added dropwise to a mixture of L-tyrosine (3 g, 16.6 mmol) and sodium hydroxide (728 mg, 18.2 mmol) in water (20 mL) and THF (20 mL). After stirring for 4 hrs, the THF was removed *in vacuo* and the

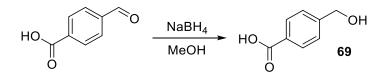
mixture washed with ethyl acetate (50 mL). The aqueous was then acidified with hydrochloric acid (2M, 50 mL), and extracted with ethyl acetate (3 x 100 mL). The combined were dried with MgSO₄, filtered, and concentrated *in vacuo*. The residue was redissolved in DMF (30 mL), and potassium carbonate (2.4 g, 17.2 mmol) and allyl bromide (1.75 mL, 20.3 mmol) were sequentially added. After stirring for 18 hrs, the reaction was diluted with ethyl acetate (200 mL), and the organics washed with hydrochloric acid (1 M, 2 x 100 mL) and brine (100 mL), dried with MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by flash column chromatography, eluting with 20-30 % EtOAc:Hexane. Pure fractions were concentrated *in vacuo* to give the DP as a colourless oil which solidified on standing. A yield of 3.5 g, 10.9 mmol (70 %) was obtained. Data were consistent with those previously reported.^{10 1}H NMR (400 MHz, CDCl₃): δ = 6.99 (2H, d, *J* = 8.3 Hz, ArH₂), 6.74 (2H, d, *J* = 8.3 Hz, ArH₃), 5.89 (1H, ddt, *J* = 17.3, 10.4, 4.8 Hz, -CH=CH₂), 5.32 (1H, d, *J* = 17.3 Hz, -CH=CH₂), 5.26 (1H, d, *J* = 10.4 Hz, -CH=CH₂), 5.03 (1H, br d, *J* = 8.2 Hz, -NH), 4.62 (2H, d, *J* = 4.8 Hz, -CH₂CH=CH₂), 4.53-4.60 (1H, m, H_α), 3.06 (1H, dd, *J* = 13.9, 5.8 Hz, H_β), 3.00 (1H, dd, *J* = 13.9, 6.1 Hz, H_β), 1.43 (9H, s, Boc) ppm;

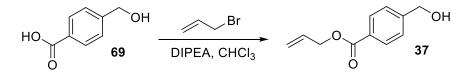

The use of D-tyrosine in the same procedure led to the production of enantiomer 63.


A solution of di-*tert*-butyl dicarbonate (2.4 g, 11 mmol) in THF (20 mL) was added dropwise to a mixture of L-phenylglycine (1.67 g, 10 mmol) and sodium hydroxide (440 mg, 11 mmol) in water (20 mL) and THF (20 mL). After stirring for 4 hrs, the THF was removed *in vacuo* and the mixture washed with ethyl acetate (50 mL). The aqueous was then acidified with hydrochloric acid (2M, 50 mL), and extracted with ethyl acetate (3 x 100 mL). The combined were dried with MgSO₄, filtered, and concentrated *in vacuo*. The residue was redissolved in DMF (15 mL), and potassium carbonate (1.58 g, 11 mmol) and allyl bromide (1.03 mL, 12 mmol) were sequentially added. After stirring for 18 hrs, the reaction was diluted with ethyl acetate (200 mL), and the organics washed with hydrochloric acid (1 M, 2 x 100 mL) and brine (100 mL), dried with MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by flash column chromatography, eluting with 20-30 % EtOAc:Hexane. Pure fractions were concentrated *in vacuo* to give the DP as a colourless oil which solidified on standing. A yield of 2.3 g, 7.5 mmol (75 %) was obtained. Data were consistent with those previously reported.¹⁰ ¹H NMR (400 MHz, CDCl₃): δ = 7.69 (1H, s, -OH), 7.07 (2H, d, *J* = 8.5 Hz, ArH2), 6.67 (2H, d, J = 8.5 Hz, ArH3), 5.60-5.76 (2H, m, -CH=CH₂ & -NH), 5.14 (1H, d, J = 7.1 Hz, -CH=CH₂), 5.00-5.11 (2H, m, -CH=CH₂ & H_a), 5.03 (1H, br d, J = 8.2 Hz, -NH), 4.49 (2H, d, J = 5.1 Hz, -CH₂CH=CH₂), 4.53-4.60 (1H, m, H_a), 1.34 (9H, s, Boc) ppm; ¹³C NMR (100 MHz, CDCI₃): $\delta = 171.40$ (-CO₂All), 156.79 (ArC4), 155.09 (-CO₂/Bu), 131.29 (-CH=CH₂), 128.47 (ArC2), 127.54 (ArC1), 118.52 (-CH=CH₂), 115.91 (ArC3), 80.65 (-CMe₃), 66.12 (d, J = 5.6 Hz, -CH₂CH=CH₂), 57.31 (C_a), 28.31 (Boc) ppm; IR (u_{max}, film): 3360, 2981, 1735, 1687, 1615, 1597, 1514, 1501, 1452, 1393, 1368, 1211, 1158, 1105, 1055, 1028 cm⁻¹; HRMS m/z (ESI+): Found: 330.1311 (M+Na), Calc.: 330.1312 (C₁₆H₂₁NaNO₅).

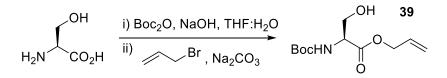

A mixture of glycolic acid (760 mg, 10 mmol), allyl bromide (951 µL, 11 mmol) and 1,8-Diazabicyclo[5.4.0]undec-7-ene (1.65 mL, 11 mmol) was heated to 60 °C for 18 hrs, then concentrated *in vacuo*. The residue was purified by column chromatography, eluting with 30-40 % EtOAc:Hexane. Pure fractions were concentrated *in vacuo* to give the DP as a colourless oil. A yield of 980 mg, 8.4 mmol (84 %) was obtained. ¹H NMR (400 MHz, CDCl₃): δ = 5.92 (1H, ddt, *J* = 17.2, 10.4, 5.8 Hz, -C<u>H</u>=CH₂), 5.35 (1H, d, *J* = 17.2 Hz, -CH=C<u>H₂</u>), 5.29 (1H, d, *J* = 10.4 Hz, -CH=C<u>H₂</u>), 4.70 (2H, d, *J* = 5.8 Hz, -C<u>H</u>₂CH=CH₂), 4.20 (2H, d, *J* = 5.5 Hz, -C<u>H₂OH), 2.70 (1H, t, *J* = 5.5 Hz, -O<u>H</u>) ppm; IR (u_{max}, film): 3439 (br), 2945, 1738, 1649, 1435, 1382, 1272, 1199, 1089 cm⁻¹; HRMS m/z (ESI+): Found: 117.0549 (M+H), Calc.: 117.0546 (C₅H₉O₃).</u>

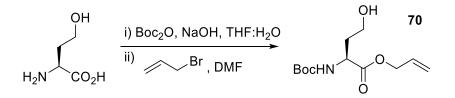
A mixture of γ -butyrolactone (2 mL, 26 mmol) and potassium hydroxide (1.6 g, 28.6 mmol) in water (30 mL) was stirred for 1 hr, then concentrated *in vacuo*. The residue was suspended in DMF (20 mL) and allyl bromide (2.5 mL, 28.6 mmol) was added. After stirring for 18 hrs, the mixture was diluted with EtOAc (150 mL) and the organics washed with hydrochloric acid (1 M, 100 mL) and brine (100 mL), dried with MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography, eluting with 30 % EtOAc:Hexane. Pure fractions were concentrated *in vacuo* to give the DP as a colourless oil. A yield of 3.5 g, 24.3 mmol (93 %) was obtained. Data were consistent with those previously reported.¹¹ ¹H NMR (400 MHz, CDCl₃): δ = 5.89 (1H, ddt, *J* = 17.2, 10.4, 5.7 Hz, -C<u>H</u>=CH₂), 5.29 (1H, ddt, *J*₁ = 17.2 Hz, *J*₂ = *J*₃ = 1.4 Hz, -CH=C<u>H</u>₂), 5.22 (1H, ddt, *J*₁ = 10.4 Hz, *J*₂ = *J*₃ = 1.4 Hz, -CH=C<u>H</u>₂), 4.56 (2H, ddd, *J*₁ = 5.7 Hz, *J*₂ = *J*₃ = 1.4 Hz, -C<u>H</u>₂CH=CH₂), 3.65 (2H, t, *J* = 5.8 Hz, -C<u>H</u>₂OH), 2.45 (2H, t, *J* = 7.2 Hz, -C<u>H</u>₂CO₂All), 1.87 (2H, tt, *J* = 7.2, 5.8 Hz, -CH₂CH₂OH) ppm.


Run as described above on δ-valerolactone (2 g, 16.9 mmol). Purified by flash column chromatography eluting with 25-30 % EtOAc:Hexane. Pure fractions were dissolved in diethyl ether (100 mL), and the organics washed with brine (100 mL x 2), dried with MgSO₄, filtered, and concentrated *in vacuo* to give the DP as a colourless oil. A yield of 2 g, 12.6 mmol (75 %) was obtained. ¹H NMR (400 MHz, CDCl₃): δ = 5.89 (1H, ddt, *J* = 17.2, 10.4, 5.4 Hz, -C<u>H</u>=CH₂), 5.30 (1H, d, *J* = 17.2, -CH=C<u>H₂</u>), 5.23 (1H, d, *J* = 10.4 Hz, -CH=C<u>H₂</u>), 4.56 (2H, d, *J* = 5.4 Hz, -C<u>H</u>₂CH=CH₂), 3.59-3.67 (2H, m, -C<u>H</u>₂CH), 2.37 (2H, t, *J* = 7.2 Hz, -C<u>H</u>₂CO₂All), 2.16 (1H, br s, -O<u>H</u>), 1.65-1.77 (2H, m, -C<u>H</u>₂CH₂CO₂All) 1.54-1.64 (2H, m, -C<u>H</u>₂CH₂OH) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 173.43 (-<u>C</u>O₂All), 132.16 (-<u>C</u>H=CH₂), 118.21 (-CH=<u>C</u>H₂), 65.06 (-<u>C</u>H₂CH=CH₂), 62.08 (-<u>C</u>H₂OH), 33.81 (-<u>C</u>H₂CO₂All), 31.98 (-<u>C</u>H₂CH₂CH₂OH), 21.07 (-<u>C</u>H₂CH₂CO₂All) ppm; IR (u_{max}, film): 3395 (br), 2941, 2873, 1734, 1649, 1453, 1420, 1379, 1272, 1156, 1063 cm⁻¹; HRMS m/z (ESI+): Found: 159.1017 (M+H), Calc.: 159.1016 (C₈H₁₅O₃).

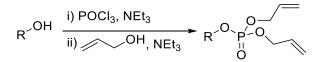

Run as described above on ε-caprolactone (2.21 mL, 21.5 mmol). Purified by flash column chromatography eluting with 50 % EtOAc:Hexane. Pure fractions were dissolved in diethyl ether (100 mL), and the organics washed with brine (100 mL x 2), dried with MgSO₄, filtered, and concentrated *in vacuo*, to give the DP as a light yellow oil. A yield of 2.5 g, 14.0 mmol (70 %) was obtained. ¹H NMR (400 MHz, CDCl₃): δ = 5.91 (1H, ddt, *J* = 17.2, 10.4, 5.7 Hz, -C<u>H</u>=CH₂), 5.31 (1H, ddt, *J*₁ = 17.2 Hz, *J*₂ = *J*₃ = 1.5 Hz, -CH=C<u>H</u>₂), 5.23 (1H, ddt, *J*₁ = 10.4 Hz, *J*₂ = *J*₃ = 1.5 Hz, -CH=C<u>H</u>₂), 4.57 (2H, ddd, *J*₁ = 5.7 Hz, *J*₂ = *J*₃ = 1.5 Hz, -C<u>H</u>₂CH=CH₂), 3.63 (2H, t, *J* = 6.4 Hz, -C<u>H</u>₂CH₂CO₂All), 1.42-1.37 (2H, m, -C<u>H</u>₂CH₂CH₂CH₂OH), 2.35 (2H, t, *J* = 7.4 Hz, -C<u>H</u>₂CH₂OH) 1.44-1.37 (2H, m, -C<u>H</u>₂CH₂CH₂OH) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 173.40 (-<u>C</u>O₂All), 132.22 (-<u>C</u>H=CH₂), 118.16 (-CH=<u>C</u>H₂), 65.00 (-<u>C</u>H₂CH=CH₂), 62.50 (-<u>C</u>H₂OH), 34.13 (-<u>C</u>H₂CO₂All), 32.26 (-<u>C</u>H₂CH₂OH), 25.26 (-<u>C</u>H₂CH₂CH₂OH), 24.60 (-<u>C</u>H₂CH₂CO₂All) ppm; IR (u_{max}, film): 3373 (br), 2938, 2865, 1733, 1456, 1419, 1378,1272, 1173, 1073, 1053 cm⁻¹; HRMS m/z (ESI+): Found: 173.1174 (M+H), Calc.: 173.1172 (C₉H₁₇O₃).

3-Amino-1-propanol (1.5 mL, 19.6 mmol) and sodium carbonate (2.3 g, 21.6 mmol) were dissolved in a mixture of acetonitrile (10 mL) and water (10 mL). Allyl chloroformate (2.3 mL, 21.6 mmol) was then added dropwise and the mixture stirred for 2 hrs. After removal of the acetonitrile *in vacuo*, the mixture was acidified slowly with 2 M hydrochloric acid and extracted with ethyl acetate (2 x 75 mL). The combined organics were dried with MgSO₄, filtered, and concentrated *in vacuo* to give the DP as a colourless oil. A yield of 1.9 g, 11.9 mmol (61 %) was obtained. Data were consistent with those previously reported.¹² ¹H NMR (400 MHz, CDCl₃): δ = 5.91 (1H, ddt, *J* = 17.2, 10.4, 5. Hz, -C<u>H</u>=CH₂), 5.31 (1H, dd, *J* = 17.2, 1.5 Hz, -CH=C<u>H₂), 5.17-5.26 (2H, m, -CH=CH₂ and -N<u>H</u>), 4.56 (2H, d, *J* = 5.6 Hz, -C<u>H</u>₂CH=CH₂), 3.68 (2H, t, *J* = 5.7 Hz, -C<u>H</u>₂OH), 3.44 (2H, dt, *J*₁ = *J*₂ = 6.2 Hz, -C<u>H</u>₂NHAlloc), 1.71 (2H, tt, *J* = 6.2, 5.7 Hz, -C<u>H</u>₂CH₂OH) ppm.</u>

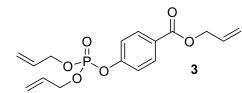

A solution of di-*tert*-butyl dicarbonate (2.4 g, 11 mmol) in DCM (5 mL) was added dropwise to a solution of 3-amino-1-propanol (740 mg, 10 mmol) in DCM (50 mL) and the mixture stirred for 4 hrs. The organics were then washed with water (2 x 50 mL), dried with MgSO₄, filtered, and concentrated *in vacuo* to give the DP as a colourless oil. A yield of 1.75 g, 10 mmol (98 %) was obtained. Data were consistent with those previously reported.¹³ ¹H NMR (400 MHz, CDCl₃): δ = 4.78 (1H, br s, -N<u>H</u>), 3.68 (2H, dt, *J* = 6.2, 5.9 Hz, -C<u>H</u>₂OH), 3.30 (2H, dt, *J*₁ = *J*₂ = 6.0 Hz, -C<u>H</u>₂NHBoc), 2.99 (1H, t, *J* = 6.2 Hz, -O<u>H</u>), 1.67 (2H, tt, *J* = 6.0, 5.9 Hz, -C<u>H</u>₂CH₂OH), 1.46 (9H, Boc) ppm.


Sodium borohydride (1.26 g, 33.3 mmol) was added slowly over 10 min to a suspension of 4carboxybenzaldehyde (2 g, 13.3 mmol) in methanol (50 mL) at 0 °C [CARE: GAS EVOLVED]. After stirring at room temperature for 1 hr, the mixture was acidified with hydrochloric acid (1 M, 150 mL) and extracted with ethyl acetate (150 mL). The organics were dried with MgSO₄, filtered, and concentrated *in vacuo*. The residue was triturated in hexane (100 mL) for 1 hr, collected by filtration, and dried *in vacuo* to give the DP as a white solid. A yield of 1.7 g, 11.1 mmol (83 %) was obtained. Data were consistent with those previously reported.¹⁴ ¹H NMR (400 MHz, DMSO-*d*₆): δ = 12.87 (1H, br s, -CO₂<u>H</u>), 7.91 (2H, d, *J* = 8.4 Hz, Ar<u>H</u>2), 7.43 (2H, d, *J* = 8.4 Hz, Ar<u>H</u>3), 4.58 (2H, s, -C<u>H</u>₂OH) ppm.

A mixture of **69** (1.6 g, 10.1 mmol), allyl bromide (1.3 mL, 15.1 mmol), and DIPEA (2.63 mmol, 15.1 mmol) in chloroform (50 mL) was refluxed for 2 hrs. After cooling to room temperature, the mixture was washed with water (50 mL), dried with MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by flash column chromatography eluting with 30-40 % EtOAc:Hexane. Pure fractions were concentrated *in vacuo* to give the DP as a colourless oil. A yield of 740 mg, 3.85 mmol (38 %) was obtained. Data were consistent with those previously reported.^{15 1}H NMR (400 MHz, CDCl₃): $\delta = 8.07$ (2H, d, J = 7.8 Hz, ArH2), 7.46 (2H, d, J = 7.8 Hz, ArH3), 6.06 (1H, ddt, J = 17.2, 10.4, 5.7 Hz, -CH=CH2), 5.43 (1H, ddt, $J_1 = 17.2$ Hz, $J_2 = J_3 = 1.5$ Hz, -CH=CH2), 5.31 (1H, ddt, $J_1 = 10.4$ Hz, $J_2 = J_3 = 1.5$ Hz, -CH=CH2), 4.84 (2H, ddd, $J_1 = 5.7$ Hz, $J_2 = J_3 = 1.5$ Hz, -CH₂CH=CH₂), 4.79 (2H, d, J = 5.8 Hz, -CH₂OH), 1.94 (1H, t, J = 5.8 Hz, -OH) ppm.

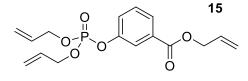


A solution of di-tert-butyl dicarbonate (6.85 g, 31.4 mmol) in THF (20 mL) was added dropwise to a solution of L-serine (3 g, 28.5 mmol) in THF (30 mL) and sodium hydroxide (1 M, 57 mL), and the mixture stirred for 4 hrs. After removing the THF in vacuo the mixture was acidified with 1 M hydrochloric acid and extracted with ethyl acetate (2 x 100 mL). The combined organics were dried with MgSO₄, filtered, and concentrated in vacuo. The residue was dissolved in DMF (30 mL) and potassium carbonate (4.7 g, 34.2 mmol) and allyl bromide (2.7 mL, 31.4 mmol) were sequentially added. After stirring for 18 hrs, the mixture was diluted with ethyl acetate (250 mL) and the organics washed with water (100 mL), hydrochloric acid (1 M, 100 mL), and brine (100 mL), dried with MgSO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography, eluting with 30-40 % EtOAc:Hexane. Pure fractions were concentrated in vacuo to give the DP as a colourless oil. A yield of 2.7 g, 11.0 mmol (39 %) was obtained. Data were consistent with those previously reported.¹⁶ ¹H NMR (400 MHz, CDCl₃): δ = 5.93 (1H, ddt, J = 17.1, 10.5, 5.7 Hz, -CH=CH₂), 5.47 (1H, br s, -N<u>H</u>), 5.36 (1H, ddt, $J_1 = 17.1$ Hz, $J_2 = J_3 = 1.5$ Hz, -CH=C<u>H</u>₂), 5.28 (1H, ddt, $J_1 = 10.5$ Hz, $J_2 = 10.5$ Hz, $J_3 = 1.5$ Hz, -CH=CH₂), 4.69 (2H, ddd, $J_1 = 5.7$ Hz, $J_2 = J_3 = 1.5$ Hz, -CH₂CH=CH₂), 4.39-4.46 $(1H, m, H_{\alpha})$, 3.90-4.04 $(2H, m, H_{\beta})$, 1.47 (9H, s, Boc) ppm.

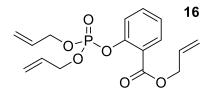

A solution of di-*tert*-butyl dicarbonate (4.8 g, 22 mmol) in THF (20 mL) was added dropwise to a solution of L-homoserine (2.38 g, 20 mmol) in THF (30 mL) and sodium hydroxide (1 M, 20 mL), and the mixture stirred for 4 hrs. After concentration *in vacuo*, the residue was dissolved in DMF (30 mL), allyl bromide (1.9 mL, 22 mmol) was added, and the mixture stirred for 18 hrs. Ethyl acetate (200 mL) was then added and the organics were washed with hydrochloric acid (1M, 2 x 150 mL) and brine (100 mL), dried withMgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by flash column chromatography, eluting with 30-40 % EtOAc:Hexane. Pure fractions were concentrated *in vacuo* to give the DP as a colourless oil. A yield of 3.9 g, 15.0 mmol (75 %) was obtained. Data were consistent with those previously reported.¹⁶ ¹H NMR (400 MHz, CDCl₃): δ = 5.91 (1H, ddt, *J* = 17.1, 10.4, 5.8 Hz, -C<u>H</u>=CH₂), 5.43 (1H, br d, *J* = 7.3 Hz, -N<u>H</u>), 5.35 (1H, ddt, *J*₁ = 17.1 Hz, *J*₂ = *J*₃ = 1.5 Hz, -CH=CH₂), 5.27 (1H, ddt, *J*₁ = 10.4 Hz, *J*₂ = *J*₃ = 1.5 Hz, -CH=C<u>H</u>₂), 4.65 (2H, ddd, *J*₁ = 5.8 Hz, *J*₂ = *J*₃ = 1.5 Hz, -C<u>H</u>₂CH=CH₂), 4.47-4.55 (1H, m, <u>H</u>_α), 3.60-3.80 (2H, m, <u>H</u>_γ), 3.24 (1H, t, *J* = 3.0 Hz, -O<u>H</u>), 2.12-2.23 (1H, m, <u>H</u>_β), 1.60-1.73 (1H, m, <u>H</u>_β), 1.45 (9H, s, <u>Boc</u>) ppm.

General phosphorylation procedure

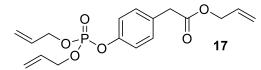
A solution of the specified alcohol (1 mmol) in DCM (5 mL) was added dropwise to a solution of phosphorous (V) oxychloride (1.5 mmol) and triethylamine (1.5 mmol) in DCM (10 mL). After stirring for 4 hrs, allyl alcohol (4 mmol) and triethylamine (4 mmol) were added sequentially, and the mixture stirred for 18 hrs. The volatiles were then removed *in vacuo*, and the residue suspended in THF (10 mL). After stirring for 15 min, the precipitated triethylamine hydrochloride was removed by filtration and washed with THF (10 mL), and the combined organics concentrated *in vacuo*. The residue was purified by flash column chromatography and pure fractions combined to give the specified product. Phosphorous NMR is provided for representative compounds.


Phosphorylation – Tyrosine analogues

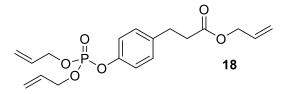
Run on **2** on a 5.6 mmol scale. Purified by flash column chromatography, eluting with 20-30 % EtOAc:Hexane. A yield of 0.74 g, 2.2 mmol (40 %) was obtained as a colourless oil. ¹H NMR (400 MHz, CDCl₃): δ = 8.06 (2H,


dd, J = 8.4, 0.6 Hz, ArH2), 7.29 (2H, dd, J = 8.4, 0.6 Hz, ArH3), 5.89-6.09 (3H, m, -CH=CH2), 5.35-5.44 (3H, m, -CH=CH2), 5.25-5.32 (3H, m, -CH=CH2), 4.81 (1H, ddd, $J_1 = 5.6$ Hz, $J_2 = J_3 = 1.4$ Hz, -CH2CH=CH2), 4.63-4.68 (2H, m, -CH2CH=CH2) ppm; ¹³C NMR (100 MHz, CDCI3): $\delta = 165.34$ (-CO2AII), 154.26 (d, J = 6.7 Hz, ArC4), 132.10 (-CH=CH2), 131.89 (-CH=CH2), 131.83 (-CH=CH2), 131.62 (ArC2), 127.02 (ArC1), 119.92 (-CH=CH2), 119.87 (-CH=CH2), 118.92 (ArC3), 118.34 (-CH=CH2), 69.06 (-CH2CH=CH2), 69.00 (-CHCH=CH2), 65.64 (-CH2CH=CH2) ppm; ³¹P (160 MHz, CDCI3): $\delta = -6.12$ ppm; IR (u_{max}, film): 3084, 2022, 2948, 2887, 1718, 1649, 1603, 1505, 1458, 1424, 1414, 1362, 1266, 1220, 1163, 1095, 1013 cm⁻¹; HRMS m/z (ESI+): Found: 339.1002 (M+H), Calc.: 339.0998 (C₁₆H₂₀O₆P).

The reaction was amenable to synthesis on a 5 g scale (28 mmol), providing a yield of 4.5 g, 13.3 mmol (48 %). ¹H NMR (400 MHz, CDCl₃): δ = 8.03 (2H, dd, *J* = 8.5, 0.6 Hz, Ar<u>H</u>2), 7.25 (2H, dd, *J* = 8.5, 0.6 Hz, Ar<u>H</u>3), 5.84-6.06 (3H, m, -C<u>H</u>=CH₂), 5.31-5.40 (3H, m, -CH=C<u>H₂</u>), 5.22-5.29 (3H, m, -CH=C<u>H₂</u>), 4.80 (1H, ddd, *J*₁ = 5.6 Hz, *J*₂ = *J*₃ = 1.4 Hz, -C<u>H₂</u>CH=CH₂), 4.67 (2H, m, -C<u>H</u>₂CH=CH₂) ppm;


Run on **4** on a 10 mmol scale. Purified by flash column chromatography, eluting with 30 % EtOAc:Hexane. A yield of 1.8 g, 5.3 mmol (53 %) was obtained as a colourless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.85-7.91

(2H, m, *J* = 8.4 Hz, Ar<u>H</u>2 and Ar<u>H</u>6), 7.37-7.49 (2H, m, Ar<u>H</u>4 and Ar<u>H</u>5), 5.87-6.07 (3H, m, -C<u>H</u>=CH₂), 5.33-5.43 (3H, m, -CH=C<u>H</u>₂), 5.24-5.31 (3H, m, -CH=C<u>H</u>₂), 4.82 (1H, ddd, *J*₁ = 5.6 Hz, *J*₂ = *J*₃ = 1.4 Hz, -C<u>H</u>₂CH=CH₂), 4.62-4.67 (2H, m, -C<u>H</u>₂CH=CH₂) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 165.16 (-<u>C</u>O₂All), 150.60 (d, *J* = 6.8 Hz, Ar<u>C</u>3), 131.97 (-<u>C</u>H=CH₂), 131.89 (-<u>C</u>H=CH₂), 129.77 (Ar<u>C</u>5), 126.36 (Ar<u>C</u>1), 124.72 (d, *J*=4.5 Hz, Ar<u>C</u>4), 121.30 (Ar<u>C</u>2/6), 121.24 (Ar<u>C</u>2/6), 68.95 (d, *J* = 5.9 Hz, -<u>C</u>H₂CH=CH₂), 65.81 (-<u>C</u>H₂CH=CH₂) ppm; ³¹P (160 MHz, CDCl₃): δ = -5.66 ppm; IR (u_{max}, film): 3084, 2947, 2890, 1721, 1649, 1587, 1486, 1443, 1362, 1292, 1266, 1202, 1097, 1021, 1006 cm⁻¹; HRMS m/z (ESI+): Found: 361.0829 (M+Na), Calc.: 361.0817(C₁₆H₁₉NaO₆P).

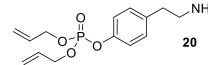

Run on **5** on a 1.1 mmol scale. Purified by flash column chromatography, eluting with 20-30 % EtOAc:Hexane. A yield of 110 mg, 0.32 mmol (30 %) was obtained as a colourless oil. ¹H (400 MHz, CDCl₃): δ = 7.83 (1H, dd, *J* = 7.8, 2.5 Hz, ArH6),

7.36-7.46 (2H, m, Ar<u>H</u>4 and Ar<u>H</u>5), 7.16 (2H, dd, J = 7.0, 2.4 Hz, Ar<u>H</u>3), 5.80-6.02 (3H, m, -C<u>H</u>=CH₂), 5.25-5.37 (3H, m, -CH=C<u>H₂</u>), 5.13-5.23 (3H, m, -CH=C<u>H₂</u>), 4.73 (1H, ddd, $J_1 = 5.6$ Hz, $J_2 = J_3 = 1.4$ Hz, -C<u>H</u>₂CH=CH₂), 4.57-4.63 (2H, m, -C<u>H</u>₂CH=CH₂) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.46$ (-<u>C</u>O₂All), 149.65 (d, J = 6.6 Hz, Ar<u>C</u>2), 133.60 (Ar<u>C</u>4), 132.21 (-<u>C</u>H=CH₂), 132.14 (-<u>C</u>H=CH₂), 132.05 (-<u>C</u>H=CH₂), 131.677 (Ar<u>C</u>6), 124.95 (Ar<u>C</u>3), 123.05 (d, J = 6.2 Hz Ar<u>C</u>1), 121.61 (d, J = 2.6 Hz, Ar<u>C</u>3), 118.47 (-CH=<u>C</u>H₂), 69.01 (-<u>C</u>H₂CH=CH₂), 68.95 (-<u>C</u>H₂CH=CH₂), 65.83 (-<u>C</u>HCH=CH₂) ppm; ³¹P (160 MHz, CDCl₃): $\delta = -6.35$ ppm; IR (u_{max}, film): 3084, 3021, 2985, 2947, 2887, 1727, 1649, 1603, 1582, 1488, 1450, 1295, 1287, 1250, 1219, 1129, 1079, 1020 cm⁻¹; HRMS m/z (ESI+): Found: 339.1002 (M+H), Calc.: 339.0998 (C₁₆H₂₀O₆P).

Run on **6** on a 11.9 mmol scale. Purified by flash column chromatography, eluting with 30-40 % EtOAc:Hexane. A yield of 1.8 g, 5.1 mmol (43 %) was

obtained as a colourless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.27$ (2H, d, J = 9.0 Hz, Ar<u>H</u>2), 7.29 (2H, dd, J = 9.0, 1.1 Hz, Ar<u>H</u>3), 5.85-6.00 (3H, m, -C<u>H</u>=CH₂), 5.34-5.41 (2H, m, -CH=C<u>H</u>₂), 5.20-5.31 (4H, m, -CH=C<u>H</u>₂), 4.54-4.67 (6H, m, -C<u>H</u>₂CH=CH₂), 3.63 (2H, s, -C<u>H</u>₂CO₂All) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.94$ (-<u>C</u>O₂All), 149.74 (d, J = 6.9 Hz, Ar<u>C</u>4), 132.11 (-<u>C</u>H=CH₂), 132.04 (-<u>C</u>H=CH₂), 131.91 (-<u>C</u>H=CH₂), 130.78 (Ar<u>C</u>1), 130.60 (Ar<u>C</u>2), 120.15 (-CH=<u>C</u>H₂), 120.10 (-CH=<u>C</u>H₂), 118.65 (Ar<u>C</u>3), 118.37 (-CH=<u>C</u>H₂), 68.14 (d, J = 5.4 Hz, -<u>C</u>H₂CH=CH₂), 65.54 (-<u>C</u>H₂CH=CH₂), 40.51 (-<u>C</u>H₂CO₂All) ppm; IR (u_{max}, film): 3082, 2948, 2088, 1727, 1649, 1603, 1582, 1488, 1450, 1425, 1361, 1297, 1287, 1220, 1078, 1020 cm⁻¹; HRMS m/z (ESI+): Found: 375.0969 (M+Na), Calc.: 375.0968 (C₁₇H₂₁NaO₆P).

Run on **7** on a 8.7 mmol scale. Purified by flash column chromatography, eluting with 30 % EtOAc:Hexane. A yield of 1.7 g, 4.8 mmol (55 %) was obtained as a colourless oil. ¹H NMR (400


MHz, CDCl₃): δ = 7.11-7.20 (4H, m, Ar<u>H</u>2 & Ar<u>H</u>3), 5.83-6.00 (3H, m, -C<u>H</u>=CH₂), 5.30-5.41 (3H, m, -CH=C<u>H₂</u>), 5.20-5.29 (3H, m, -CH=C<u>H₂</u>), 4.61-4.67 (4H, m, -C<u>H₂</u>CH=CH₂), 4.58 (2H, ddd, J_1 = 5.7 Hz, J_2 = J_3 = 1.4 Hz, -C<u>H</u>₂CH=CH₂), 2.94 (2H, t, J = 7.7 Hz, -C<u>H</u>₂Ar), 2.64 (2H, d, J = 7.7 Hz, -C<u>H</u>₂CO₂All) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 172.31 (-<u>C</u>O₂All), 149.06 (d, J = 6.9 Hz, Ar<u>C</u>4), 137.32 (Ar<u>C</u>1), 132.16 (-<u>C</u>H=CH₂), 132.08 (-<u>C</u>H=CH₂), 129.55 (Ar<u>C</u>2), 120.06 (-CH=<u>C</u>H₂), 120.02 (-CH=<u>C</u>H₂), 118.59 (Ar<u>C</u>3), 118.32 (-CH=<u>C</u>H₂), 68.77 (d, J = 5.6 Hz, -

CH₂CH=CH₂), 65.19 (-CH₂CH=CH₂), 35.79 (-CH₂CO₂All), 30.16 (-CH₂Ar) ppm; IR (u_{max}, film): 3080, 2984, 2943, 1733, 1649, 1608, 1507, 1454, 1424, 1377, 1277, 1214, 1165, 1099, 1016 cm⁻¹; HRMS m/z (ESI+): Found: 389.1145 (M+Na), Calc.: 389.1130 (C₁₈H₂₃NaO₆P).

19

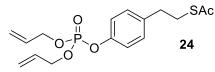
NHAlloc Run on 8 on a 0.7 mmol scale. Purified by flash column chromatography, eluting with 30-50 % EtOAc:Hexane. A yield of 115 mg, 0.3 mmol (44 %) was obtained as a

colourless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.13 (4H, app s, Ar<u>H</u>2 & Ar<u>H</u>3), 7.29 (2H, dd, J = 8.4, 0.6 Hz, ArH3), 5.83-5.98 (3H, m, -CH=CH₂), 5.16-5.39 (6H, m, -CH=CH₂), 4.98 (1H, br t, J = 6.7 Hz, -NH), 4.59-4.66 (4H, m, -CH₂CH=CH₂), 4.53 (2H, d, J = 5.6 Hz, -CH₂CH=CH₂), 3.38 (2H, dt, $J_1 = J_2 = 6.7$ Hz, $-CH_2$ NHAlloc), 2.77 (2H, t, J = 6.7 Hz, $-CH_2$ Ar) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 156.91 (-NH<u>C</u>O₂All), 149.19 (d, J = 6.9 Hz, Ar<u>C</u>4), 135.72 (Ar<u>C</u>1), 132.92 (-CH=CH₂), 132.10 (-CH=CH₂), 132.03 (-CH=CH₂), 129.99 (ArC2), 120.15 (-CH=CH₂), 120.10 (-CH=CH₂), 118.63 (ArC3), 117.57 (-CH=CH₂), 68.79 (d, J = 5.8 Hz, -CH₂CH=CH₂), 65.43 (-<u>C</u>H₂CH=CH₂), 42.14 (-<u>C</u>H₂NHAlloc), 35.36 (-<u>C</u>H₂Ar) ppm; IR (u_{max}, film): 3320, 3082, 2940, 2883, 1707, 1648, 1607, 1529, 1506, 1459, 1424, 1412, 1365, 1249, 1214, 1167, 1138, 1097, 1015 cm⁻¹; HRMS m/z (ESI+): Found: 382.1412 (M+H), Calc.: 382.1410 (C₁₈H₂₅NO₆P).

NHBoc Run on 9 on a 5.4 mmol scale. Purified by flash column chromatography, eluting with 20-40 % EtOAc:Hexane. A yield of 1.2 g, 3.0 mmol (57 %) was obtained. ¹H NMR

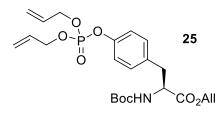
(400 MHz, CDCl₃): δ = 7.16 (4H, app s, Ar<u>H</u>), 5.90-6.01 (2H, m, -C<u>H</u>=CH₂), 5.38 (2H, ddt, J₁ = 17.1 Hz, $J_2 = J_3 = 1.5$ Hz, -CH=C<u>H</u>₂), 5.24-5.30 (2H, m, -CH=C<u>H</u>₂), 4.62-4.69 (4H, m, -CH₂CH=CH₂), 4.52-4.60 (1H, m, -NH), 3.35 (2H, td, J = 6.9, 6.4 Hz, -CH₂NHBoc), 2.77 (2H, t, J = 6.9 Hz, -CH₂Ar), 1.44 (9H, s, <u>Boc</u>) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 155.82$ (-<u>C</u>O₂R), 149.19 (d, J = 7.1 Hz, ArC4), 135.91 (ArC1), 132.11 (d, J = 6.9 Hz, -CH=CH₂), 130.00 (ArC2), 120.11 (d, J = 4.8 Hz, $-CH=CH_2$), 118.61 (ArC3), 79.27 ($-CMe_3$), 68.79 (d, J = 5.7 Hz, -<u>CH</u>₂CH=CH₂), 47.73 (-<u>C</u>H₂NHBoc), 35.46 (-<u>C</u>H₂Ar), 28.39 (-C<u>Me</u>₃) ppm; IR (u_{max}, film): 3336, 2977, 2935, 1708, 1608, 1507, 1458, 1391, 1365, 1273, 1252, 1215, 1167, 1099, 1014 cm⁻¹; HRMS m/z (ESI+): Found: 415.1990 (M+H), Calc.: 415.1992 (C₁₉H₂₉NO₆P).

Run on 10 on a 4.5 mmol scale. Purified by flash column chromatography, eluting with 20-30 % EtOAc:Hexane. A yield of 0.98 g, 2.6 mmol (57 %) was obtained. ¹H NMR (400


MHz, CDCl₃): δ = 7.25 (2H, d, J = 8.5 Hz, Ar<u>H</u>2), 7.16-7.20 (2H, m, Ar<u>H</u>3), 5.88-6.01 (2H, m, -CH=CH₂), 5.34-5.41 (2H, m, -CH=CH₂), 5.24-5.29 (2H, m, -CH=CH₂), 4.91 (1H, br s, -NH), 4.52-4.67 (4H, m, -CH₂CH=CH₂), 4.28 (2H, br d, J = 5.7 Hz, -CH₂NHBoc), 1.46 (9H, s, <u>Boc</u>) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 155.84 (-<u>C</u>O₂R), 149.79 (d, J = 6.4 Hz, Ar<u>C</u>4), 135.94

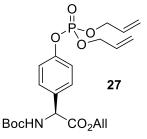
(Ar<u>C</u>1), 132.53 (d, J = 6.9 Hz, -<u>C</u>H=CH₂), 128.81 (Ar<u>C</u>2), 120.14 (d, J = 4.8 Hz, -CH=<u>C</u>H₂), 118.65 (Ar<u>C</u>3), 79.65 (-<u>C</u>Me₃), 68.81 (d, J = 5.6 Hz, -<u>C</u>H₂CH=CH₂), 44.00 (-<u>C</u>H₂NHBoc), 28.39 (-C<u>Me₃) ppm; IR (u_{max}, film): 3328, 2978, 2934, 1708, 1607, 1506, 1458, 1425, 1391, 1365, 1268, 1252, 1214, 1162, 1098, 1014 cm⁻¹; HRMS m/z (ESI+): Found: 401.1839 (M+H), Calc.: 401.1836 (C₁₈H₂₇NO₆P).</u>

NHFmoc Run on 11 on a 180 µmol scale. Purified by flash column chromatography, eluting with 20-50 % 22 EtOAc:Hexane. A yield of 72 mg, 138 µmol (77 %) was obtained. ¹H NMR (400 MHz, CDCl₃): δ = 7.77 (2H, d, J = 7.3 Hz, Fmoc), 7.57 (2H, d, J = 7.3 Hz, <u>Fmoc</u>), 7.40 (2H, dd, J₁ = J₂ = 7.3 Hz, <u>Fmoc</u>), 7.31 (2H, dd, J₁ = J₂ = 7.3 Hz, <u>Fmoc</u>), 7.11-7.24 (4H, m, Ar<u>H</u>), 5.89-6.01 (2H, m, $-C_{H}=C_{H_2}$), 5.37 (2H, ddt, $J_1 = 17.1$ Hz, $J_2 = J_3 = 1.5$ Hz, -CH=C<u>H</u>₂), 5.26 (2H, ddt, J_1 = 10.4 Hz, J_2 = J_3 = 1.5 Hz -CH=C<u>H</u>₂), 4.78 (1H, br t, J = 7.1 Hz, -NH), 4.50-4.69 (4H, m, -CH₂CH=CH₂), 4.40 (2H, d, J = 6.9 Hz, Fmoc), 4.20 (1H, t, J = 6.9 Hz, Fmoc), 3.41 (2H, dt, J = 7.1, 6.9 Hz, -CH₂NHFmoc), 2.77 (2H, t, J = 6.9 Hz, -CH₂Ar) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 156.38 (-<u>C</u>O₂R), 149.47 (Ar<u>C</u>4), 144.02 (<u>Fmoc</u>), 141.43 (<u>Fmoc</u>), 132.19 (d, J = 6.9 Hz, -CH=CH₂), 130.14 (ArC2), 127.78 (Fmoc), 127.13 (Fmoc), 125.11 (<u>Fmoc</u>), 120.28 (d, *J* = 5.0 Hz, Ar<u>C</u>3), 120.07 (-CH=<u>C</u>H₂), 118.75 (<u>Fmoc</u>), 118.38 (Ar<u>C</u>1), 68.91 (d, J = 5.7 Hz, -<u>C</u>H₂CH=CH₂), 66.63 (<u>Fmoc</u>), 47.38 (<u>Fmoc</u>), 42.30 (-<u>C</u>H₂NHFmoc), 35.52 (-<u>CH</u>₂Ar) ppm; IR (u_{max}, film): 3318, 3066, 2942, 1716, 1608, 1537, 1506, 1450, 1424, 1251, 1216, 1167, 1138, 1101, 1017 cm⁻¹; HRMS m/z (ESI+): Found: 542.1709 (M+Na), Calc.: 542.1703 (C₂₉H₃₀NaNO₆P).


NHCbz Run on 12 on a 180 μmol scale. Purified by flash column chromatography, eluting with 30-50 % EtOAc:Hexane. A yield of 38 mg, 88 μmol (49 %) was obtained. ¹H NMR

(400 MHz, CDCl₃): δ = 7.31 (5H, app s, <u>Cbz</u>), 7.10 (4H, app s, Ar<u>H</u>), 5.84-5.97 (2H, m, -C<u>H</u>=CH₂), 5.33 (2H, ddt, J₁ = 17.1 Hz, J₂ = J₃ = 1.5 Hz, -CH=C<u>H</u>₂), 5.22 (2H, ddt, J₁ = 10.4 Hz, J₂ = J₃ = 1.5 Hz -CH=C<u>H</u>₂), 5.05 (2H, s, <u>Cbz</u>), 4.92-4.99 (1H, br m, -N<u>H</u>), 4.60 (4H, ddd, J₁ = 7.8 Hz, J₂ = J₃ = 1.5 Hz -C<u>H</u>=CH=CH₂), 3.33-3.41 (2H, m, -C<u>H</u>₂NHCbz), 2.75 (2H, t, J = 6.9 Hz, -C<u>H</u>₂Ar) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 156.79 (-<u>C</u>O₂R), 149.65 (d, J = 7.2 Hz, Ar<u>C</u>4), 136.99 (Ar<u>C</u>1), 136.13 (<u>Cbz</u>), 132.52 (d, J = 7.0 Hz, -<u>C</u>H=CH₂), 130.46 (Ar<u>C</u>2), 128.96 (<u>Cbz</u>), 128.56 (<u>Cbz</u>) 120.59 (d, J = 4.8 Hz, -CH=<u>C</u>H₂), 119.10 (Ar<u>C</u>3), 69.26 (d, J = 5.8 Hz, -<u>C</u>H₂CH=CH₂), 67.06 (<u>Cbz</u>), 42.64 (-<u>C</u>H₂NHR), 35.78 (-<u>C</u>H₂Ar) ppm; IR (u_{max}, film): 3315, 2940, 2885, 1713, 1607, 1528, 1506, 1455, 1425, 1366, 1249, 1214, 1167, 1135, 1098, 1015 cm⁻¹; HRMS m/z (ESI+): Found: 432.1569 (M+H), Calc.: 432.1571 (C₂₂H₂₇NO₆P).

Run on **14** on a 1.5 mmol scale. The phosphorylation was quenched with 2.5 equiv allyl alcohol and triethylamine to minimise alcoholysis of the thioester. Purified by flash


column chromatography, eluting with 20-30 % EtOAc:Hexane. A yield of 287 mg, 0.85 µmol (57 %) was obtained. ¹H NMR (400 MHz, CDCl₃): δ = 7.06-7.18 (4H, m, Ar<u>H</u>), 5.82-5.96 (2H, m, -C<u>H</u>=CH₂), 5.13-5.39 (4H, m, -CH=C<u>H</u>₂), 4.43-4.67 (4H, m, -C<u>H</u>₂CH=CH₂), 2.99-3.07 (2H, m, -C<u>H</u>₂Ar), 2.80 (2H, t, *J* = 7.4 Hz, -C<u>H</u>₂SAc), 2.30 (3H, s, -S<u>Ac</u>); ¹³C NMR (100 MHz, CDCl₃): δ = 195.77 (-<u>C</u>OMe), 149.23 (d, *J* = 6.6 Hz, Ar<u>C</u>4), 136.91 (Ar<u>C</u>1), 132.10 (d, *J* = 7.3 Hz, -C<u>H</u>=CH₂), 129.89 (Ar<u>C</u>2), 120.19 (d, *J* = 4.5 Hz, -CH=<u>C</u>H₂), 118.67 (Ar<u>C</u>3), 68.99 (d, *J* = 5.7 Hz, -<u>C</u>H₂CH=CH₂), 35.19 (-<u>C</u>H₂Ar), 30.70 (-<u>C</u>H₂SAc), 30.50 (-CO<u>Me</u>) ppm; IR (u_{max}, film): 2926, 1689, 1507, 1425, 1355, 1216, 1169, 1134, 1100, 1028, 1017 cm⁻¹; HRMS m/z (ESI+): Found: 357.0913 (M+H), Calc.: 357.0920 (C₁₆H₂₂O₅PS).

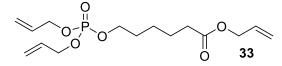
Run on **64** on a 3.5 mmol scale. Purified by flash column chromatography, eluting with 20-40 % EtOAc:Hexane. A yield of 570 mg, 1.2 mmol (35 %) was obtained as a colourless oil. ¹H NMR (400 MHz, CDCl₃): δ = 6.99-7.11 (4H, m, ArH2 & ArH3), 5.72-5.92 (3H, m, -CH=CH₂), 5.13-5.34

(6H, m, -CH=C<u>H</u>₂), 4.93 (1H, br d, *J* = 6.8 Hz, -N<u>H</u>), 4.43-4.60 (7H, m, -C<u>H</u>₂CH=CH₂ & <u>H</u>_α), 2.91-3.08 (2H, m, <u>H</u>_β), 1.34 (9H, s, <u>Boc</u>) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 171.36 (-<u>C</u>O₂All), 155.09 (-<u>C</u>O₂^{*t*}Bu), 149.67 (d, *J* = 6.9 Hz, Ar<u>C</u>4), 132.91 (Ar<u>C</u>1), 132.07 (d, *J* = 6.9 Hz, -<u>C</u>H=CH₂), 131.42 (-<u>C</u>H=CH₂), 130.64 (Ar<u>C</u>2), 120.05 (d, *J* = 4.6 Hz, -CH=<u>C</u>H₂), 119.07 (-CH=<u>C</u>H₂), 118.64 (Ar<u>C</u>3), 79.98 (-<u>C</u>Me₃), 68.80 (d, *J* = 5.6 Hz, -<u>C</u>H₂CH=CH₂), 65.98 (-<u>C</u>H₂CH=CH₂), 54.39 (<u>C</u>_α), 37.52 (<u>C</u>_β), 28.27 (<u>Boc</u>) ppm; IR (u_{max}, film): 3304, 3078, 2978, 2935, 2168, 1742, 1711, 1608, 1507, 1454, 1425, 1391, 1366, 1344, 1272, 1215, 1163, 1099, 1016 cm⁻¹; HRMS m/z (ESI+): Found: 504.1763 (M+Na), Calc.: 504.1758 (C₂₃H₃₂NaNO₈P).

The use of D-enantiomer 65 led to the production of 26.

Run on **66** on a 5 mmol scale. Purified by flash column chromatography, eluting with 20-30 % EtOAc:Hexane. A yield of 1.7 g, 3.6 mmol (72 %) was obtained as a colourless oil. ¹H NMR (400 MHz, CDCl₃): δ =7.36 (2H, d, *J* = 7.6 Hz, ArH2), 7.21 (2H, d, *J* = 7.6 Hz, ArH3), 5.77-6.00 (3H, m, -CH=CH₂), 5.59 (1H, br d, *J* = 7.0 Hz, - NH), 5.17-5.43 (7H, m, -CH=CH₂ & H_a), 4.53-4.68 (6H, m, -

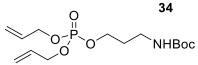
C<u>H</u>₂CH=CH₂), 2.91-3.08 (2H, m, <u>H</u>_β), 1.44 (9H, s, <u>Boc</u>) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 170.55 (-<u>C</u>O₂All), 154.70 (-<u>C</u>O₂^{*t*}Bu), 150.55 (d, *J* = 6.7 Hz, Ar<u>C</u>4), 133.90 (Ar<u>C</u>1), 131.99 (d, *J* = 6.7 Hz, -<u>C</u>H=CH₂), 131.22 (-<u>C</u>H=CH₂), 128.58 (Ar<u>C</u>2), 120.41 (d, *J* = 4.7 Hz, -CH=<u>C</u>H₂),


118.75 (Ar<u>C</u>3), 80.27 (-<u>C</u>Me₃), 68.88 (d, J = 5.7 Hz, -<u>C</u>H₂CH=CH₂), 66.24 (-<u>C</u>H₂CH=CH₂), 56.98 (<u>C</u>_α), 28.29 (<u>Boc</u>) ppm; IR (u_{max}, film): 2980, 1744, 1711, 1608, 1505, 1457, 1367, 1275, 1218, 1161, 1098, 1016 cm⁻¹; HRMS m/z (ESI+): Found: 490.1606 (M+Na), Calc.: 490.1601 (C₂₂H₃₀NaNO₈P).

Phosphorylation – Serine analogues

Run on 28 on a 13.8 mmol scale. Purified by flash column chromatography, eluting with 40 % 29 EtOAc:Hexane. A yield of 1.7 g, 5.6 mmol (41 %) was റ obtained as a colourless oil. ¹H NMR (400 MHz, CDCl₃): δ = 5.79-5.94 (3H, m, -C<u>H</u>=CH₂), 5.26-5.36 (3H, m, -CH=CH₂), 5.15-5.25 (3H, m, -CH=CH₂), 4.44-4.45 (6H, m, -CH₂CH=CH₂), 4.01-4.08 (2H, m, -CH₂OPO₃All₂), 2.42 (2H, t, J = 7.3 Hz, -CH₂CO₂All), 1.92-2.00 (2H, m, - $CH_2CH_2CO_2AII$) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.26$ (-<u>C</u>O₂AII), 132.41 (-<u>C</u>H=CH₂), 132.34 (-<u>C</u>H=CH₂), 132.03 (-<u>C</u>H=CH₂), 118.21 (-CH=<u>C</u>H₂), 118.19 (-CH=<u>C</u>H₂), 118.04 (- $CH=\underline{C}H_2$), 68.06 (d, J = 5.5 Hz, - $\underline{C}H_2CH=CH_2$), 66.61 (d, J = 5.9 Hz, - $\underline{C}H_2OPO3AII_2$), 65.11 (-CH₂CH=CH₂), 30.00 (-<u>C</u>H₂CO₂All), 25.48 (-<u>C</u>H₂CH₂CO₂All) ppm; IR (u_{max}, film): 2877, 1727, 1607, 1508, 1438, 1206, 1158, 1104, 1053 cm⁻¹; HRMS m/z (ESI+): Found: 305.1152 (M+H), Calc.: 305.1154 (C₁₃H₂₂O₆P).

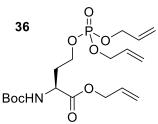
Run on **67** on a 1.2 mmol scale. Purified by flash column chromatography, eluting with 40 % EtOAc:Hexane. A yield of 180 mg, 0.52 mmol (44 %)


was obtained as a colourless oil. ¹H NMR (400 MHz, CDCl₃): δ = 5.81-5.97 (3H, m, -C<u>H</u>=CH₂), 5.28-5.38 (3H, m, -CH=C<u>H</u>₂), 5.17-5.27 (3H, m, -CH=C<u>H</u>₂), 4.47-4.54 (6H, m, -C<u>H</u>₂CH=CH₂), 3.99-4.08 (2H, m, -C<u>H</u>₂OPO₃All₂), 2.35 (2H, t, *J* = 6.9 Hz, -C<u>H</u>₂CO₂All), 1.64-1.76 (4H, m, -C<u>H</u>₂C<u>H</u>₂CH₂CO₂All) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 172.74 (-<u>C</u>O₂All), 132.50 (-<u>C</u>H=CH₂), 132.41 (-<u>C</u>H=CH₂), 132.14 (-<u>C</u>H=CH₂), 118.19 (-CH=<u>C</u>H₂), 118.18 (-CH=<u>C</u>H₂), 118.08 (-CH=<u>C</u>H₂), 68.03 (d, *J* = 5.6 Hz, -<u>C</u>H₂CH=CH₂), 67.21 (d, *J* = 6.0 Hz, -<u>C</u>H₂OPO3All₂), 65.01 (-<u>C</u>H₂CH=CH₂), 33.45 (-<u>C</u>H₂CO₂All), 29.56 (d, *J* = 6.9 Hz, -<u>C</u>H₂CH₂OPO₃All₂), 20.92 (-<u>C</u>H₂CH₂CO₂All) ppm; IR (u_{max}, film): 3080, 2948, 1734, 1649, 1458, 1425, 1365, 1267, 1164, 1098, 1015 cm⁻¹; HRMS m/z (ESI+): Found: 319.1316 (M+H), Calc.: 319.1311 (C₁₄H₂₄O₆P).

Run on **68** on a 10 mmol scale. Purified by flash column chromatography, eluting with 30-40 % EtOAc:Hexane. A yield of 1.5 g, 4.5 mmol (45 %)

was obtained as a colourless oil. ¹H NMR (400 MHz, CDCl₃): δ = 5.83-5.97 (3H, m, -C<u>H</u>=CH₂), 5.29-5.38 (3H, m, -CH=C<u>H</u>₂), 5.17-5.27 (3H, m, -CH=C<u>H</u>₂), 4.47-4.56 (6H, m, -C<u>H</u>₂CH=CH₂), 3.99-4.06 (2H, m, -C<u>H</u>₂OPO₃All₂), 2.32 (2H, t, *J* = 7.4 Hz, -C<u>H</u>₂CO₂All), 1.59-1.72 (4H, m, -

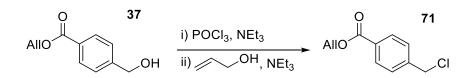
C<u>H</u>₂CH₂CH₂CH₂CO₂All), 1.35-1.45 (2H, m, -C<u>H</u>₂CH₂CH₂CO₂All) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 173.01 (-<u>C</u>O₂All), 132.51 (-<u>C</u>H=CH₂), 132.46 (-<u>C</u>H=CH₂), 132.20 (-<u>C</u>H=CH₂), 118.14 (-CH=<u>C</u>H₂), 118.09 (-CH=<u>C</u>H₂), 118.08 (-CH=<u>C</u>H₂), 68.01 (d, *J* = 5.4 Hz, -<u>C</u>H₂CH=CH₂), 67.52 (d, *J* = 6.0 Hz, -<u>C</u>H₂OPO3All₂), 64.96 (-<u>C</u>H₂CH=CH₂), 33.97 (-<u>C</u>H₂CO₂All), 29.87 (d, *J* = 7.0 Hz, -<u>C</u>H₂CH₂OPO₃All₂), 24.49 (-<u>C</u>H₂CH₂CO₂All), 24.37 (-<u>C</u>H₂CH₂CH₂CO₂All) ppm; ³¹P (160 MHz, CDCl₃): δ = -0.15 ppm; IR (u_{max}, film): 3085, 2943, 1734, 1649, 1459, 1425, 1380, 1267, 1161, 1100,1024 cm⁻¹; HRMS m/z (ESI+): Found: 333.1478 (M+H), Calc.: 333.1467 (C₁₅H₂₆NO₆P).

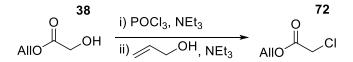


Run on **30** on a 5.7 mmol scale. Purified by flash column chromatography, eluting with 30-50 % EtOAc:Hexane. A yield of 470 mg, 1.4 mmol (25 %) was obtained as a colourless oil.

¹H NMR (400 MHz, CDCl₃): $\delta = 5.85-5.99$ (2H, m, -C<u>H</u>=CH₂), 5.20-5.42 (4H, m, -CH=C<u>H₂</u> and -N<u>H</u>), 4.98 (1H, br s, -N<u>H</u>), 4.46-4.56 (4H, m, -C<u>H</u>₂CH=CH₂), 4.09 (2H, dt, *J* = 7.6, 6.0 Hz, -C<u>H</u>₂OPO₃All₂), 3.18-3.26 (2H, m, -C<u>H</u>₂NHBoc), 1.89-1.79 (2H, m, -C<u>H</u>₂CH₂OPO₃All₂), 1.41 (9H, s, <u>Boc</u>) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 155.96$ (-<u>C</u>O₂^{*t*}Bu), 132.34 (d, *J* = 6.8 Hz, -CH=CH₂), 118.39 (-CH=CH₂), 79.14 (-CMe₃), 68.20 (d, *J* = 5.6 Hz, -<u>C</u>H₂CH=CH₂), 65.35 (d, *J* = 5.8 Hz, -<u>C</u>H₂OPO3All₂), 36.81 (-<u>C</u>H₂NHBoc), 30.32 (d, *J* = 5.9 Hz, -<u>C</u>H₂CH₂OPO₃All₂), 28.36 (-C<u>Me₃</u>) ppm; ³¹P (160 MHz, CDCl₃): $\delta = 0.15$ ppm; IR (u_{max}, film): 3322, 2977, 2936, 1707, 1522, 1456, 1425, 1391, 1365, 1267, 1249, 1168, 1100, 1007 cm⁻¹; HRMS m/z (ESI+): Found: 358.1387 (M+Na), Calc.: 358.1390 (C₁₄H₂₆NaNO₆P).

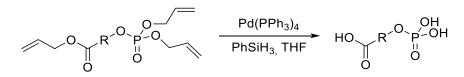
Run on **31** on a 1.25 mmol scale. Purified by flash column chromatography, eluting with 30-50 % EtOAc:Hexane. A


yield of 140 mg, 0.44 mmol (35 %) was obtained as a colourless oil. ¹H NMR (400 MHz, CDCl₃): δ = 5.85-5.99 (3H, m, -C<u>H</u>=CH₂), 5.17-5.42 (7H, m, -CH=C<u>H</u>₂ and -N<u>H</u>), 4.49-4.58 (6H, m, -C<u>H</u>₂CH=CH₂), 4.13 (2H, dt, *J* = 7.6, 5.9 Hz, -C<u>H</u>₂OPO₃All₂), 3.31 (2H, dt, *J*₁ = *J*₂ = 6.3 Hz, -C<u>H</u>₂NHAlloc), 1.83-1.91 (2H, m, -C<u>H</u>₂CH₂OPO₃All₂) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 156.33 (-<u>C</u>O₂All), 132.93 (-<u>C</u>H=CH₂), 132.33 (d, *J* = 6.8 Hz, -<u>C</u>H=CH₂), 118.46 (-CH=<u>C</u>H₂), 117.54 (-CH=<u>C</u>H₂), 68.29 (d, *J* = 5.5 Hz, -<u>C</u>H₂CH=CH₂), 65.44 (-<u>C</u>H₂CH=CH₂), 65.17 (d, *J* = 5.7 Hz, -<u>C</u>H₂OPO3All₂), 37.20 (-<u>C</u>H₂NHAlloc), 30.18 (d, *J* = 6.1 Hz, -<u>C</u>H₂CH₂OPO₃All₂) ppm; IR (u_{max}, film): 3309, 3084, 2947, 2897, 1702, 1648, 1533, 1460, 1425, 1245, 1145, 1094, 1067 cm⁻¹; HRMS m/z (ESI+): Found: 320.1267 (M+H), Calc.: 320.1263 (C₁₃H₂₃NO₆P).

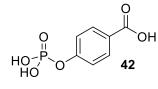

Run on **70** on a 3.8 mmol scale. Purified by flash column chromatography, eluting with 30-50 % EtOAc:Hexane. A yield of 430 mg, 1.1 mmol (27 %) was obtained as a colourless oil. ¹H NMR (400 MHz, CDCl₃): δ = 5.79-5.94 (3H, m, -C<u>H</u>=CH₂), 5.14-5.39 (6H, m, -CH=CH₂), 4.54-4.64 (3H, m, -CH₂CH=CH₂ & -NH), 4.41-4.52

(4H, m, -C<u>H</u>₂CH=CH₂), 4.32-4.40 (1H, m, <u>H</u>_α), 4.03-4.15 (2H, m, <u>H</u>_γ), 2.13-2.24 (1H, m, <u>H</u>_β), 1.98-2.09 (1H, m, <u>H</u>_β), 1.37 (9H, s, <u>Boc</u>) ppm; ¹³C NMR (100 MHz, CDCI₃): δ = 171.38 (-<u>C</u>O₂All), 155.30 (-<u>C</u>O₂^{*t*}Bu), 132.37 (d, *J* = 6.9 Hz, -<u>C</u>H=CH₂), 131.51 (-<u>C</u>H=CH₂), 118.88 (-CH=<u>C</u>H₂), 118.35 (-CH=<u>C</u>H₂), 80.05 (-<u>C</u>Me₃), 68.22 (d, *J* = 5.5 Hz, -<u>C</u>H₂CH=CH₂), 66.11 (-<u>C</u>H₂CH=CH₂), 63.88 (d, *J* = 5.5 Hz, <u>C</u>_γ) 50.68 (<u>C</u>_α), 32.64 (d, *J* = 7.3 Hz, <u>C</u>_β), 28.26 (<u>Boc</u>) ppm; IR (u_{max}, film): 3287, 2978, 1737, 1710, 1649, 1510, 1456, 1366, 1250, 1158, 1102, 1003 cm⁻¹; HRMS m/z (ESI+): Found: 442.1600 (M+H), Calc.: 442.1601 (C₁₈H₃₁NO₈P).

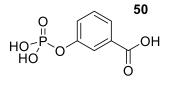
Unsuccessful phosphorylations


Run on **37** on a 3.8 mmol scale. The major product was purified by flash column chromatography, eluting with 10-20 % EtOAc:Hexane, and found to be the benzyl chloride product **71**. A yield of 705 mg, 3.33 mmol (87 %) was obtained as a colourless oil. Data were consistent with those previously reported.¹⁷ ¹H NMR (400 MHz, CDCl₃): $\delta = 7.97$ (2H, d, J = 8.5 Hz, ArH2), 7.38 (2H, d, J = 8.5 Hz, ArH3), 5.95 (1H, ddt, J = 17.2, 10.4, 5.6 Hz, -CH=CH2), 5.33 (1H, ddt, $J_1 = 17.2$ Hz, $J_2 = J_3 = 1.5$ Hz, -CH=CH2), 5.21 (1H, ddt, $J_1 = 10.4$ Hz, $J_2 = J_3 = 1.5$ Hz, -CH=CH2), 4.74 (2H, ddd, $J_1 = 5.6$ Hz, $J_2 = J_3 = 1.5$ Hz, -CH=CH2), 4.53 (2H, s, -CH=CH2) ppm.

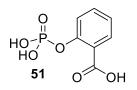
Run on **38** on a 1 mmol scale. NMR anaylsis of the crude mixture indicated formation of the alkyl chloride **72** as the major product. No further purification or characterisation was undertaken.


39 BocHN CO₂All i) POCI₃, NEt₃ ii) OH, NEt₃ BocHN CO₂All Run on **39** on a 1 mmol scale. The major product was purified by flash column chromatography, eluting with 20-40 % EtOAc:Hexane, and found to be the dehydroalanine derivative **40**, formed by dehydration. A yield of 193 mg, 0.86 mmol (86 %) was obtained as a colourless oil. Data were consistent with those previously reported.¹⁸ ¹H NMR (400 MHz, CDCl₃): δ = 6.95 (1H, br s, -N<u>H</u>), 6.10 (1H, br s, <u>H</u>_β), 5.87 (1H, ddt, *J* = 17.2, 10.4, 5.7 Hz, -C<u>H</u>=CH₂), 5.70 (1H, d, *J* = 1.4 Hz, <u>H</u>_β), 5.17-5.34 (2H, m, -CH=C<u>H</u>₂), 5.61 (2H, dd, *J* = 5.6, 1.5 Hz, -C<u>H</u>₂CH=CH₂), 1.41 (9H, s, <u>Boc</u>) ppm.

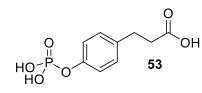
General deprotection procedure


Allyl-protected phosphate (1 mmol) and phenylsilane (6 mmol) were dissolved in dry THF (10 mL) under nitrogen. $Pd(PPh_3)_4$ (0.05 mmol) was then added and the mixture was stirred for 2 hrs. During this time, the reaction often solidified. The mixture was then diluted with water (20 mL), and the aqueous washed with diethyl ether (2 x 20 mL) and lyophilised to provide the specified product. Phosphorous NMR is provided for representative compounds.

Deprotection - Tyrosine analogues


C Run on **3** on a 1.5 mmol scale. A yield of 324 mg, 1.5 mmol (98 %) Was obtained as a white solid. ¹H NMR (400 MHz, MeOD): δ = 7.96 (2H, d, *J* = 8.0 Hz, Ar<u>H</u>2), 7.31 (2H, d, *J* = 8.0 Hz, Ar<u>H</u>3) ppm; ¹³C NMR (100 MHz, MeOD): δ = 169.11 (-<u>C</u>O₂H), 156.65 (d, *J* = 6.3 Hz,

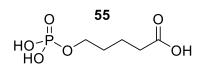
Ar<u>C</u>4), 132.64 (Ar<u>C</u>2), 128.14 (Ar<u>C</u>1), 121.15 (d, J = 5.0 Hz, Ar<u>C</u>3) ppm; ³¹P (160 MHz, CDCI₃): $\delta = -4.15$ ppm; m.p. = 187-191 ° C; IR (u_{max}, solid): 2818 (v br), 2651, 2574, 2287 (br), 1683 (br), 1605, 1508, 1430, 1322, 1295, 1225, 1201, 1171, 1115, 1030 (br), 1016 cm⁻¹; HRMS m/z (ESI+): Found: 219.0053 (M+H), Calc.: 219.0053 (C₇H₈O₆P).


50 Run on **15** on a 0.34 mmol scale. A yield of 62 mg, 0.29 mmol (85 OH %) was obtained as a white solid. ¹H NMR (400 MHz, MeOD): δ = 7.93-7.90 (2H, m, ArH2 and ArH6), 7.43-7.51 (2H, m, ArH4 and ArH5) ppm; ¹³C NMR (100 MHz, MeOD): δ = 168.89 (-CO₂H),

152.93 (d, J = 6.5 Hz, Ar<u>H</u>3), 133.67 (Ar<u>C</u>1), 130.79 (Ar<u>C</u>5), 126.90 (d, J = 0.8 Hz, Ar<u>C</u>6), 126.05 (d, J = 4.7 Hz, Ar<u>C</u>4), 122.55 (d, J = 4.7 Hz, Ar<u>C</u>2) ppm; m.p. = 198-208 ° C; IR (u_{max}, solid): 2658 (v br), 2554, 1682, 1585, 1486, 1451, 1416, 1295, 1271, 1215, 1156, 1105, 1046, 1012 cm⁻¹; HRMS m/z (ESI-): Found: 216.9897 (M-H), Calc.: 216.9902 (C₇H₆O₆P).

Run on **16** on a 0.35 mmol scale. A yield of 57 mg, 0.26 mmol (75 %) was obtained as a white solid. ¹H NMR (400 MHz, MeOD): δ = 7.75 (1H, dd, J = 7.8, 0.5 Hz, Ar<u>H</u>6), 7.43 (1H, ddd, $J_1 = J_2 = 7.4$ Hz, $J_3 = 1.8$ Hz, Ar<u>H</u>4), 7.31 (1H, ddd, $J_1 = 8.3, J_2 = J_3 = 1.1$ Hz, Ar<u>H</u>3), 7.15 (1H, ddd, $J_1 = J_2 = 3.3$

7.6 Hz, $J_3 = 1.0$ Hz, ArH5) ppm; ¹³C NMR (100 MHz, MeOD): $\delta = 169.09$ (-CO₂H), 151.65 (d, J = 6.6 Hz, ArC2), 134.37 (d, J = 1.1 Hz, ArC4), 132.60 (ArC6), 125.62 (d, J = 0.9 Hz, ArC5), 125.53 (ArC6), 123.00 (d, J = 2.6 Hz, ArC3) ppm; m.p. = 183-186 ° C; IR (u_{max}, solid): 2853 (v br), 2584, 2543, 2830 (br), 2171, 1687 (br), 1604, 1578, 1488, 1457, 1406, 1296, 1278, 1193 (br), 1159, 1096, 1087, 1020 cm⁻¹; HRMS m/z (ESI+): Found: 233.0210 (M+MeOH), Calc.: 233.0210 (C₈H₁₁O₇P).

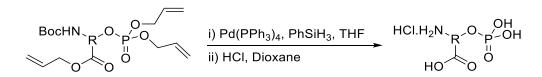


Run on **18** on a 1 mmol scale. A yield of 236 mg, 0.96 mmol (96 %) was obtained as a white solid. ¹H NMR (400 MHz, MeOD): δ = 7.23 (2H, d, *J* = 8.3 Hz, ArH3), 7.14 (2H, dd, *J* = 8.3, 1.2 Hz, ArH2), 2.90 (2H, t, *J* = 7.6 Hz, -CH₂Ar), 2.60 (2H,

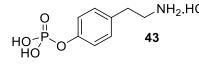
t, J = 7.6 Hz, $-C\underline{H}_2CO_2H$) ppm; ¹³C NMR (100 MHz, MeOD): $\delta = 176.58$ (- $\underline{C}O_2H$), 151.18 (d, J = 6.7 Hz, Ar $\underline{C}4$), 138.63 (Ar $\underline{C}1$), 130.49 (Ar $\underline{C}2$), 121.35 (d, J = 4.6 Hz, Ar $\underline{C}3$), 36.73 (- $\underline{C}H_2CO_2H$), 31.25 (- $\underline{C}H_2Ar$) ppm; ³¹P (160 MHz, CDCl₃): $\delta = -3.38$ ppm; m.p. = 148-152 ° C; IR (u_{max}, solid): 2866 (v br), 2620, 2291, 1694, 1608, 1509, 1432, 1411, 1324, 1308, 1270, 1209, 1179, 1134, 1108 cm⁻¹; HRMS m/z (ESI-): Found: 245.0223 (M-H), Calc.: 245.0215 (C₉H₁₀O₆P).

Deprotection - Serine analogues

(br), 1690, 1508, 1483, 1430, 1421, 1401, 1209, 1131, 1099, 1077 cm⁻¹; HRMS m/z (ESI-): Found: 185.0214 (M-H), Calc.: 185.0215 (C₄H₈O₆P).



Run on **32** on a 1.1 mmol scale. A yield of 204 mg, 1.1 mmol (98 %) was obtained as a hydroscopic white solid. ¹H NMR (400 MHz, MeOD): δ = 3.97-4.03 (2H, m, -C<u>H</u>₂OPO₃H₂), 2.34-2.39 (-


C<u>H</u>₂CO₂H), 1.69-1.77 (4H, m, -C<u>H</u>₂C<u>H</u>₂CH₂OPO₃H₂) ppm; ¹³C NMR (100 MHz, MeOD): δ = 177.29 (-<u>C</u>O₂H), 67.32 (d, *J* = 5.9 Hz, -<u>C</u>H₂OPO₃H₂), 34.33 (-<u>C</u>H₂CO₂H), 30.83 (d, *J* = 7.3 Hz, -<u>C</u>H₂CH₂OPO₃H₂), 22.69 (-<u>C</u>H₂CH₂CO₂H) ppm; m.p. = 121-124 ° C; IR (u_{max}, solid): 2945, 2909, 2870, 2695 (v br), 2287 (v br), 1692 (br), 1479, 1463, 1439, 1430, 1415, 1278, 1130, 1098, 996 (br) cm⁻¹; HRMS m/z (ESI+): Found: 199.0366 (M+H), Calc.: 199.0372 (C₅H₁₂O₆P).

56 F HO **C** HO

Allyl-Boc sequential deprotection

Allyl-protected phosphate (1 mmol) and phenylsilane (6 mmol) were dissolved in dry THF (10 mL) under nitrogen. Pd(PPh₃)₄ (0.05 mmol) was then added and the mixture was stirred for 3 hrs. The mixture typically stayed in solution during this time. The THF was then removed *in vacuo* and hydrochloric acid (4 M in dioxane, 15 mmol) was added. After stirring for 1 hr, the dioxane was removed *in vacuo*. The residue was diluted with water (20 mL), and the aqueous washed with diethyl ether (2 x 20 mL) and lyophilised to provide the specified product. Products were typically poorly soluble in a range of solvents, precluding analysis by ¹³C NMR.

.NH₂.HCl Run on **20** on a 2.77 mmol scale. A yield of 498 mg, 1.96 **3** mmol (71 %) was obtained as an off white solid. ¹H NMR (400 MHz, D₂O): δ = 7.16 (2H, d, *J* = 8.4 Hz, Ar<u>H</u>2), 7.06 (2H, dd, J = 8.4, Ar<u>H</u>3), 3.13 (2H, t, J = 7.1 Hz, $-CH_2NH_3CI$), 2.84 (2H, t, J = 7.1 Hz, $-CH_2Ar$) ppm; ³¹P (160 MHz, CDCI₃): $\delta = -3.38$ ppm; m.p. = 240-245 °C; IR (u_{max}, solid): 2985, 2946, 2879, 2755, 1720, 1648, 1604, 1506, 1462, 1425, 1363, 1268, 1219, 1162, 1095, 1015 cm⁻¹; HRMS m/z (ESI+): Found: 218.0589 (M+H), Calc.: 218.0582 (C₈H₁₃NO₆P).

The use of D-enantiomer 26 led to the production of 46.

Run on 27 on a 0.5 mmol scale. A yield of 132 mg, 0.46 mmol (93 %) was
obtained as an off white solid. ¹H NMR (400 MHz, MeOD): δ = 7.47 (2H, d, J = 8.7 Hz, Ar<u>H</u>2), 7.34 (2H, dt, J = 8.7, 1.1 Hz, Ar<u>H</u>3), 5.09 (1H, s, <u>H</u>α) ppm;
m.p. = 208-214 ° C; IR (u_{max}, solid): 3338, 2970, 2884, 1734, 1638, 1467, 1379, 1369, 1341, 1305, 1160, 1128, 1107 cm⁻¹; HRMS m/z (ESI-): Found: 246.0171 (M-H), Calc.: 246.0173 (C₈H₉NO₆P).

Calc.: 198.0173 (C₄H₉NO₆P); m.p. not determined due to hydroscopic nature of product.

Mechanical testing

CIH₂N

Powdered α -TCP (50 mg), prepared as described previously,^{19,20} was mixed with a solution of 25 % ethanol: 75 % ultrapure water containing the specified amino acid analogue to give a liquid to powder ratio (L/P) of 0.25 mL g⁻¹. Pre-dissolution of the amino acid was undertaken to avoid confounding effects related to solvation of the powder phase (e.g. dissolution rate, particle size, surface area). Amino acids were applied at a 1.13:1 molar ratio to α -TCP. After

mixing for approximately 10 sec, the mixture was applied to a 1 cm³ cube surface of aluminium or bone with a spatula and the opposing 1 cm³ steel cube adjoined by hand. Universal grips (Cocraft spring clamps) were applied to hold the cubes together at 37 °C, in a 100 % humidity sealed container for 24 hrs. Shear testing was then performed on the construct at a rate of 1 mm min⁻¹ with a 500 N load cell (Shimadzu) on an AGS-X Mechanical Testing System (Shimadzu). The peak force and shear modulus were recorded with Trapezium-Lite software (version 1.0.1) and the bond thickness and failure mode of each sample was recorded.

Statistical analyses

Aluminium adhesion tests were run with N = 4. For bone samples, where surface roughness is more varied N = 7/8 was used. Differences in adhesive strength between conditions were evaluated using a one-way ANOVA with Tukey's multiple comparison post-hoc test. Results with *p*-values lower than 0.05 were deemed significant.

Full statistical analysis of significance is provided below:

Fig. 1a

Tukey's multiple comparisons test	Summary	Adjusted P Value	
Blank vs. ∟-PSer, 1	***	<0.0001	A-B
Blank vs. D/L-PSer, 1	***	<0.0001	A-C
Blank vs. Ser	ns	0.9988	A-D
Blank vs. PTyr, 45	***	<0.0001	A-E
Blank vs. Tyr	ns	>0.9999	A-F
Blank vs. PThr, 57	***	<0.0001	A-G
L-PSer, 1 vs. D/L-PSer, 1	ns	0.8264	B-C
∟-PSer, 1 vs. Ser	***	<0.0001	B-D
∟-PSer, 1 vs. PTyr, 45	*	0.0231	B-E
∟-PSer, 1 vs. Tyr	***	<0.0001	B-F
∟-PSer, 1 vs. PThr, 57	ns	0.0563	B-G
D/L-PSer, 1 vs. Ser	***	<0.0001	C-D
D/L-PSer, 1 vs. PTyr, 45	**	0.0011	C-E
D/L-PSer, 1 ∨s. Tyr	***	<0.0001	C-F
D/L-PSer, 1 vs. PThr, 57	**	0.0029	C-G
Ser vs. PTyr, 45	***	<0.0001	D-E
Ser vs. Tyr	ns	>0.9999	D-F
Ser vs. PThr, 57	***	<0.0001	D-G
PTyr, 45 vs. Tyr	***	<0.0001	E-F
PTyr, 45 vs. PThr, 57	ns	0.9995	E-G
Tyr vs. PThr, 57	***	<0.0001	F-G

Fig. 1b

Tukey's multiple comparisons test	Summary	Adjusted P Value	
PTyr, 45 vs. Tyr	***	<0.0001	A-B
PTyr, 45 vs. 43	***	<0.0001	A-C
PTyr, 45 vs. 53	ns	0.9922	A-D

PTyr, 45 vs. PSer, 1	**	0.0012	A-E
PTyr, 45 vs. Ser	***	<0.0001	A-F
PTyr, 45 vs. 48	***	<0.0001	A-G
PTyr, 45 vs. 54	***	<0.0001	A-H
Tyr vs. 43	ns	0.9576	B-C
Tyr vs. 53	***	<0.0001	B-D
Tyr vs. PSer, 1	***	<0.0001	B-E
Tyr vs. Ser	ns	>0.9999	B-F
Tyr vs. 48	ns	0.099	B-G
Tyr vs. 54	***	<0.0001	B-H
43 vs. 53	***	<0.0001	C-D
43 vs. PSer, 1	***	<0.0001	C-E
43 vs. Ser	ns	0.9968	C-F
43 vs. 48	ns	0.5537	C-G
43 vs. 54	***	<0.0001	C-H
53 vs. PSer, 1	***	0.0002	D-E
53 vs. Ser	***	<0.0001	D-F
53 vs. 48	***	<0.0001	D-G
53 vs. 54	***	<0.0001	D-H
PSer, 1 vs. Ser	***	<0.0001	E-F
PSer, 1 vs. 48	***	<0.0001	E-G
PSer, 1 vs. 54	**	0.0075	E-H
Ser vs. 48	ns	0.2053	F-G
Ser vs. 54	***	<0.0001	F-H
48 vs. 54	***	<0.0001	G-H

Fig. 2a

Tukey's multiple comparisons test	Summary	Adjusted P Value	
PSer, 1 vs. 54	ns	0.0977	A-B
PSer, 1 vs. 55	ns	0.9596	A-C
PSer, 1 vs. 56	**	0.0012	A-D
PSer, 1 vs. Ser	***	<0.0001	A-E
54 vs. 55	*	0.0282	B-C
54 vs. 56	***	<0.0001	B-D
54 vs. Ser	***	<0.0001	B-E
55 vs. 56	**	0.0042	C-D
55 vs. Ser	***	<0.0001	C-E
56 vs. Ser	**	0.0045	D-E

Fig. 2b

Tukey's multiple _comparisons test	Summary	Adjusted P Value	
PTyr, 45 vs. 42	**	0.0042	A-B
PTyr, 45 vs. 50	ns	0.8536	A-C
PTyr, 45 vs. 51	ns	0.7621	A-D
PTyr, 45 vs. 52	ns	0.9892	A-E
PTyr, 45 vs. 53	ns	0.9987	A-F
PTyr, 45 vs. 47	ns	0.9707	A-G
42 vs. 50	***	0.0002	B-C
42 vs. 51	ns	0.0985	B-D
42 vs. 52	***	0.0008	B-E
42 vs. 53	*	0.0127	B-F

42 vs. 47	*	0.0302	B-G
50 vs. 51	ns	0.1359	C-D
50 vs. 52	ns	0.9975	C-E
50 vs. 53	ns	0.579	C-F
50 vs. 47	ns	0.3535	C-G
51 vs. 52	ns	0.341	D-E
51 vs. 53	ns	0.955	D-F
51 vs. 47	ns	0.9969	D-G
52 vs. 53	ns	0.8785	E-F
52 vs. 47	ns	0.6755	E-G
53 vs. 47	ns	0.9996	F-G

Fig. S1

Tukey's multiple comparisons test	Summary	Adjusted P Value	
PTyr, 45 vs. 50	ns	0.3245	A-B
PTyr, 45 vs. 51	*	0.0251	A-C
PTyr, 45 vs. 42	***	0.0004	A-D
50 vs. 51	ns	0.4124	B-C
50 vs. 42	*	0.0227	B-D
51 vs. 42	ns	0.6566	C-D

References

1. D. P. Brown, H. Q. Duong; J. Heterocyclic Chem., 2008, 45, 435-443.

2. H. Garrido-Hernandez, K. D. Moon, R. L. Geahlen, R. F. Borch; *J. Med. Chem.*, **2006**, *49*, 3368-3376.

3. Y. Iso, H. Shindo, H. Hamana; *Tetrahedron*, **2000**, *56*, 5353-5361.

4. G. P. Wild, C. Wiles, P. Watts, S. J. Haswell; Tetrahedron, 2009, 65, 1618-1629.

5. T. Prakasam, M. Lusi, M. Elhabiri, C. Platas-Iglesias, J.-C. Olsen, Z. Asfari, S. Cianférani-Sanglier, F. Debaene, L. J. Charbonnière, A. Trabolsi; *Angew. Chem. Int. Ed.*, **2013**, *52*, 9956-9960.

6. G. Panigrahi, B. Zhao, J. J. Krepinsky, P. D. Sadowski; *J. Am. Chem. Soc.*, **1996**, *118*, 12004-12011.

7. A. P. Tamiz, S. X. Cai, Z.-L. Zhou, P.-W. Yuen, R. M. Schelkun, E. R. Whittemore, E. Weber, R. M. Woodward, J. F. W. Keana; *J. Med. Chem.*, **1999**, *42*, 3412-3420.

8. Z. You, A. H. Hoveyda, M. L. Snapper; Angew. Chem. Int. Ed., 2009, 48, 347-550.

9. I. R. Baxendale, S. V. Ley, M. Nessi, C. Piutti; Tetrahedron, 2002, 58, 6285-6304.

10. J. Alsina, F. Rabanal, C. Chiva, E. Giralt, F. Albericio; *Tetrahedron*, **1998**, *54*, 10125-10152.

11. K. Takagi, H. Fukuda, S. Shuto, A. Otaka, M. Arisawa; *Adv. Synth. Catal.*, **2015**, *357*, 2119-2124.

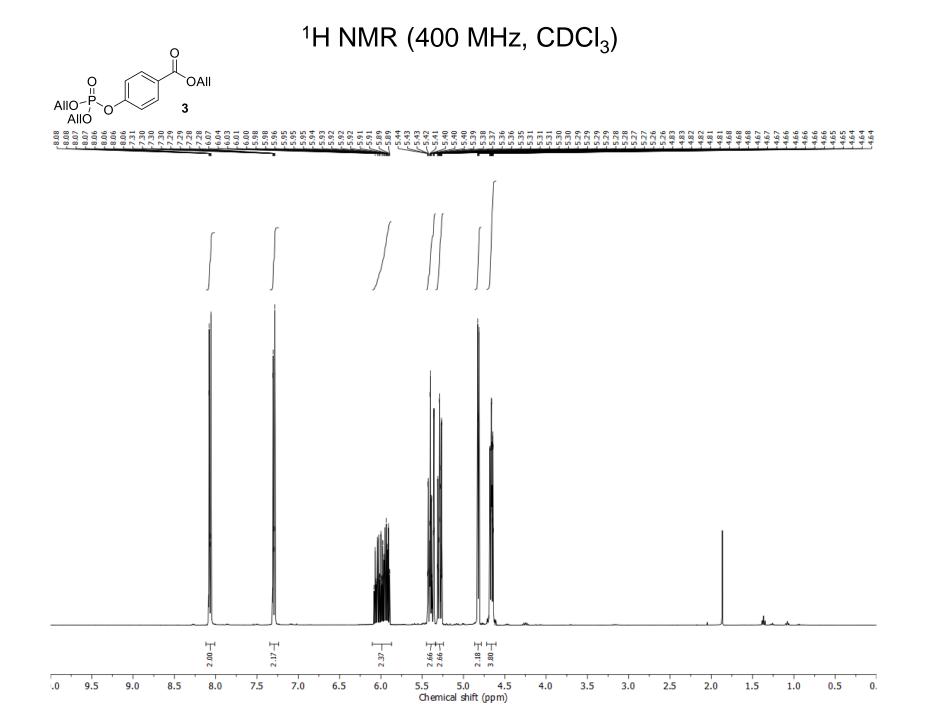
12. G. Gellerman, S. Shitrit, T. Shalit, O. Ganot, A. Albeck; Tetrahedron, 2010, 66, 878-886.

13. J. K. Kasper, J. E. Hitro, S. R. Fitzgerald, J. M. Schnitter, J. J. Rutkowski, J. A. Heck, J. L. Steinbacher; *J. Org. Chem.*, **2016**, *81*, 8095-8103.

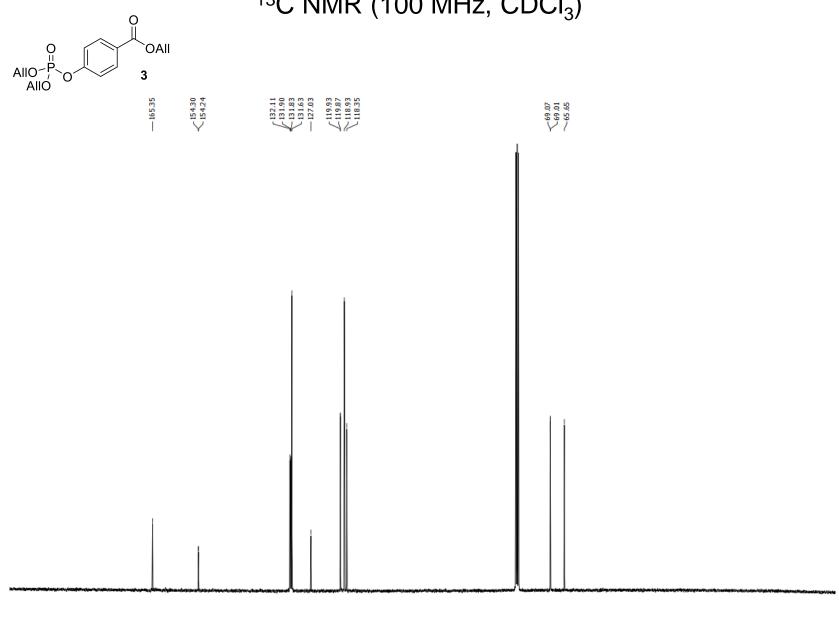
14. I. R. Marsh, M. Bradley; *Tetrahedron*, **1997**, 53, 17317-17334.

15. Celltech R & D Inc., Patent: US2003/69305, 2003.

16. M. Carrasco, R. T. Brown; J. Org. Chem., 2003, 68, 8853-8858.


17. Nippon Terpene Chemicals Inc., Patent: JP6222973, 2017.

18. S. Bregant, A. B. Tabor; J. Org. Chem., 2005, 70, 2430-2438.

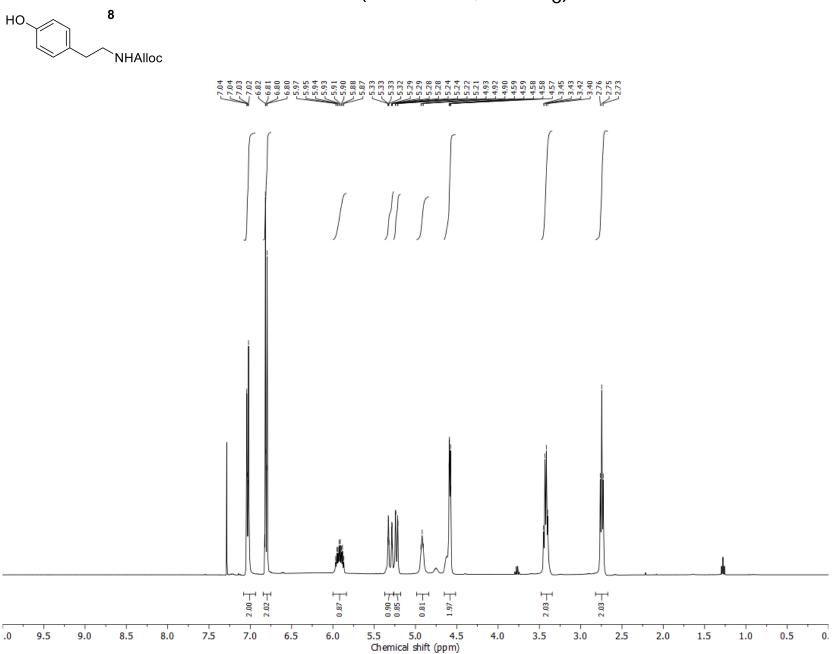

19. C. M. Dreef-Tromp, A. W. M. Lefeber, G. A. van der Marel, J. H. van Boom; *Synthesis*, **1992**, *12*, 1269-1272.

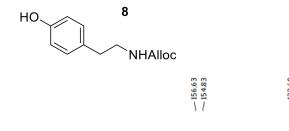
20. M. Pujari-Palmer, H. Guo, D. Wenner, H. Autefage, C. D. Spicer, M. M. Stevens, O. Omar, P. Thomsen, M. Edén, G. Insley, P. Procter, H. Engqvist; *Materials*, **2018**, *11*, 2492.

21. P. Proctor, M. Pujari-Palmer, G. Hulsart-Billström, D. Wenner, G. Insley, S. Larsson, H. Engqvist; *BMC Biomed. Eng.*, **2019**, *1*, 11.

¹³C NMR (100 MHz, CDCl₃)

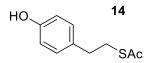
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	
								Chen	nical shift	(ppm)							


jo.

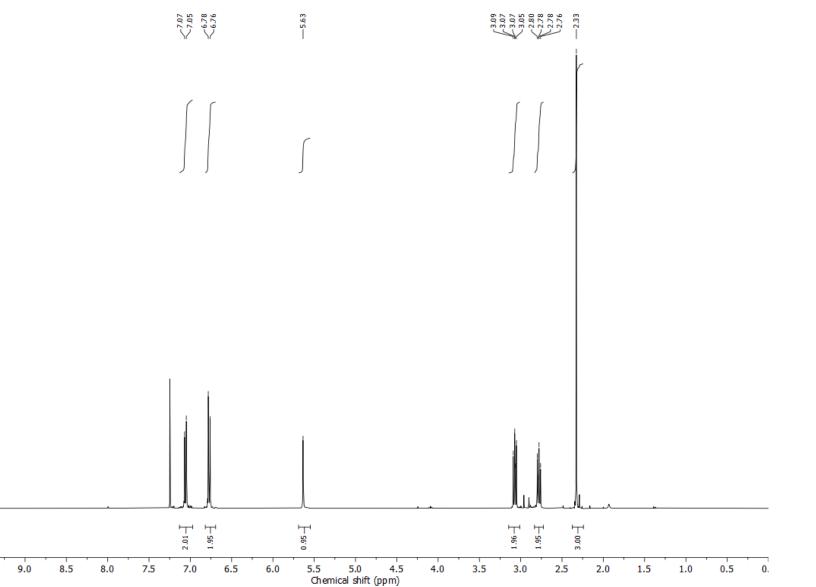

10

20

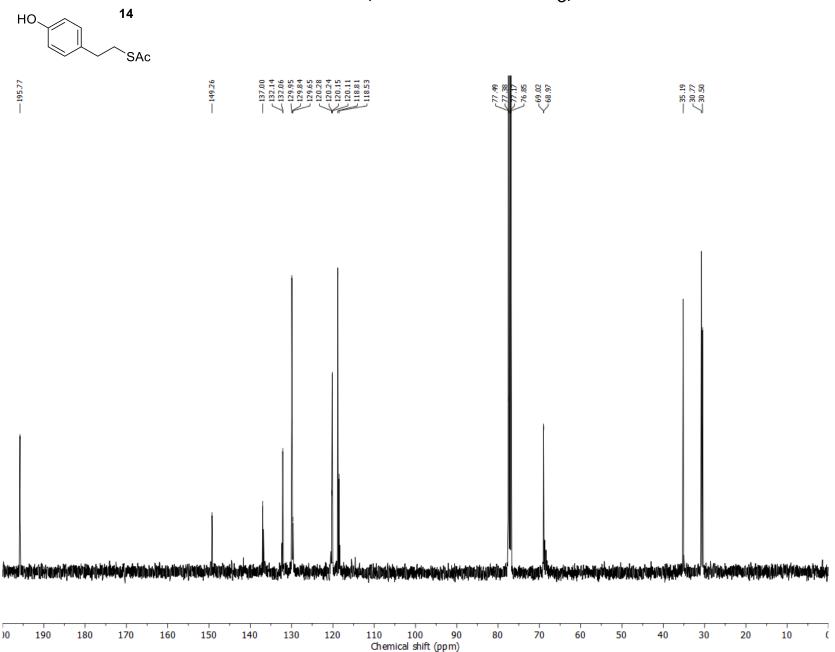
¹H NMR (400 MHz, CDCl₃)

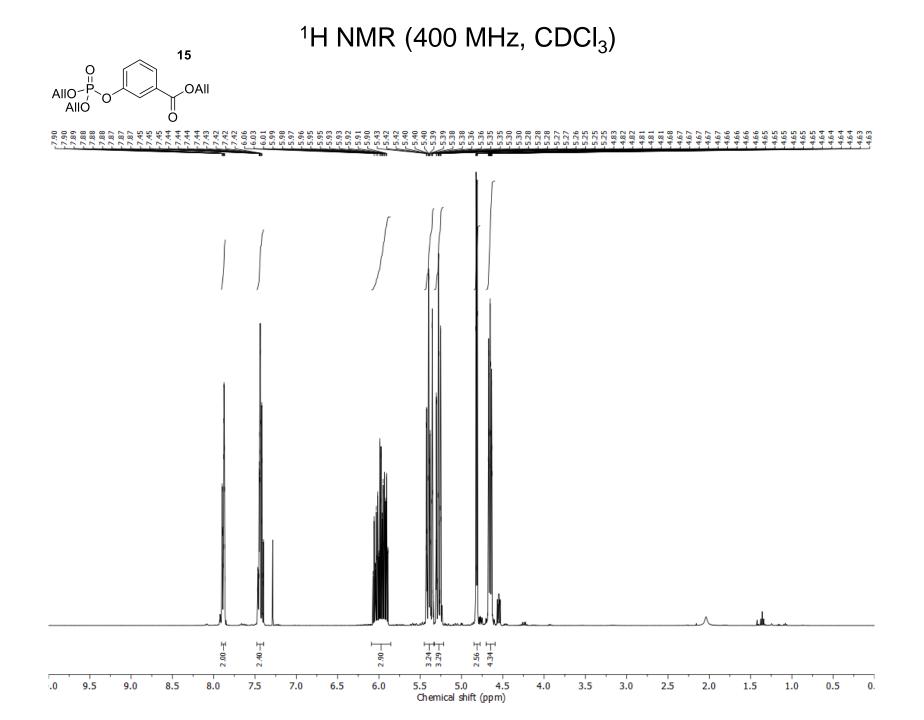

¹³C NMR (100 MHz, CDCl₃)

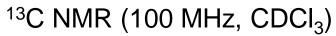
156.63 154.83	 132.69 130.10 129.83 		65 .76	
		Í		
.				
	#1.514 1.457 1.444 1.745 1.14		and a second	

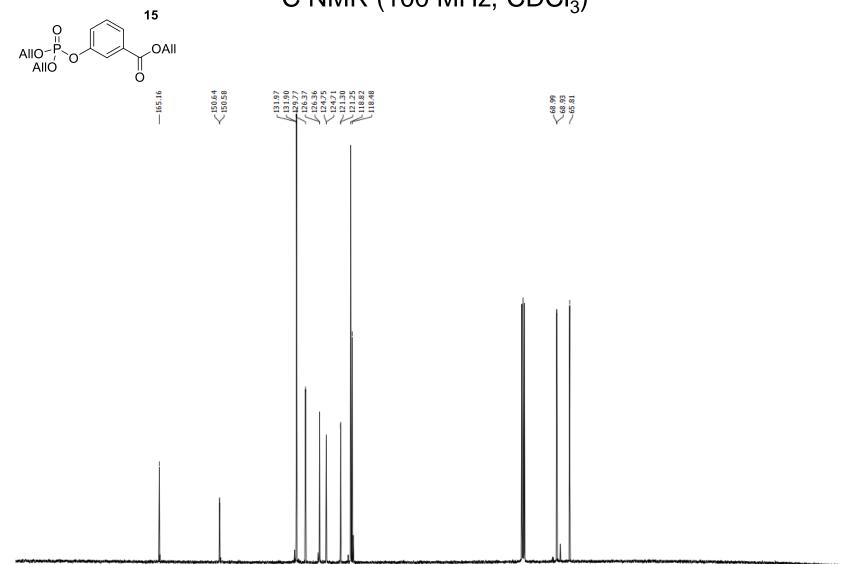

			· · ·	· · ·														· · ·	· · · ·	
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(

¹H NMR (400 MHz, CDCl₃)



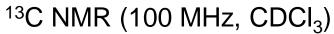

.0

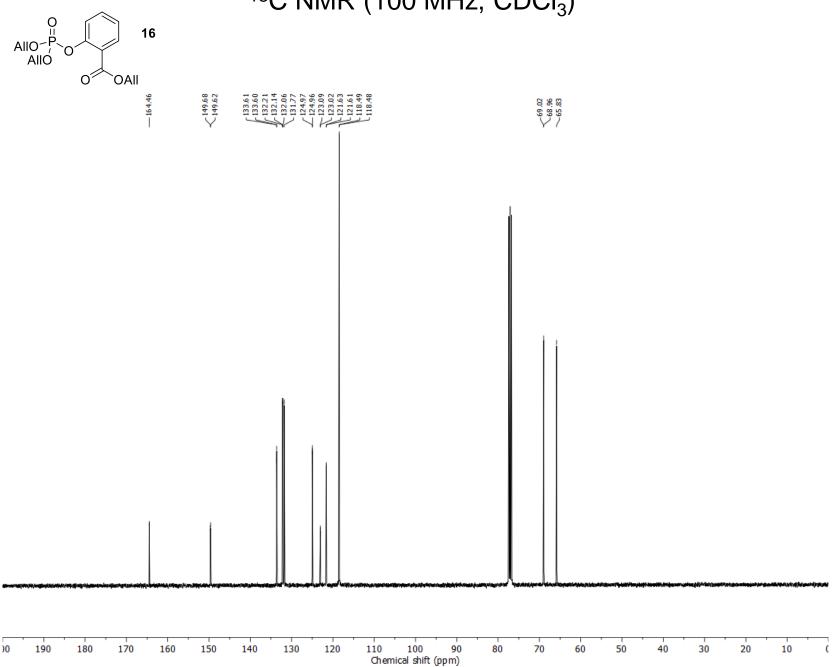

9.5

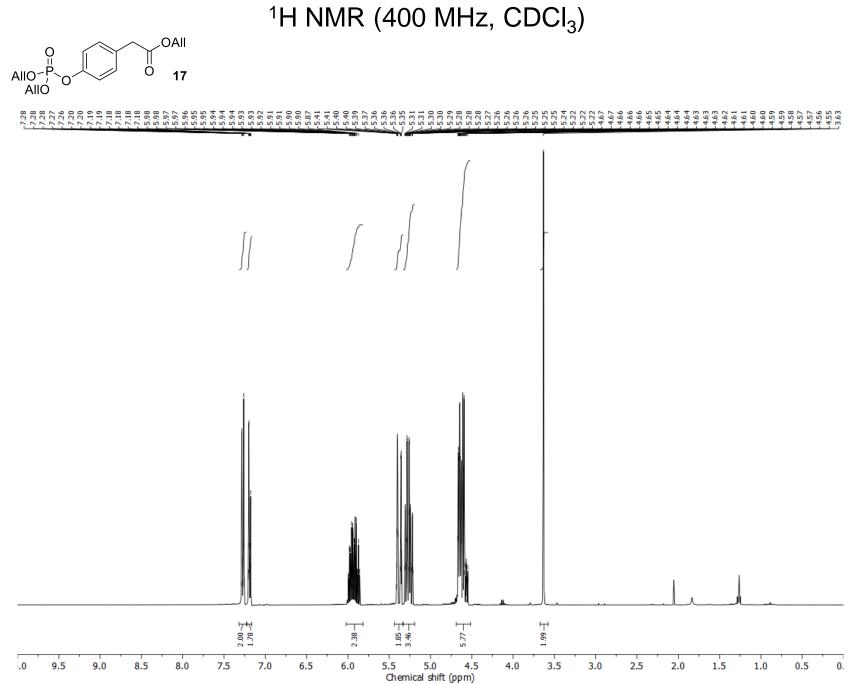


¹³C NMR (100 MHz, CDCl₃)

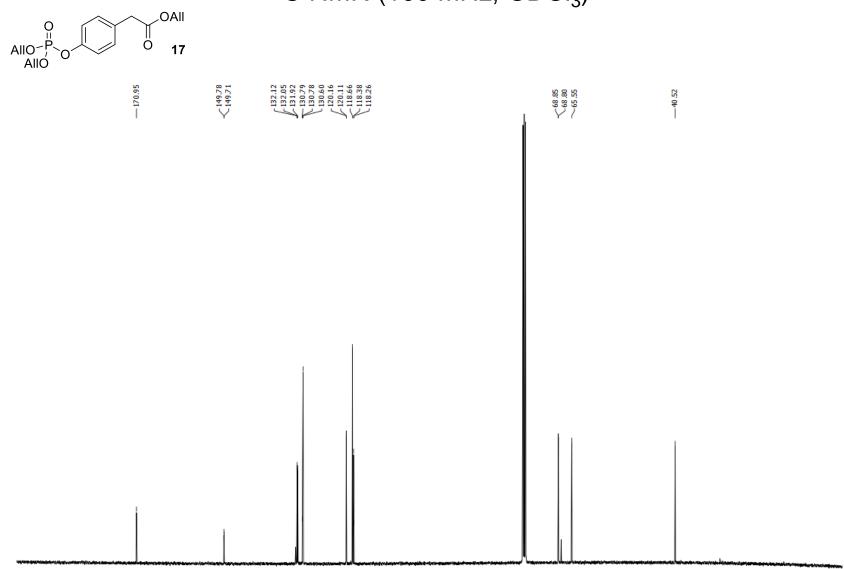


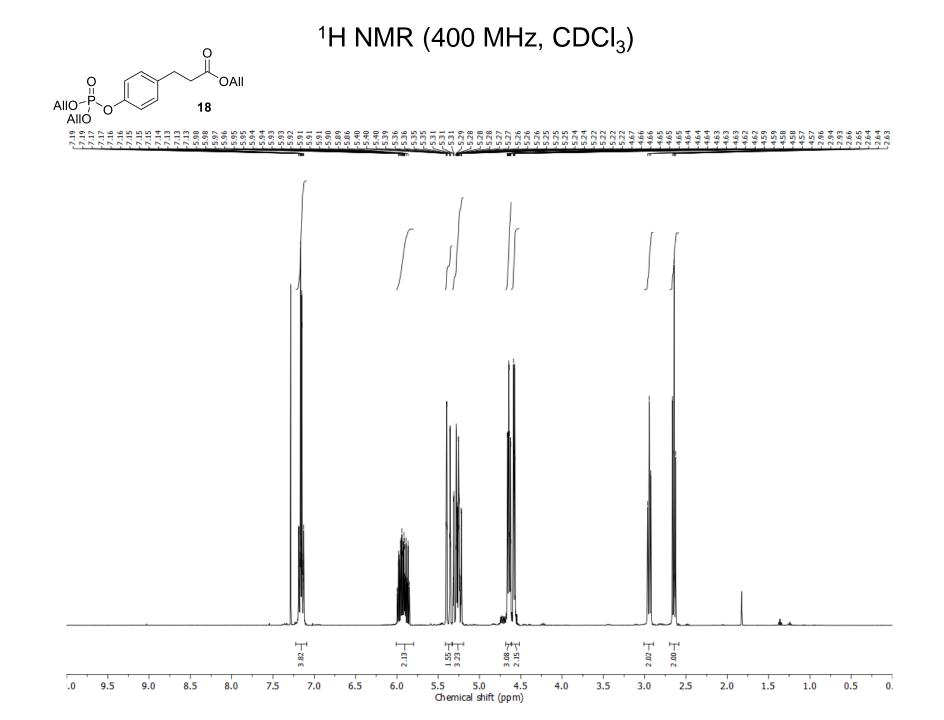


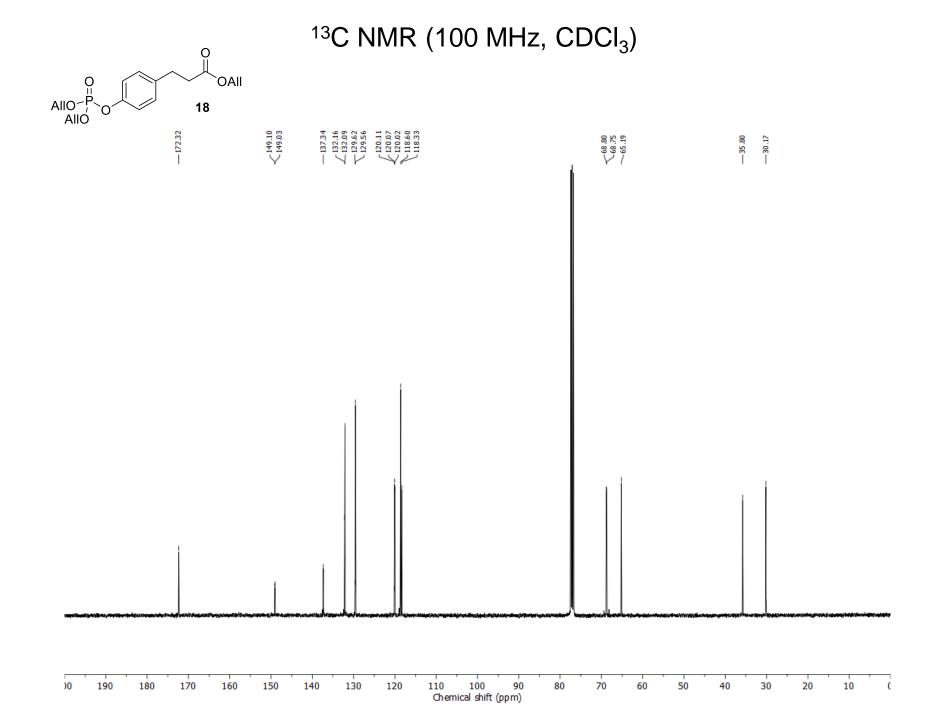




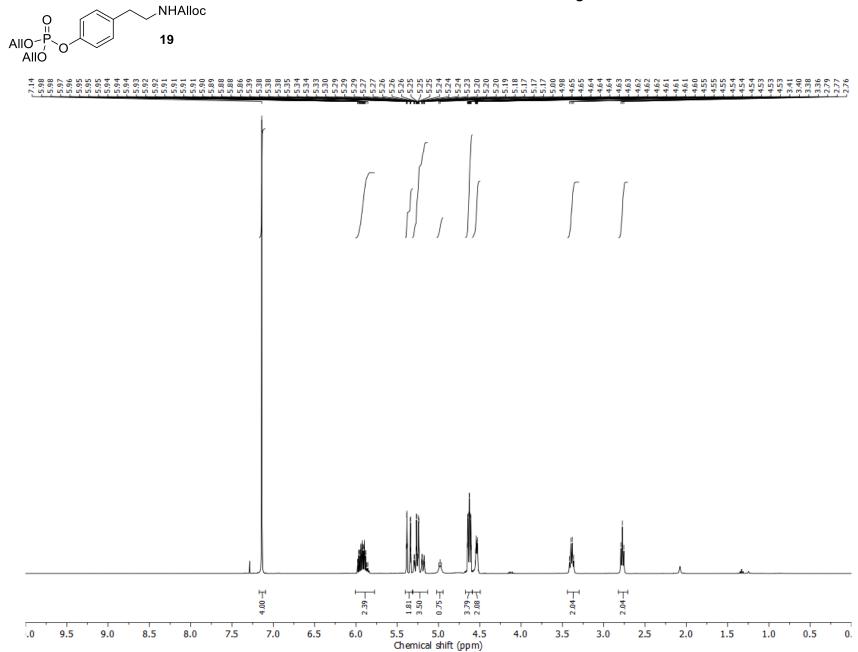
																	· · ·			
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(
	Chemical shift (ppm)																			



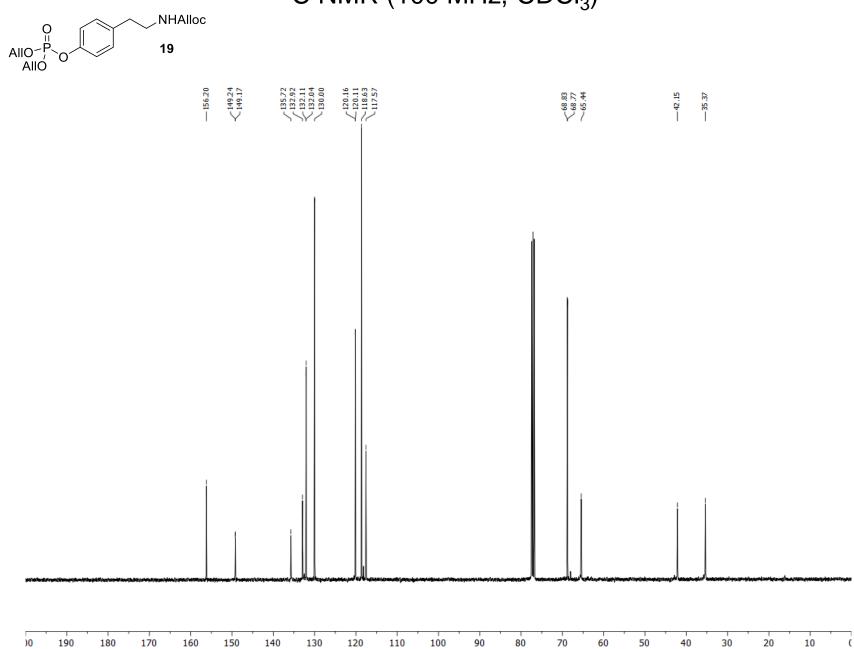




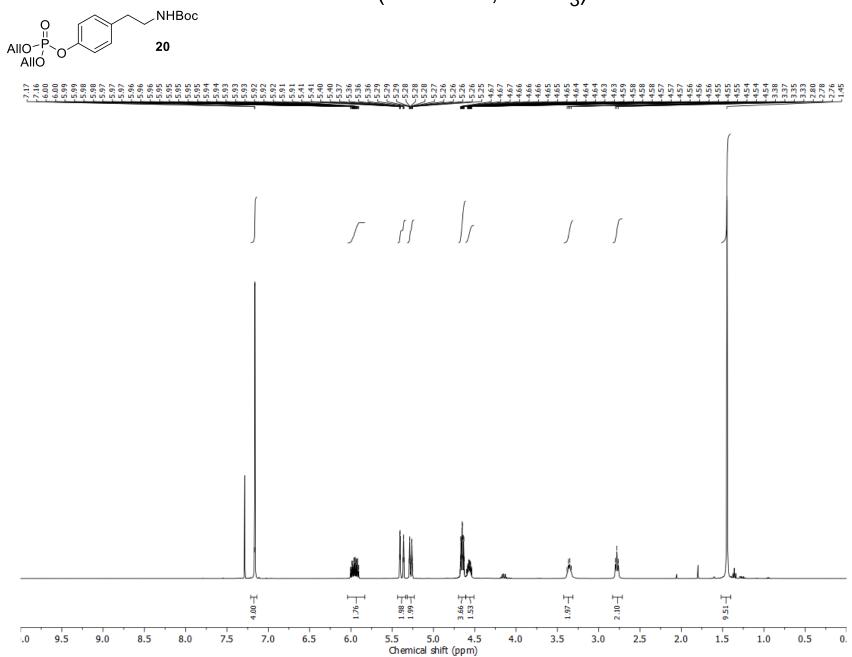
¹³C NMR (100 MHz, CDCl₃)



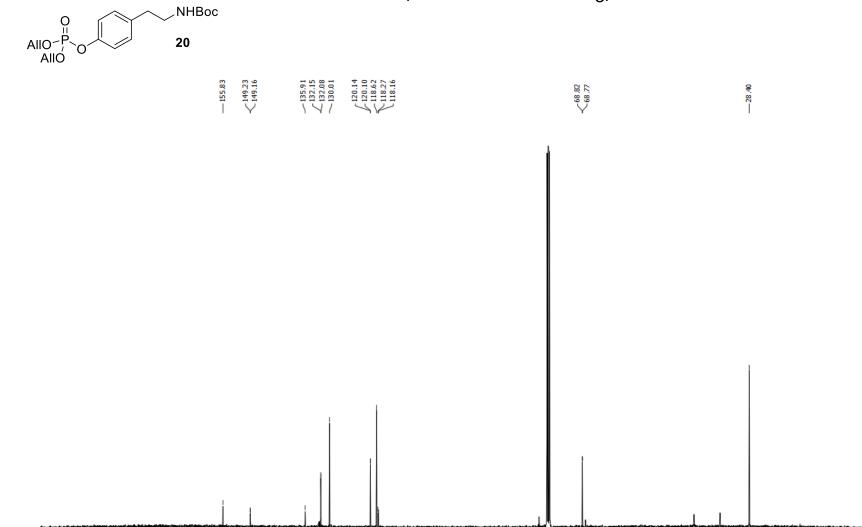
									· ·					' '						
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(
	Chemical shift (ppm)																			



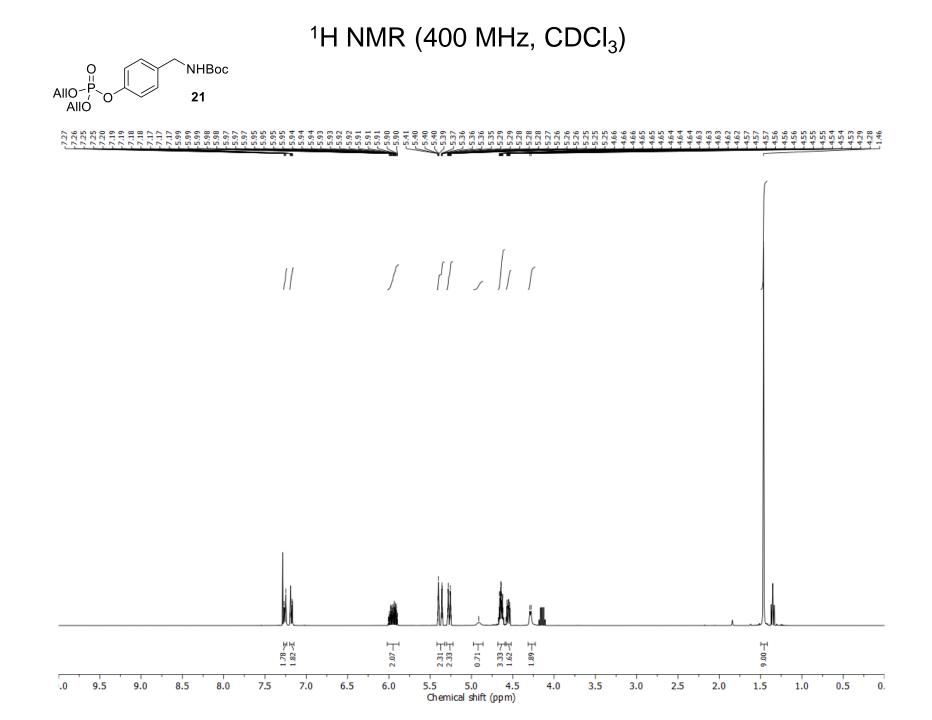
¹H NMR (400 MHz, CDCl₃)

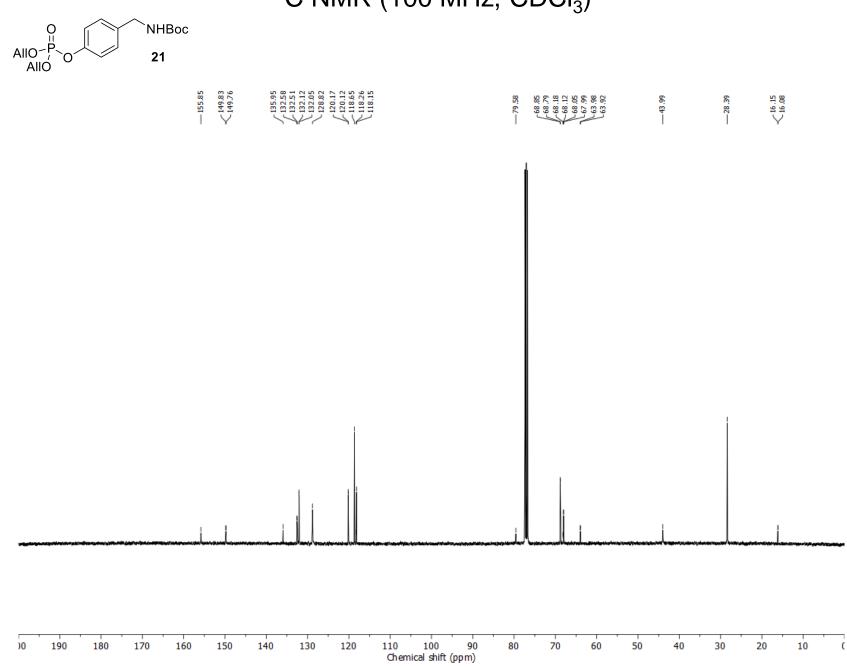


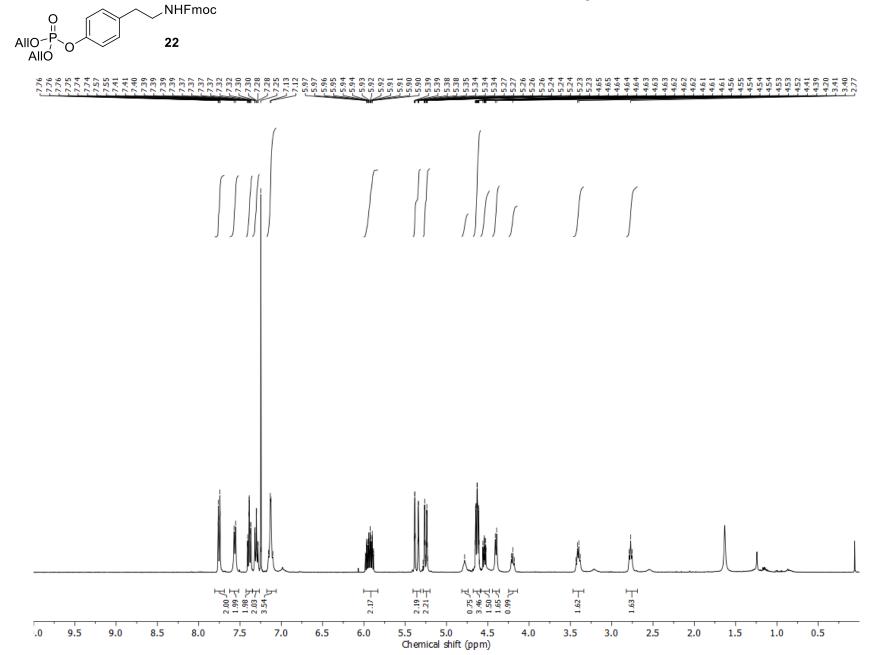
¹³C NMR (100 MHz, CDCl₃)

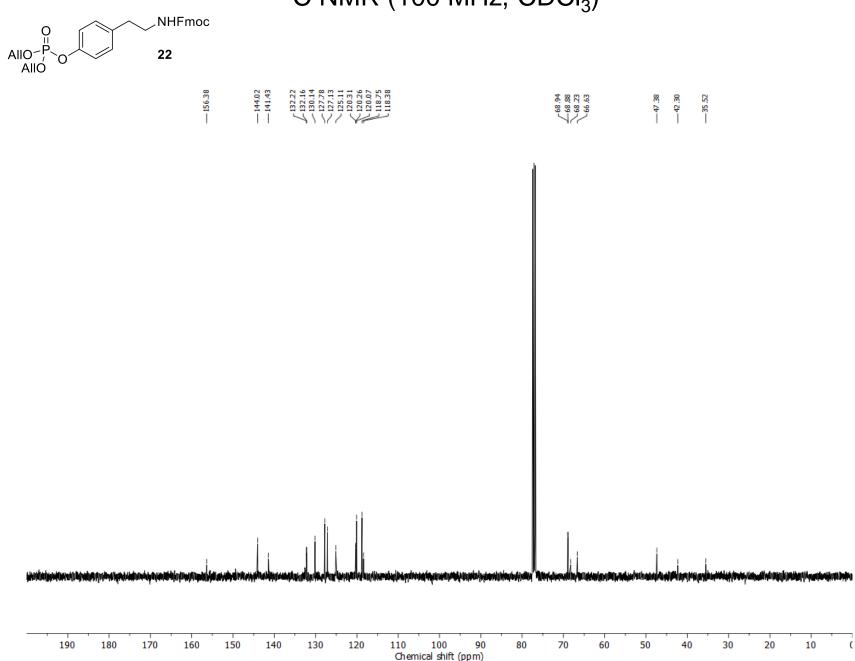


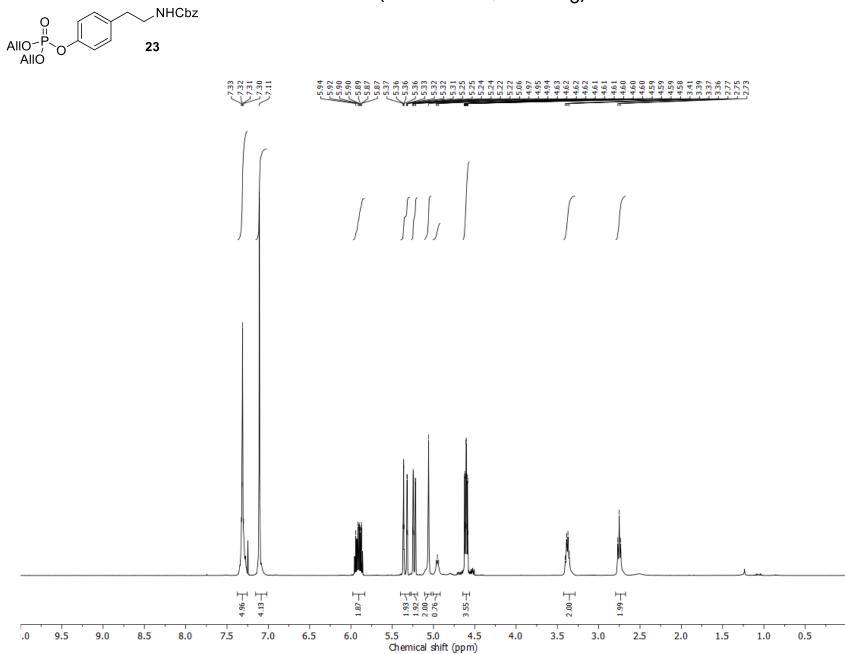
110 100 90 Chemical shift (ppm)

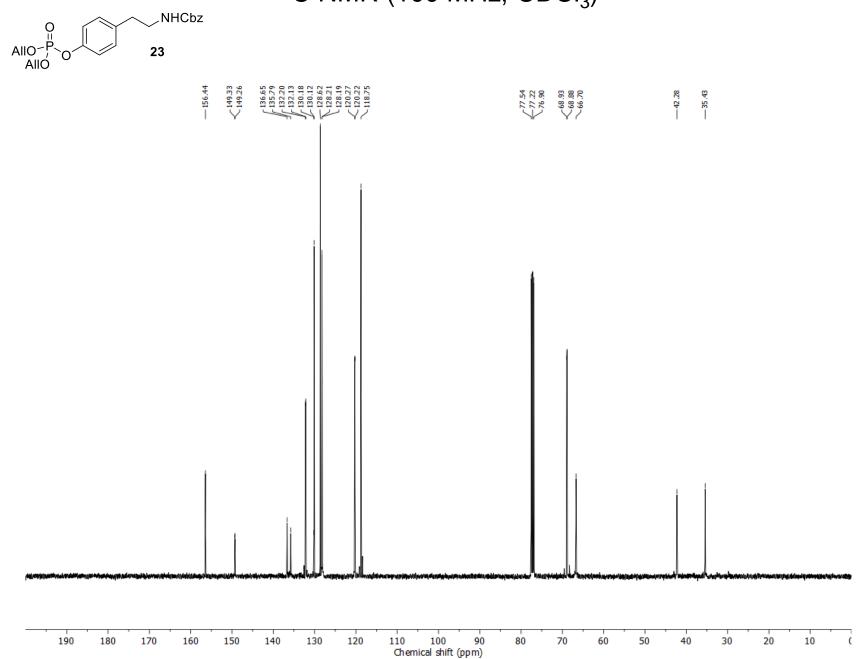

¹H NMR (400 MHz, CDCl₃)

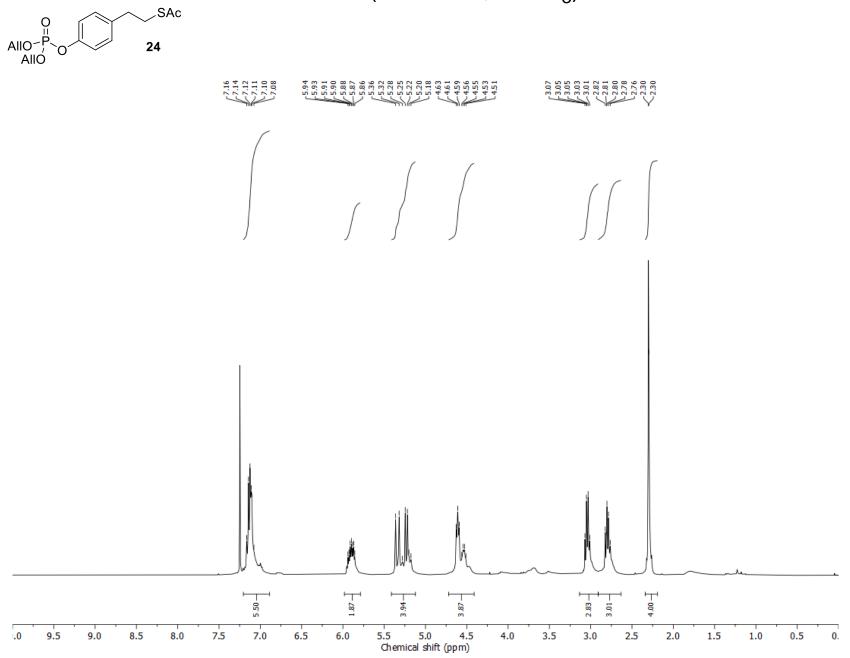

¹³C NMR (100 MHz, CDCl₃)

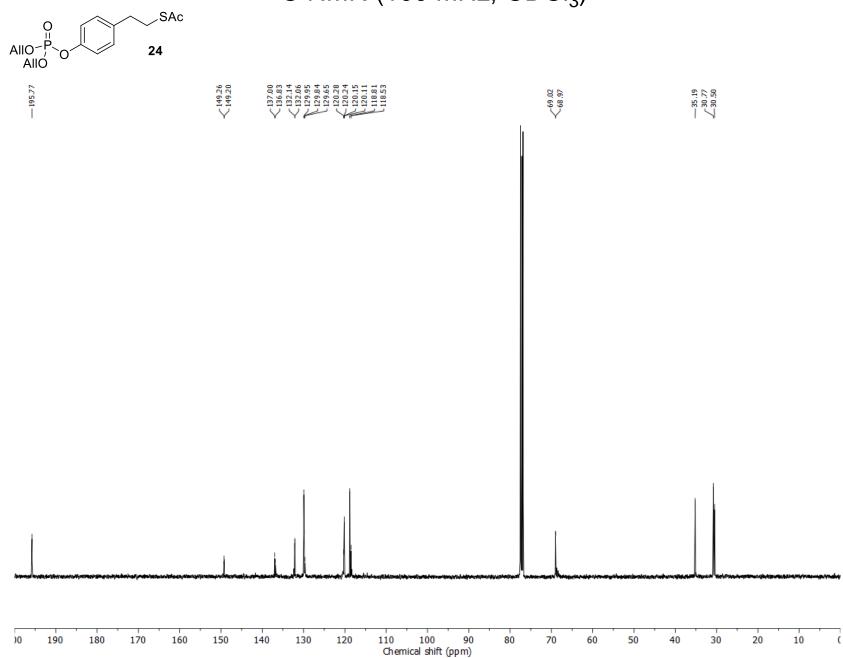

)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(
Chemical shift (ppm)																				

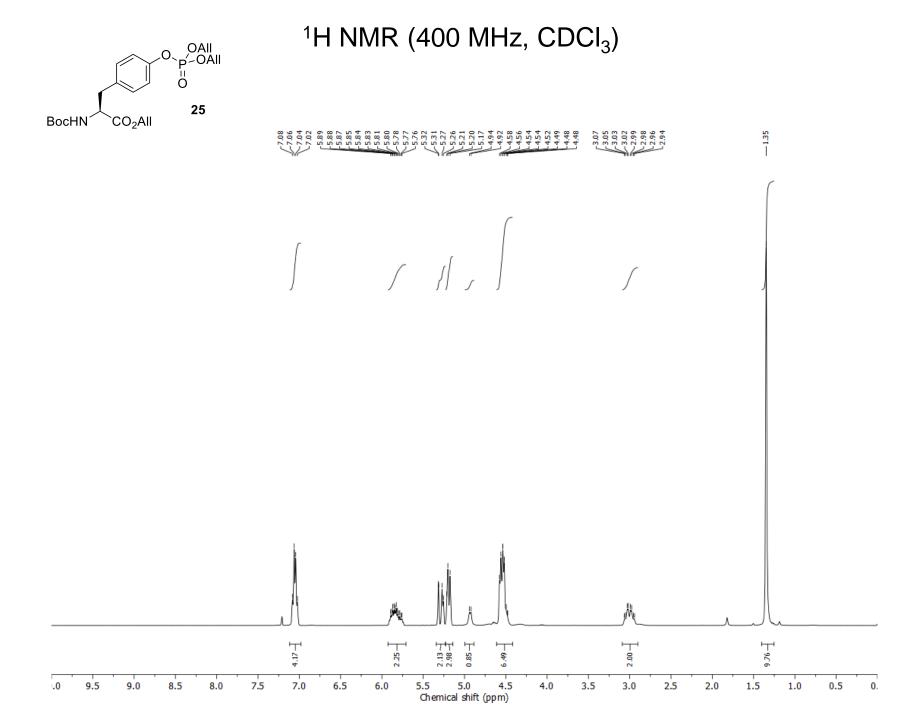

¹³C NMR (100 MHz, CDCl₃)

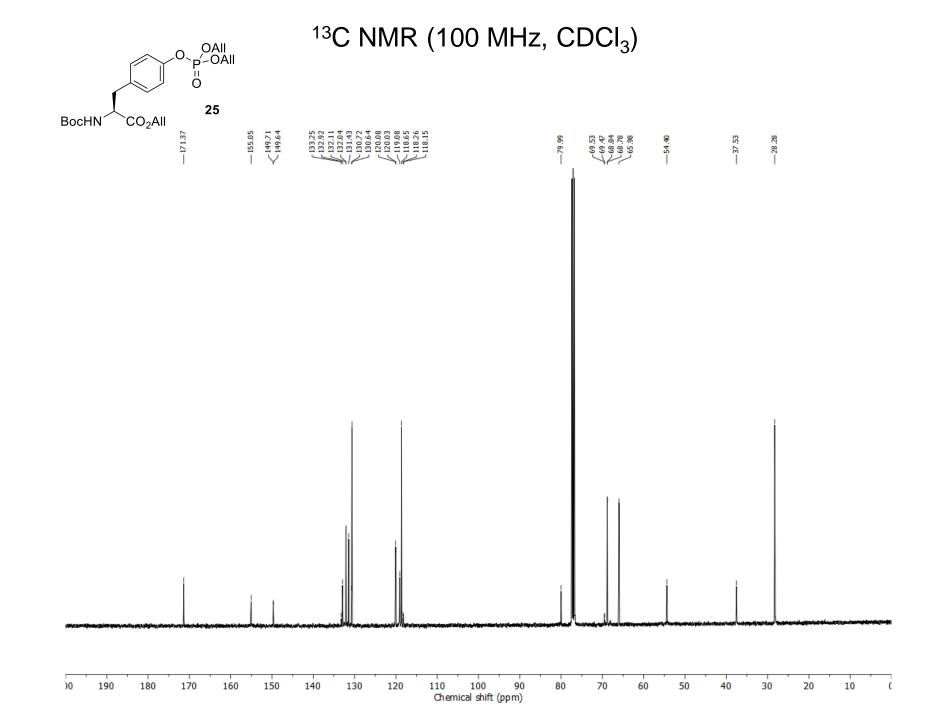


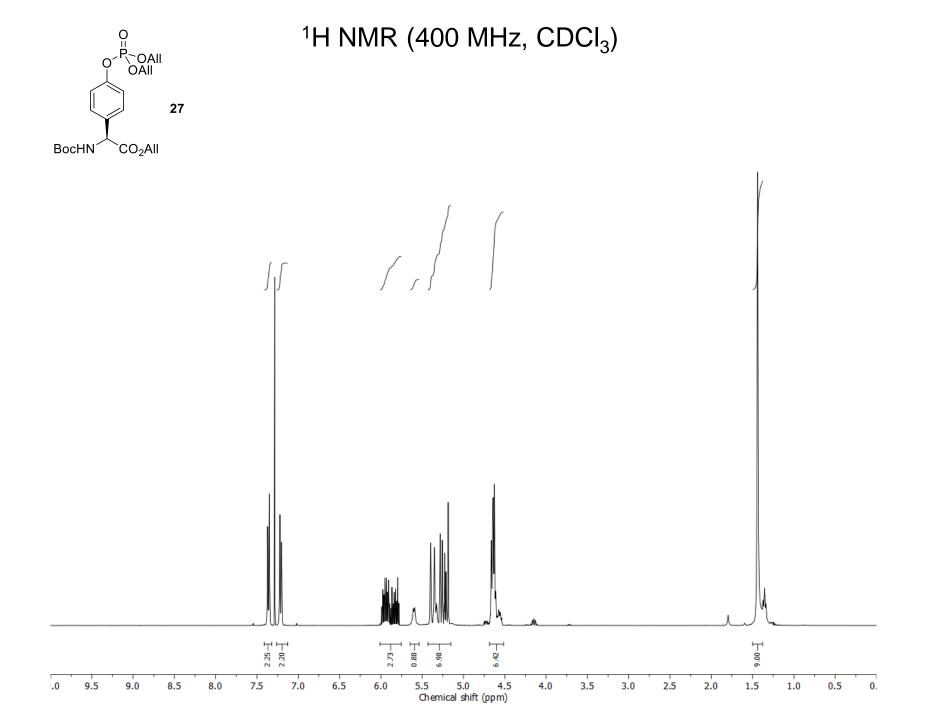

¹³C NMR (100 MHz, CDCl₃)

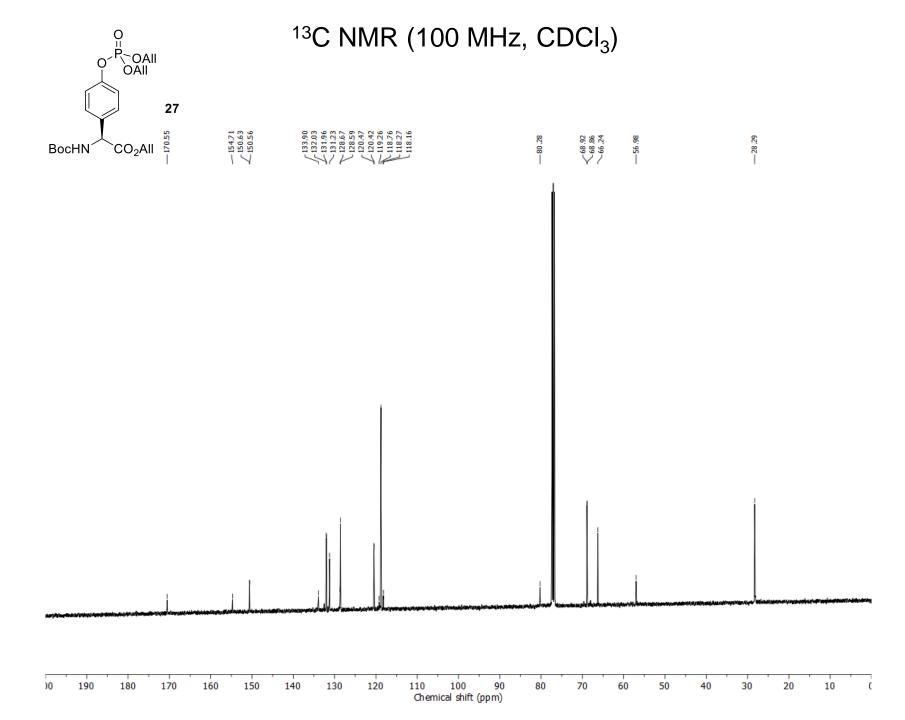

¹H NMR (400 MHz, CDCl₃)

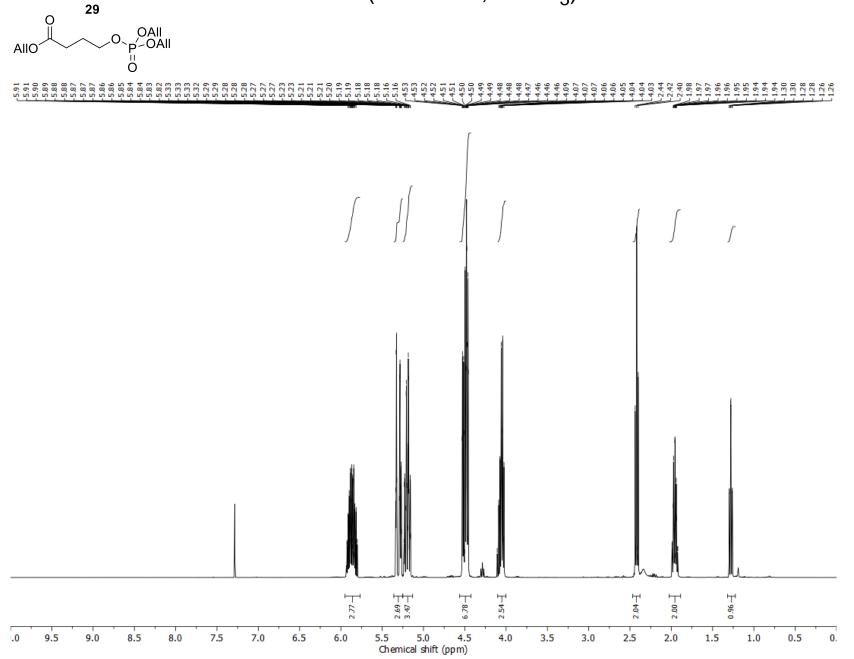

¹³C NMR (100 MHz, CDCl₃)

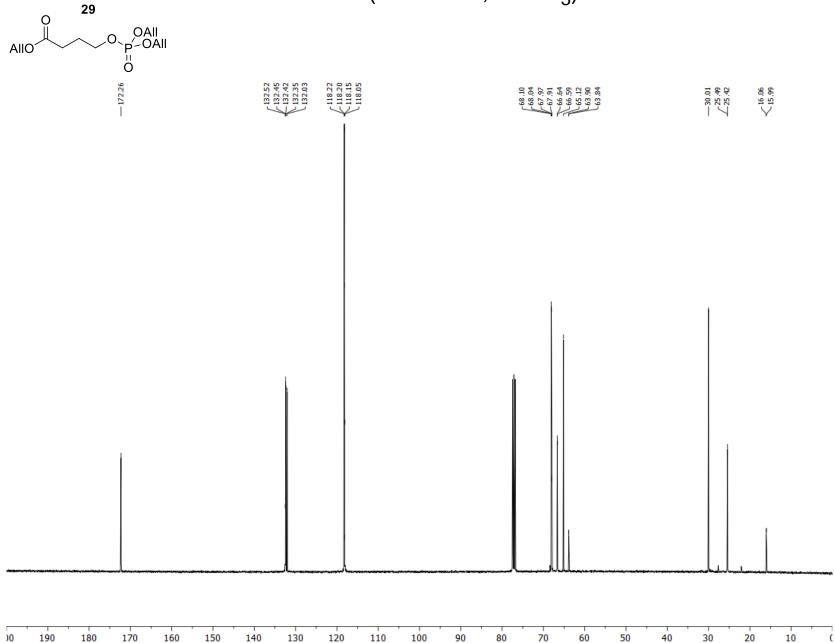


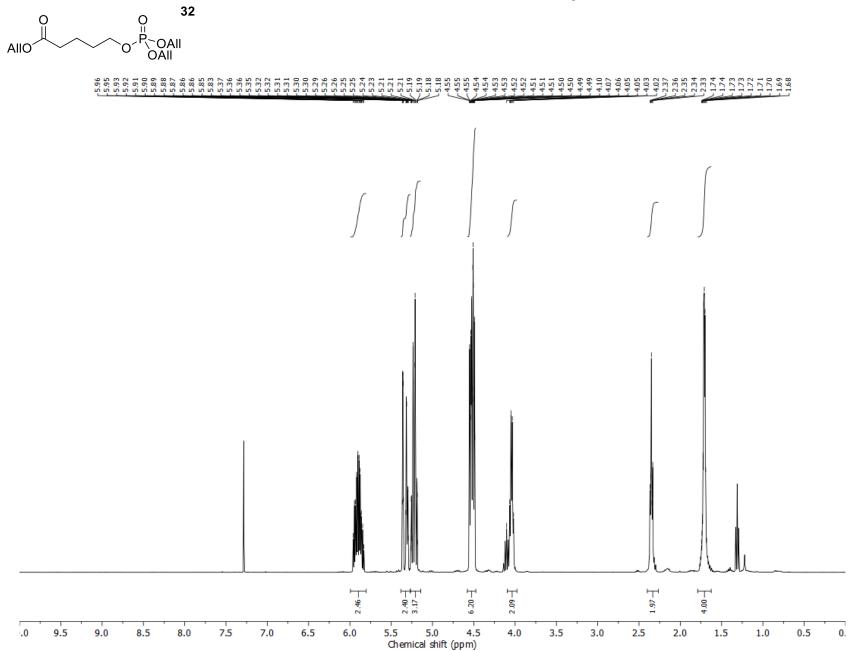

¹H NMR (400 MHz, CDCl₃)

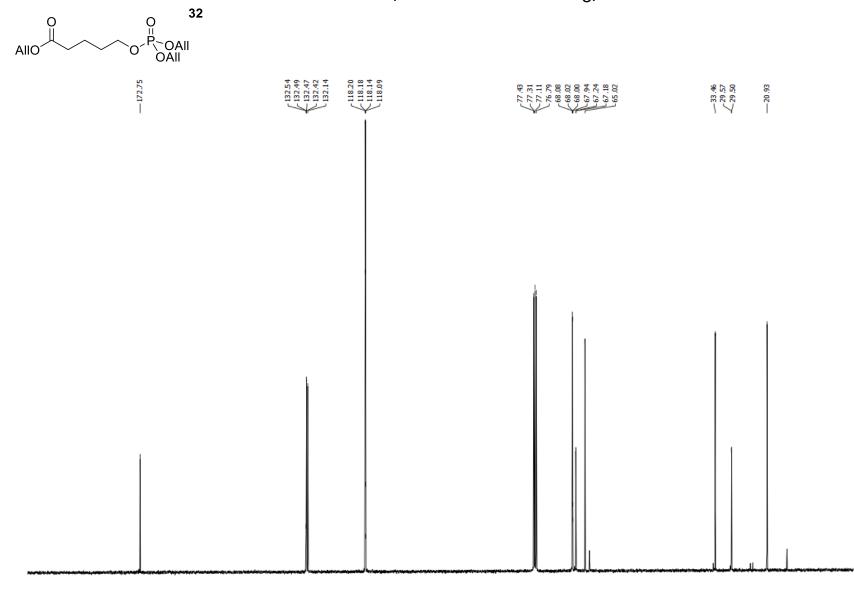


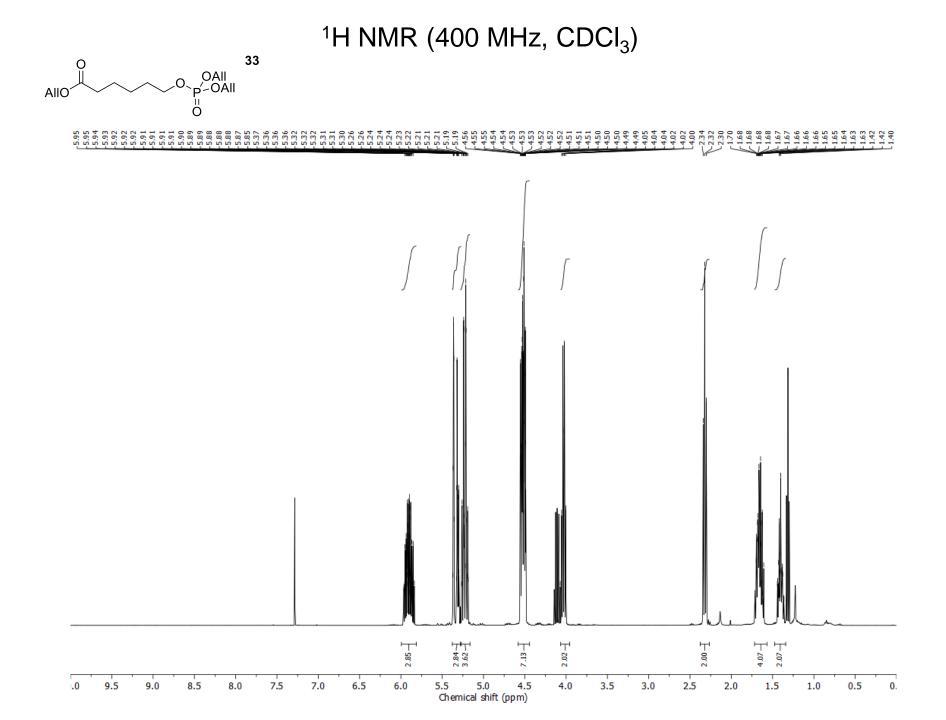

¹³C NMR (100 MHz, CDCl₃)

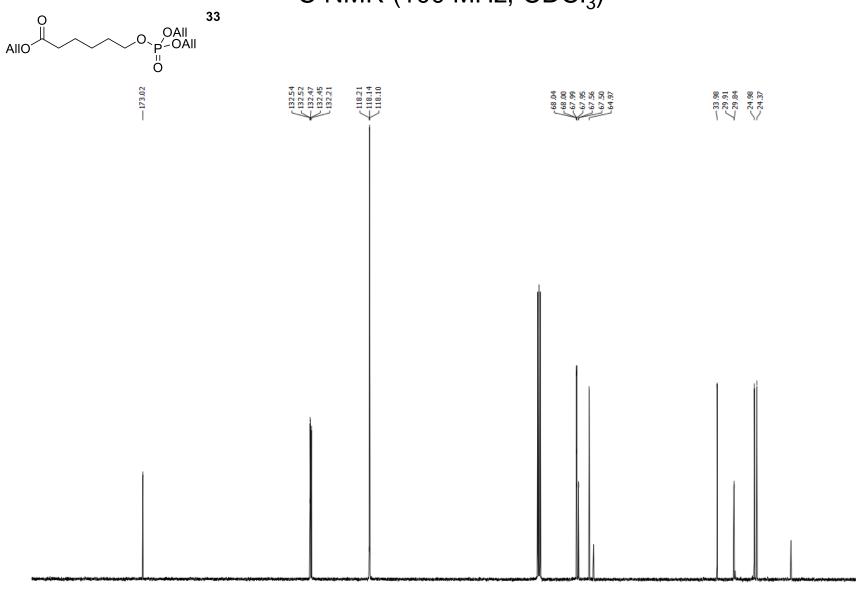




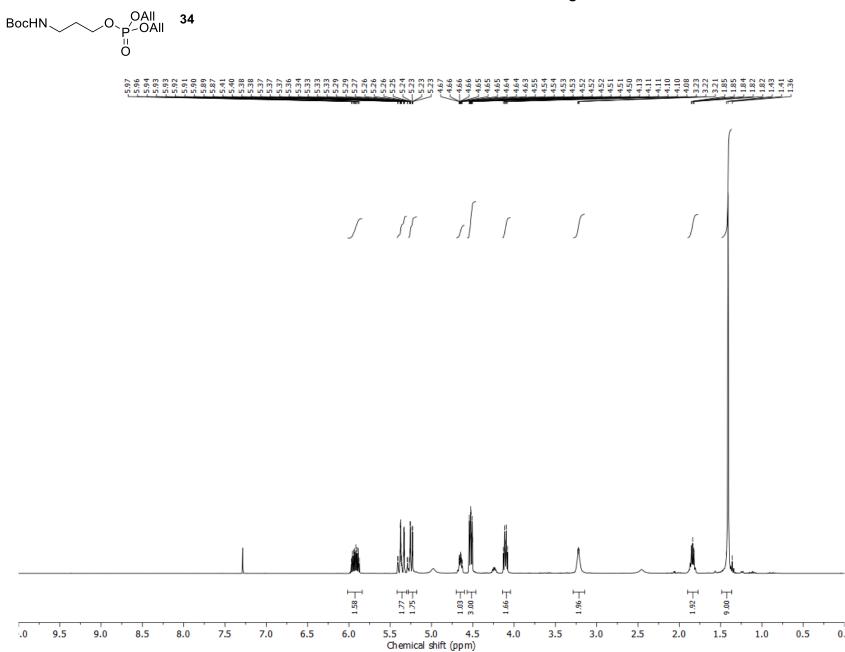



¹³C NMR (100 MHz, CDCl₃)

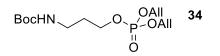


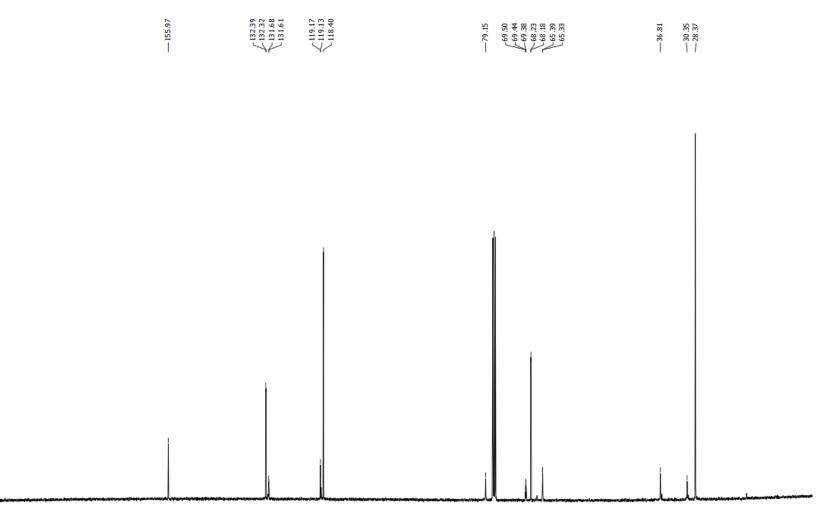

¹³C NMR (100 MHz, CDCl₃)

			· · ·						· · ·			· · ·								
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(
	Chemical shift (ppm)																			

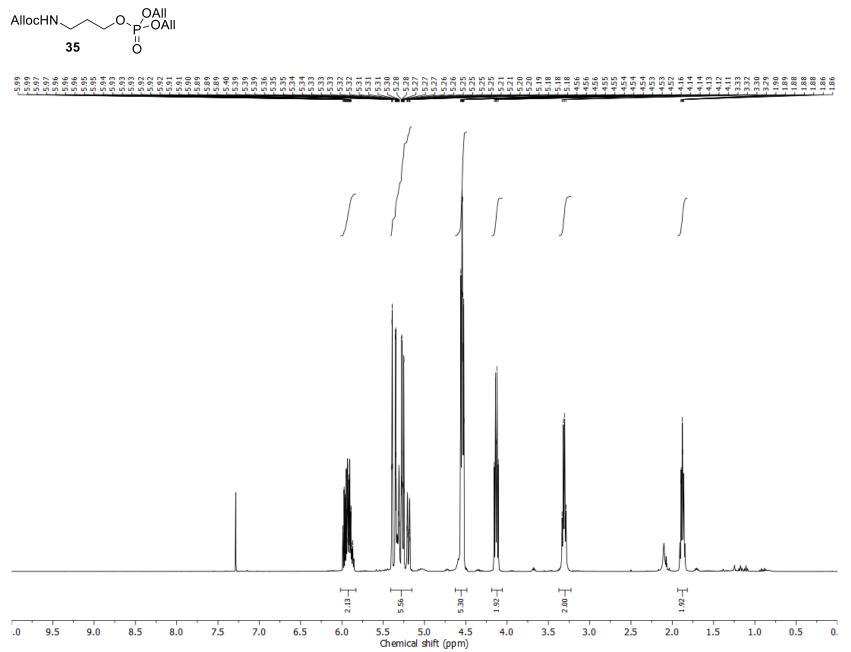


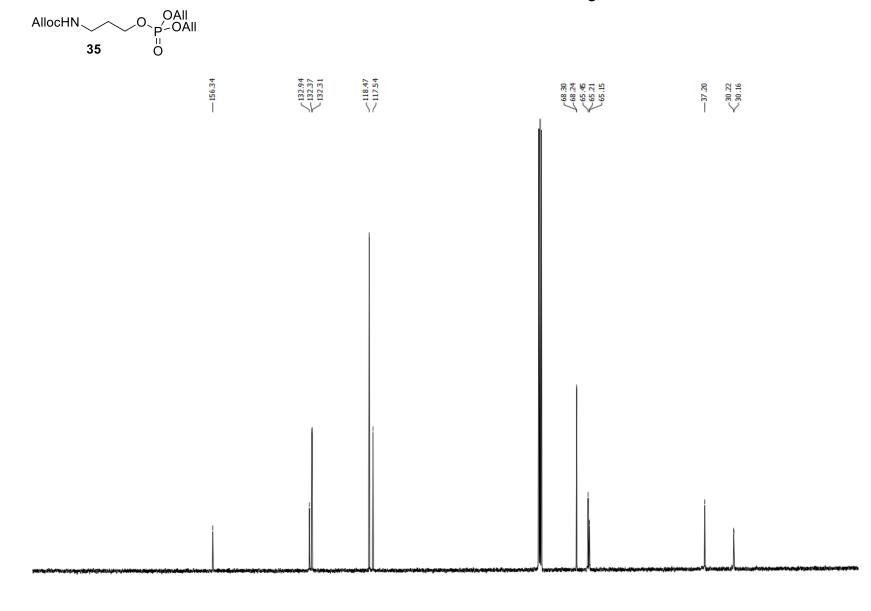
¹³C NMR (100 MHz, CDCl₃)



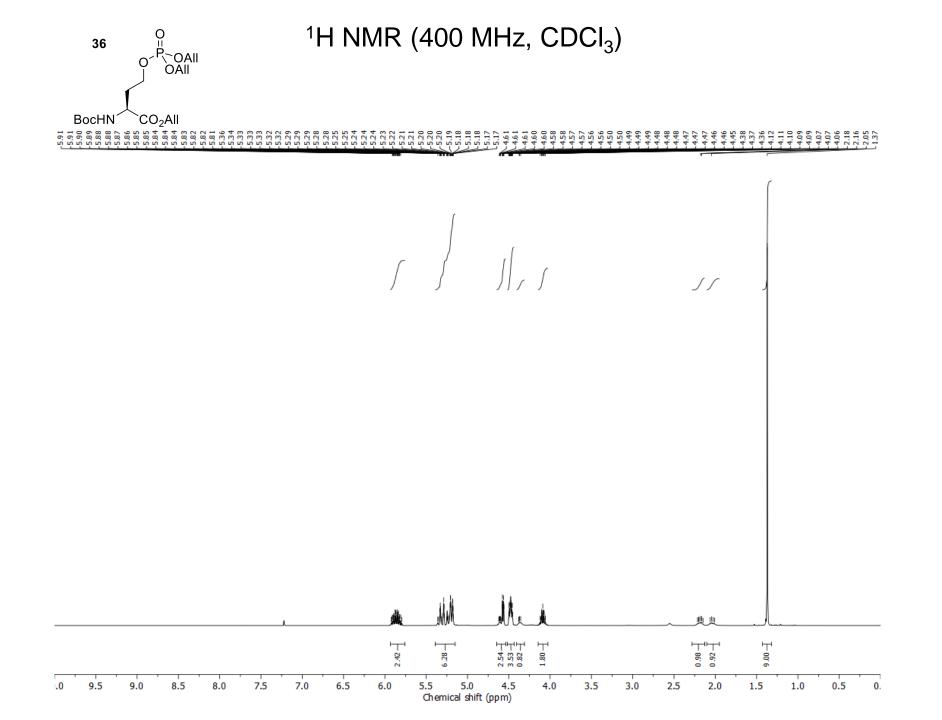

)0	190	180	170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10	(
	Chemical shift (ppm)																			

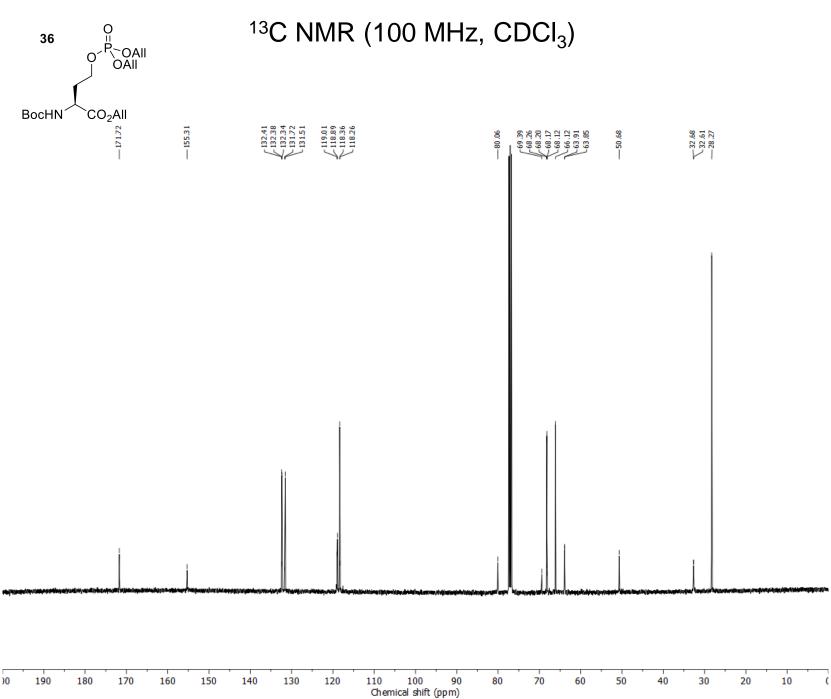
¹H NMR (400 MHz, CDCl₃)


¹³C NMR (100 MHz, CDCl₃)

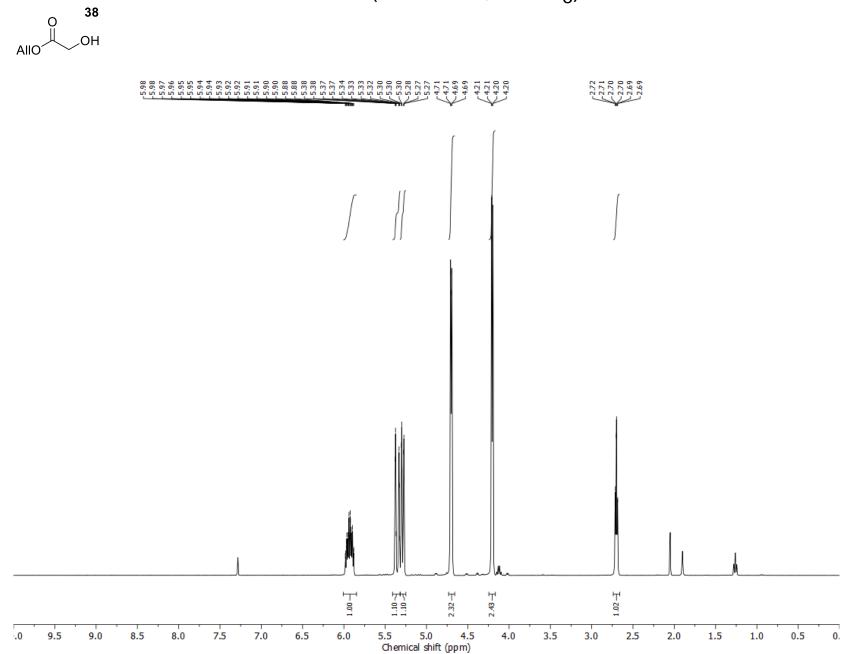


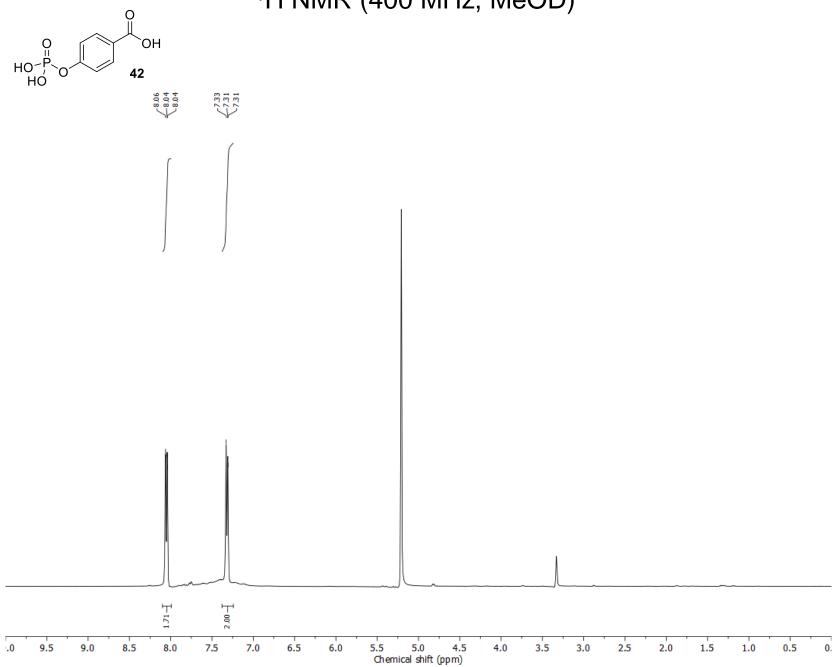
																	· · ·			_
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(
										nical shift	(ppm)									



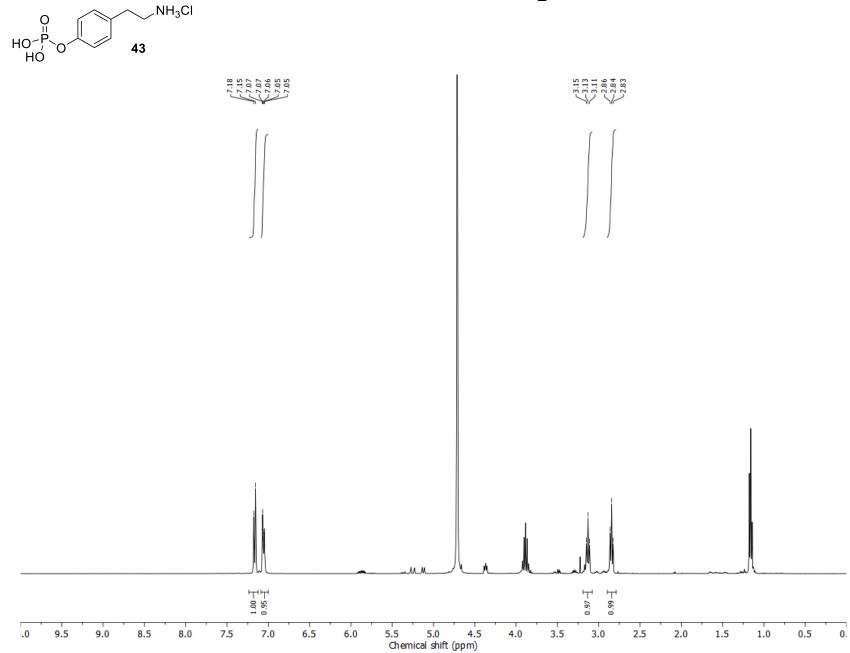


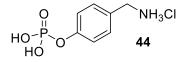
¹³C NMR (100 MHz, CDCl₃)

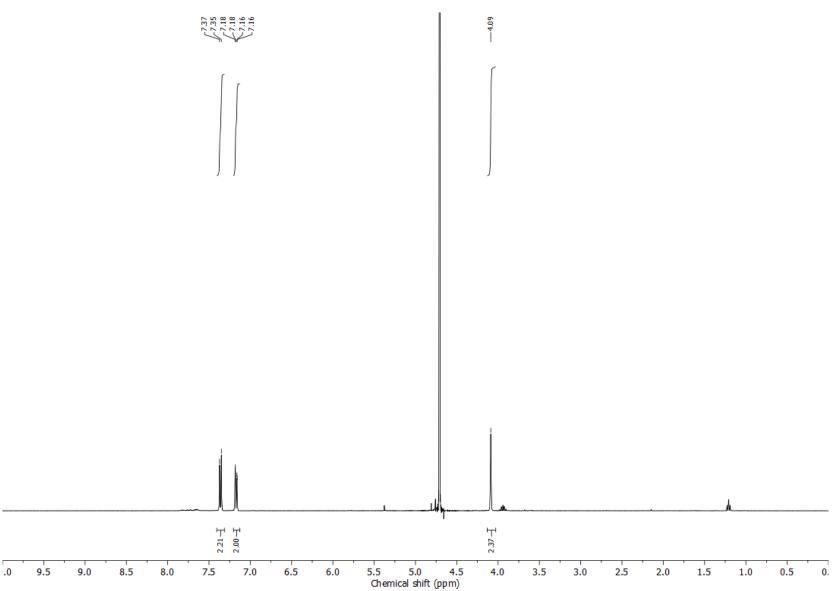


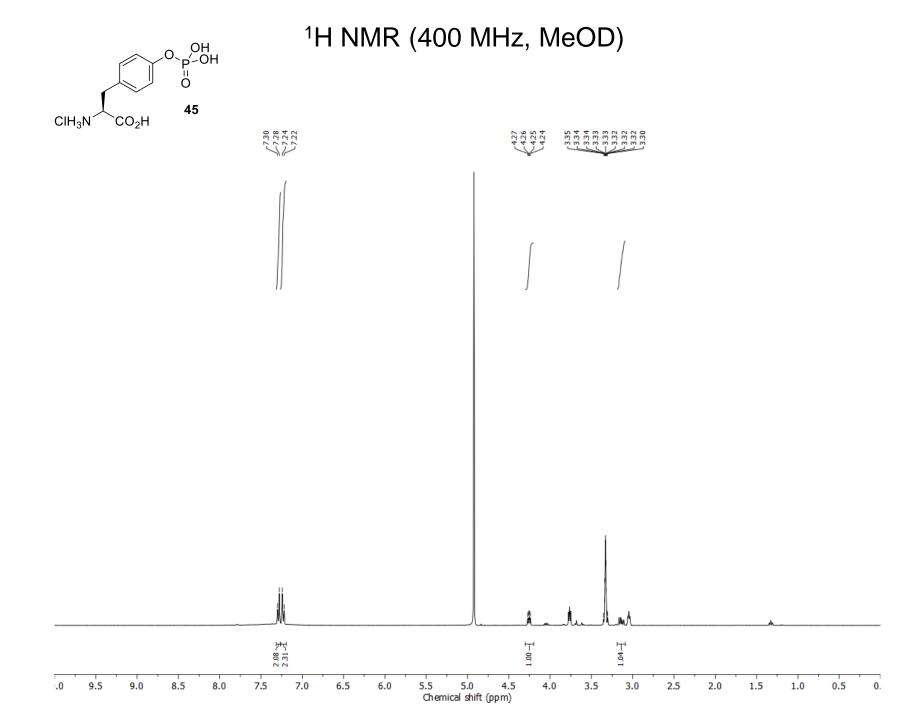

)0		190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(
	Chemical shift (ppm)																				

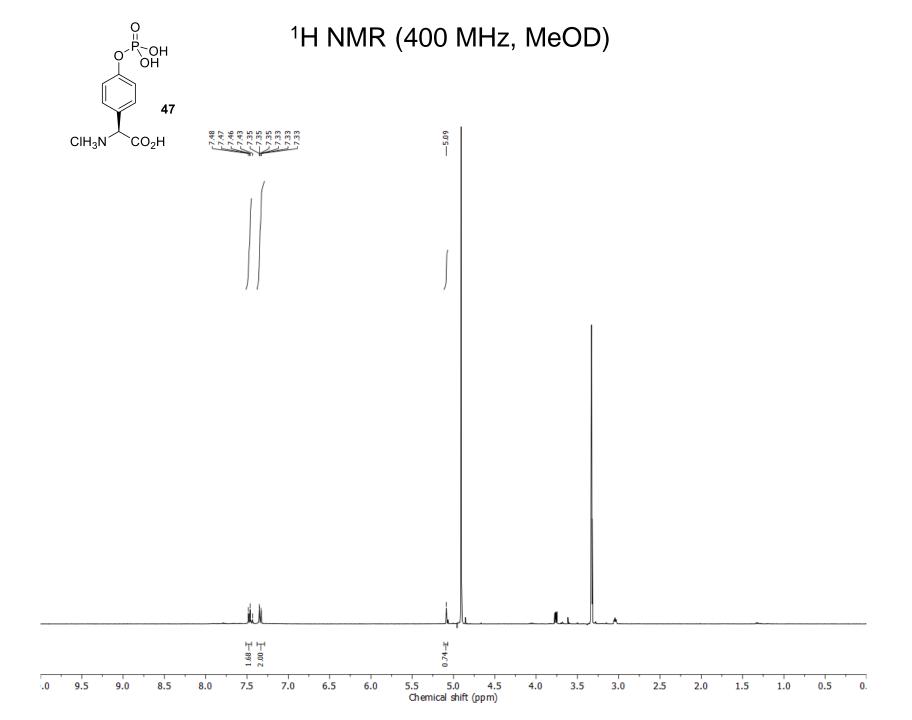
¹H NMR (400 MHz, CDCl₃)

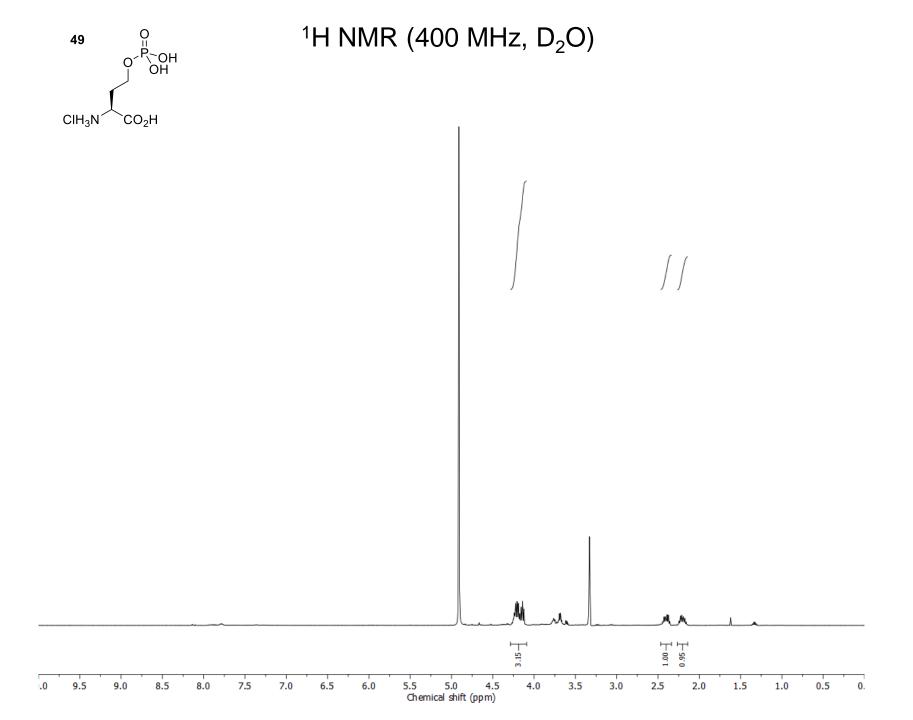


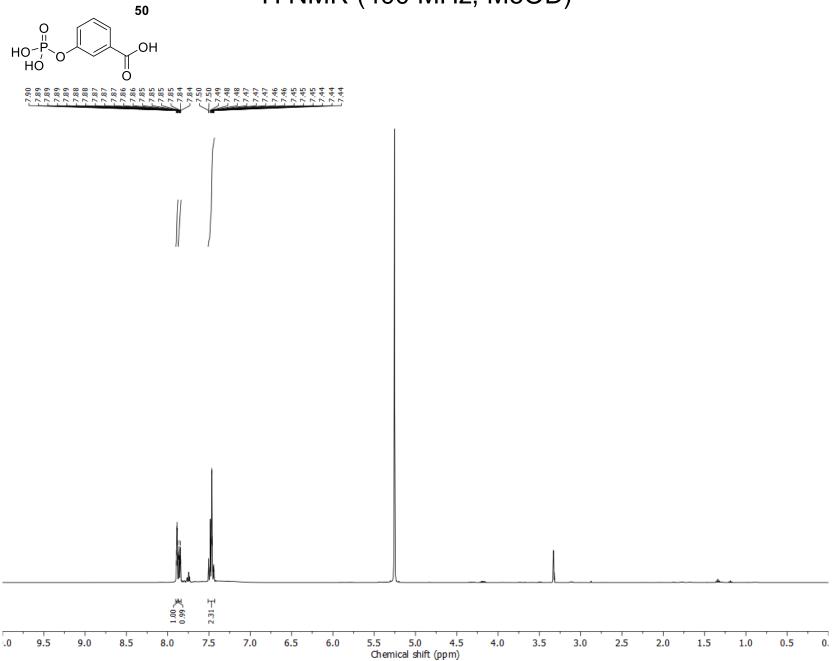

HO		<156.69 156.63		
			1	
	i	I		

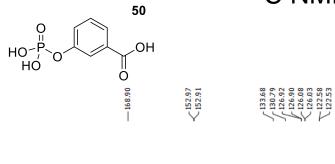

				· · ·					· · ·							· · ·			· · ·	-
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(
	Chemical shift (ppm)																			

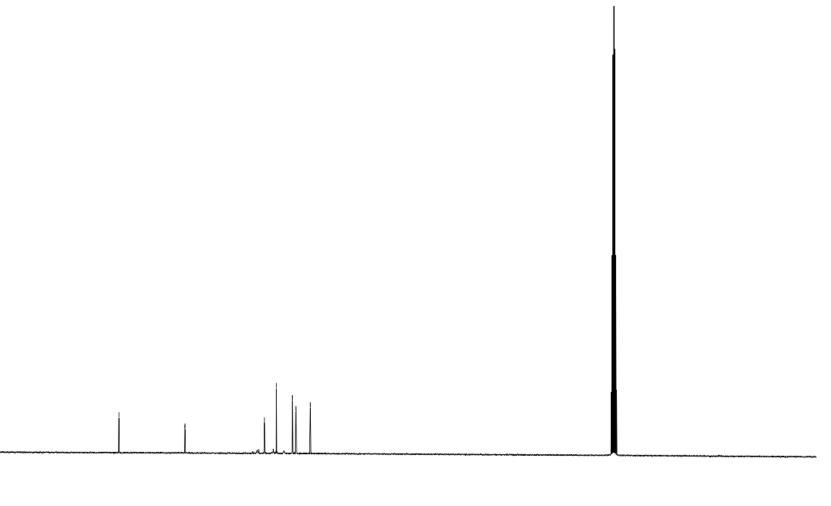

¹H NMR (400 MHz, D₂O)

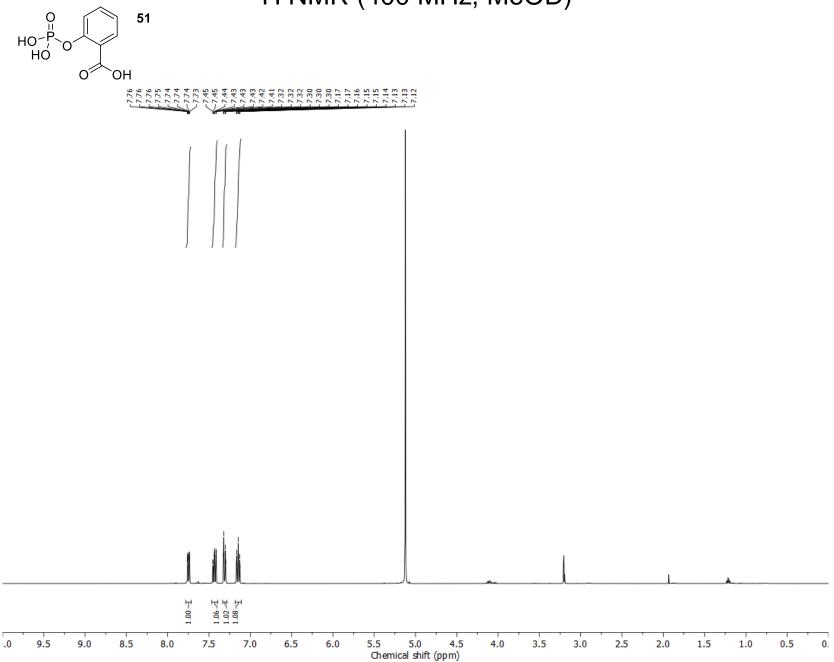


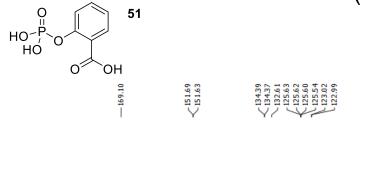

¹H NMR (400 MHz, D₂O)

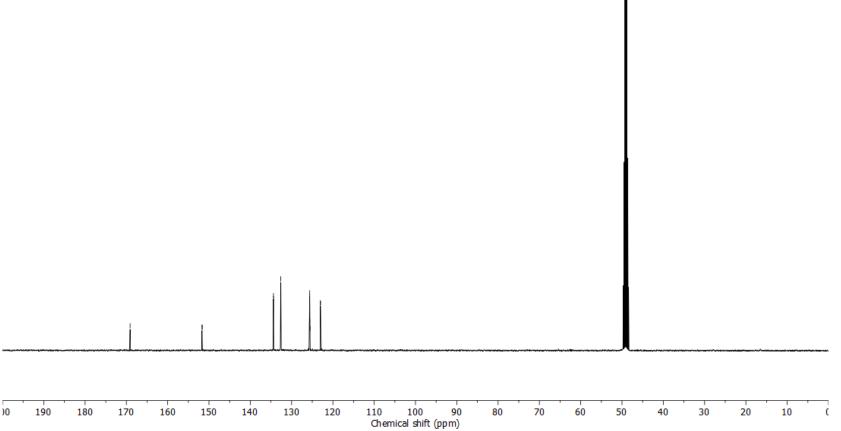


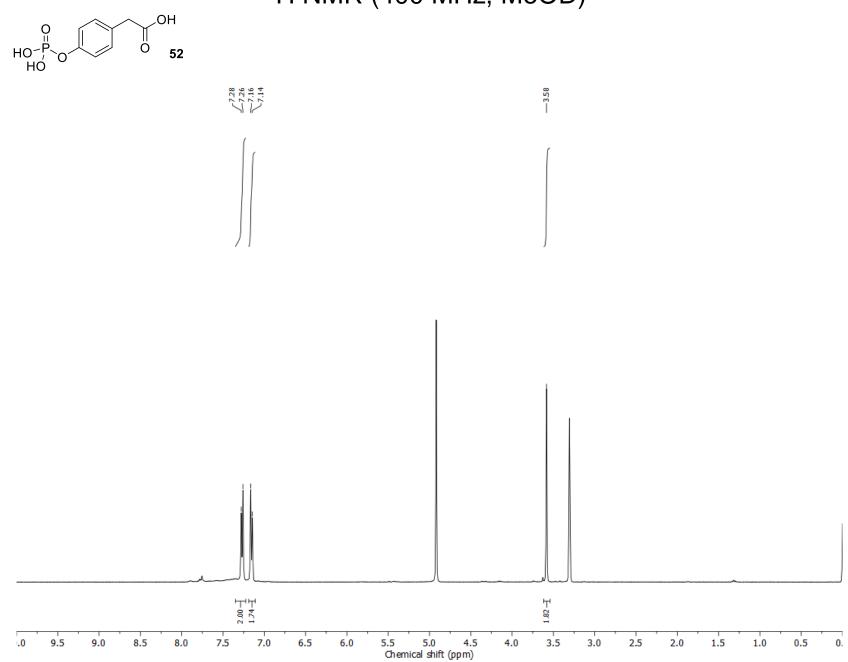




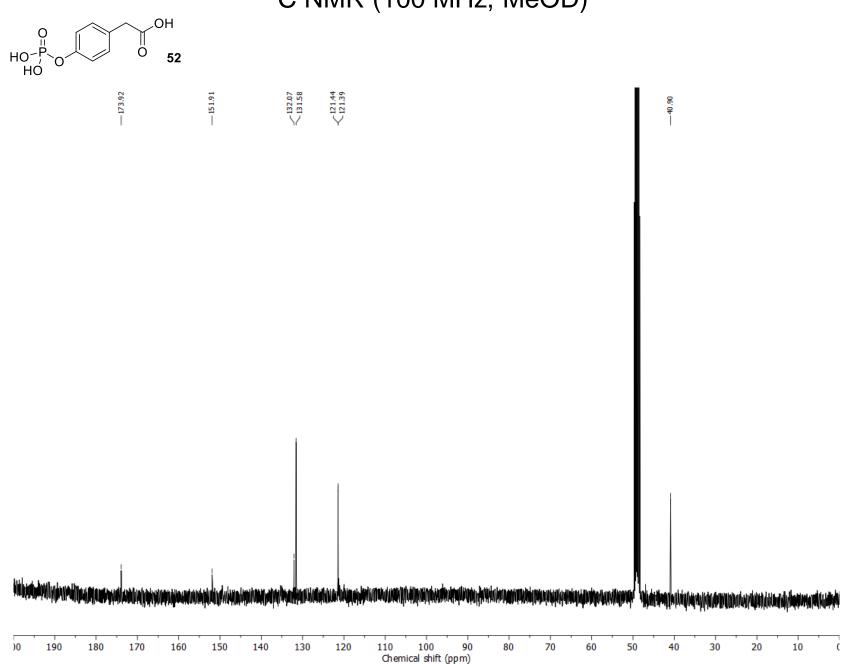


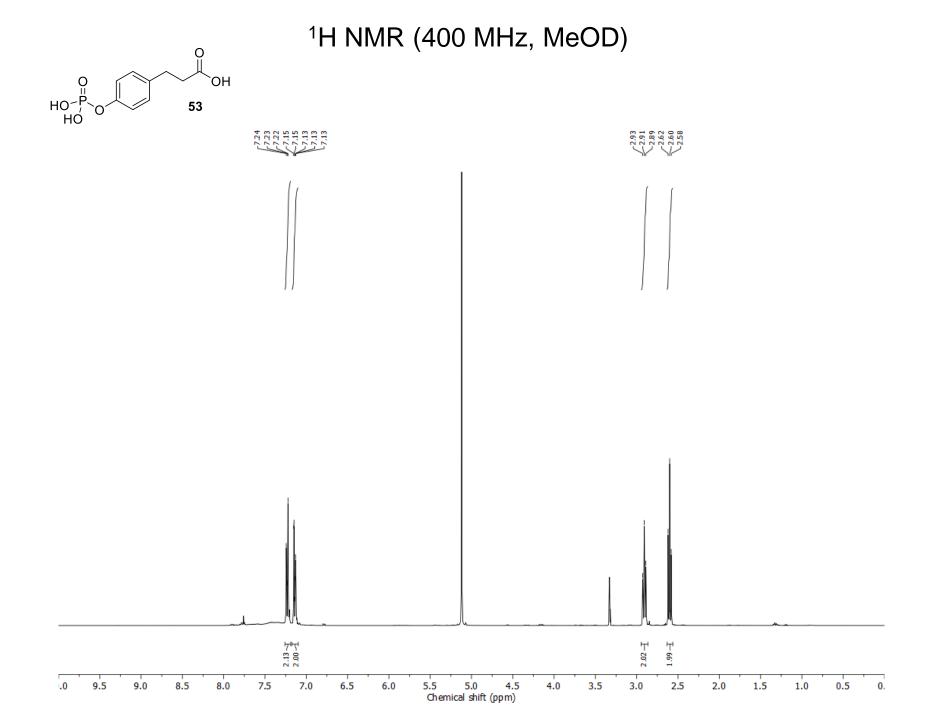


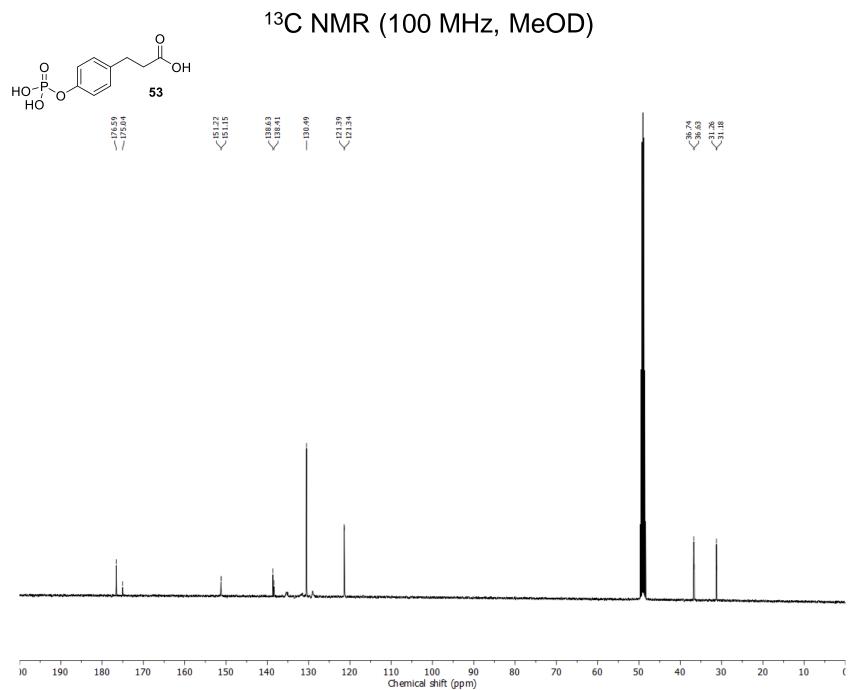


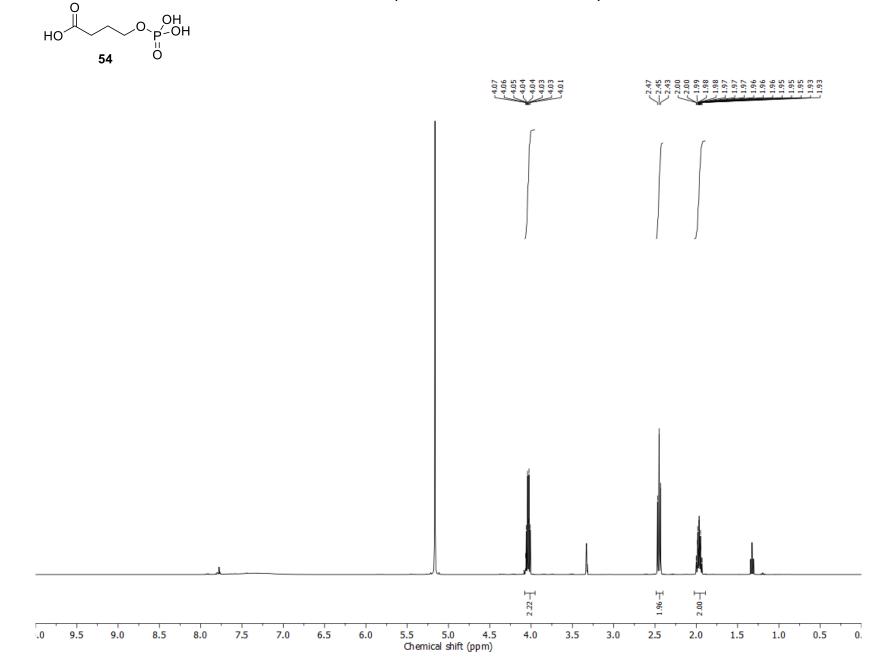


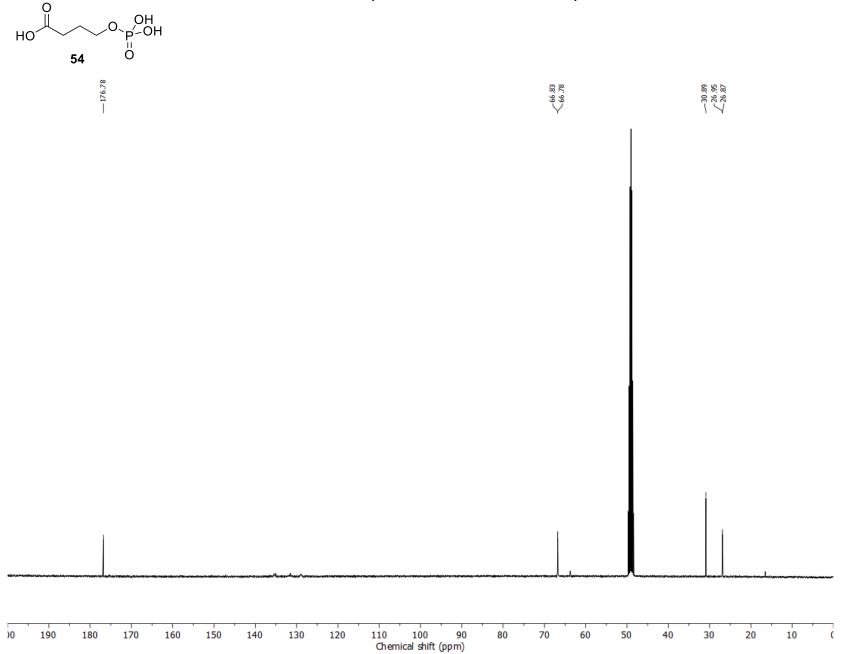
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(
									Chem	nical shift	(ppm)									

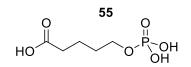






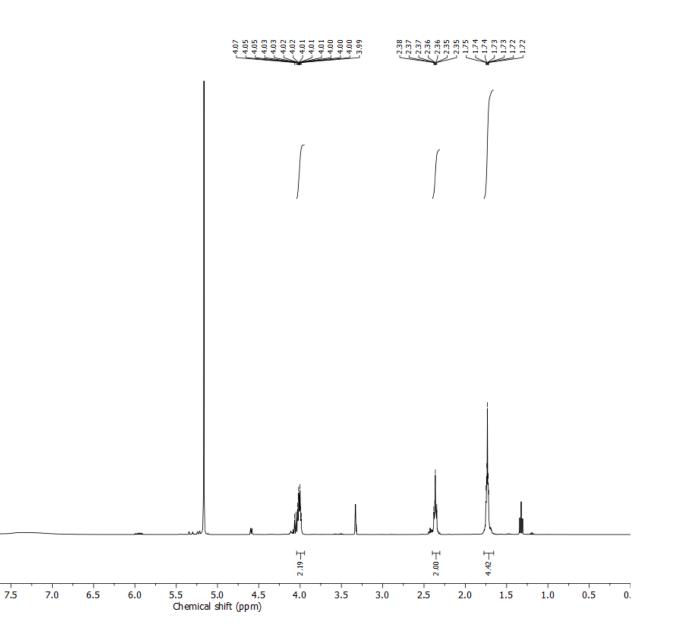

¹³C NMR (100 MHz, MeOD)



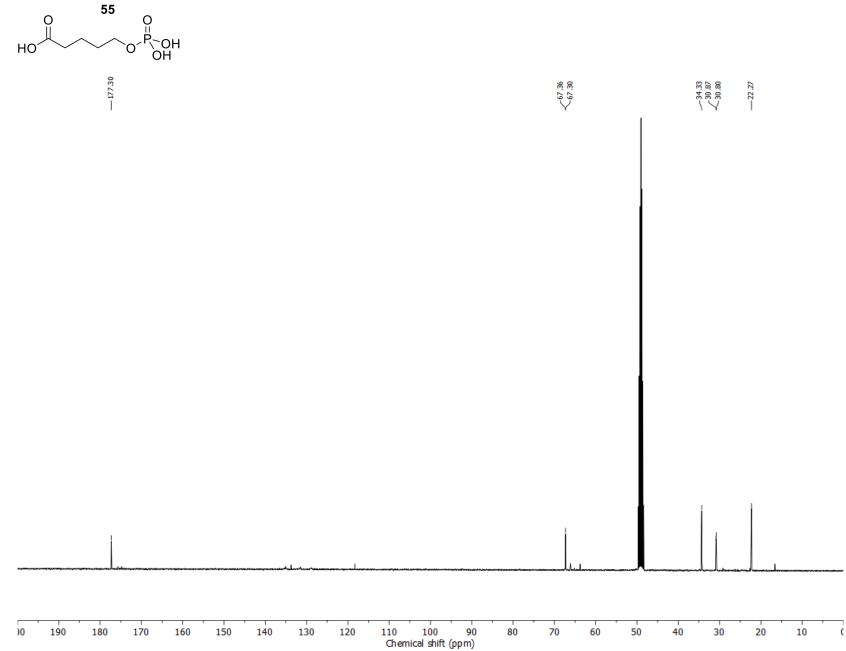

¹H NMR (400 MHz, MeOD)

¹³C NMR (100 MHz, MeOD)

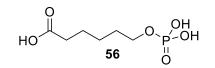
¹H NMR (400 MHz, MeOD)


.0

9.5


9.0

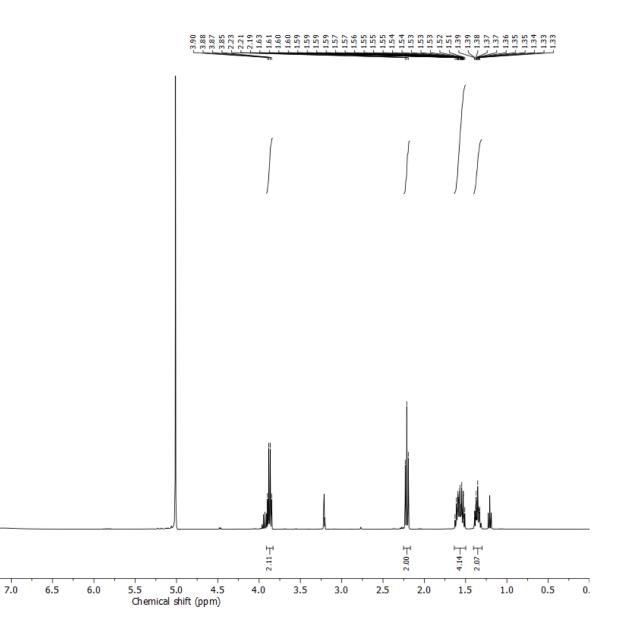
8.5


8.0

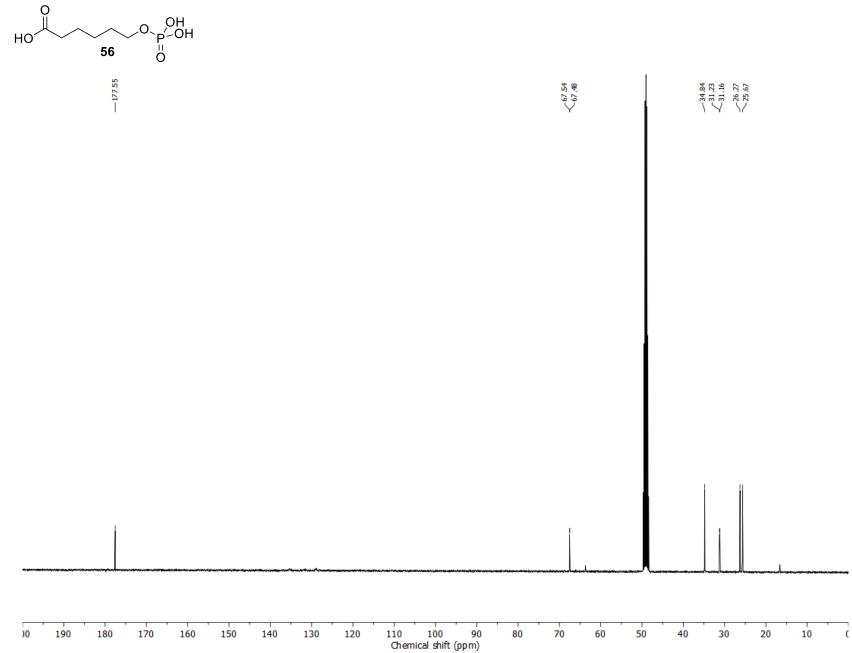
¹³C NMR (100 MHz, MeOD)

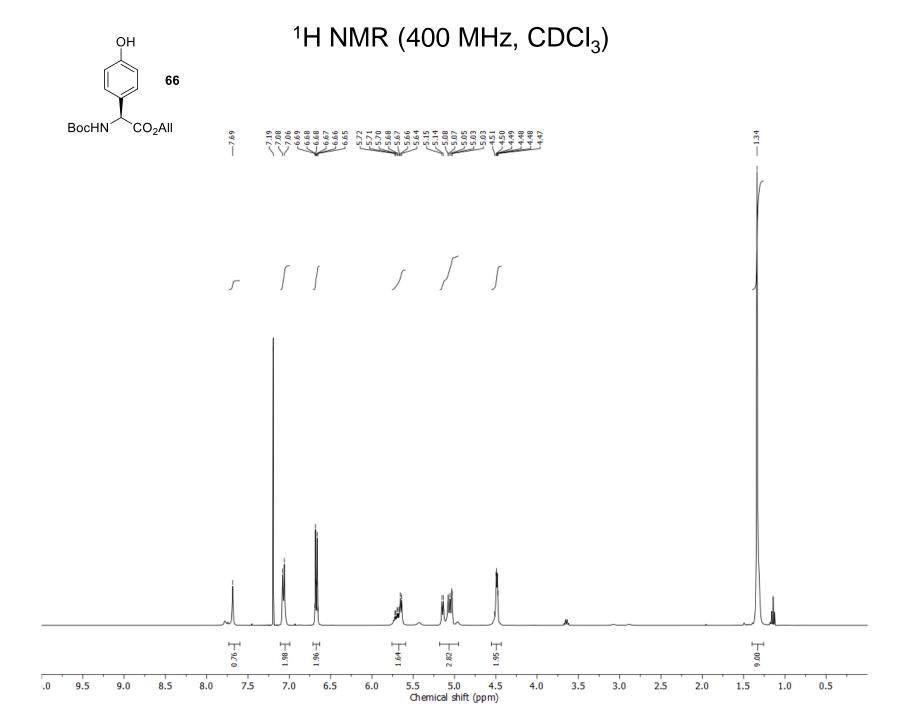
¹H NMR (400 MHz, MeOD)

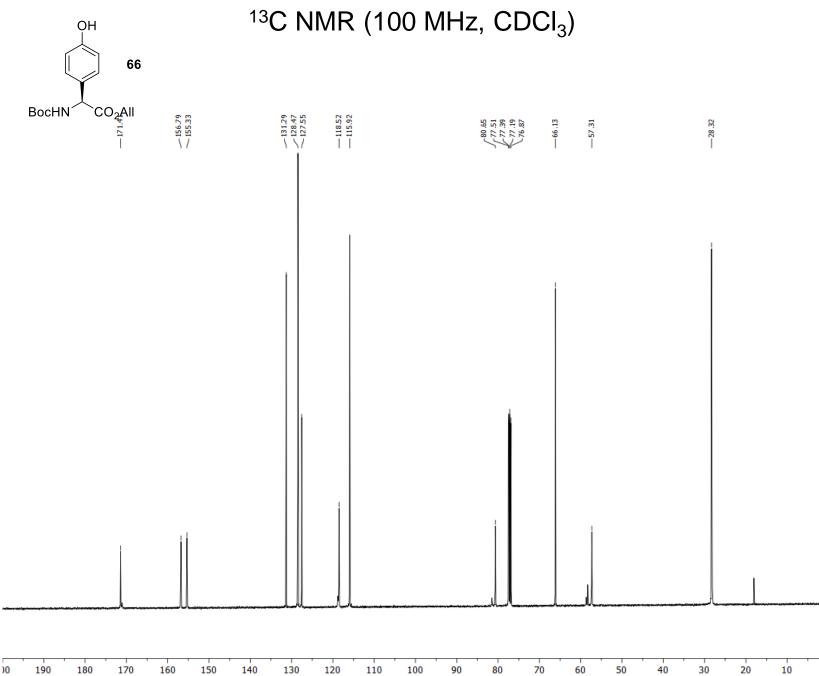
.0


9.5

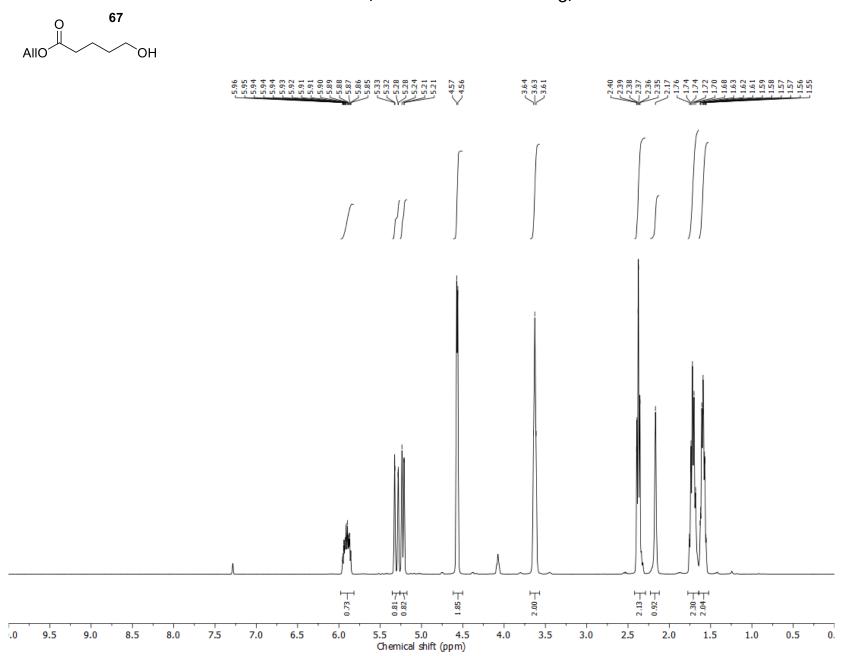
9.0

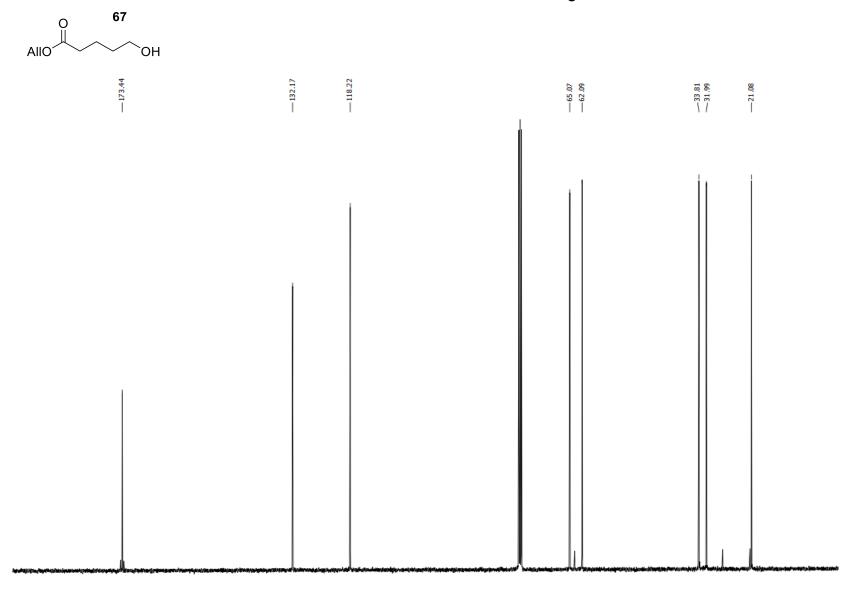

8.5


8.0


7.5

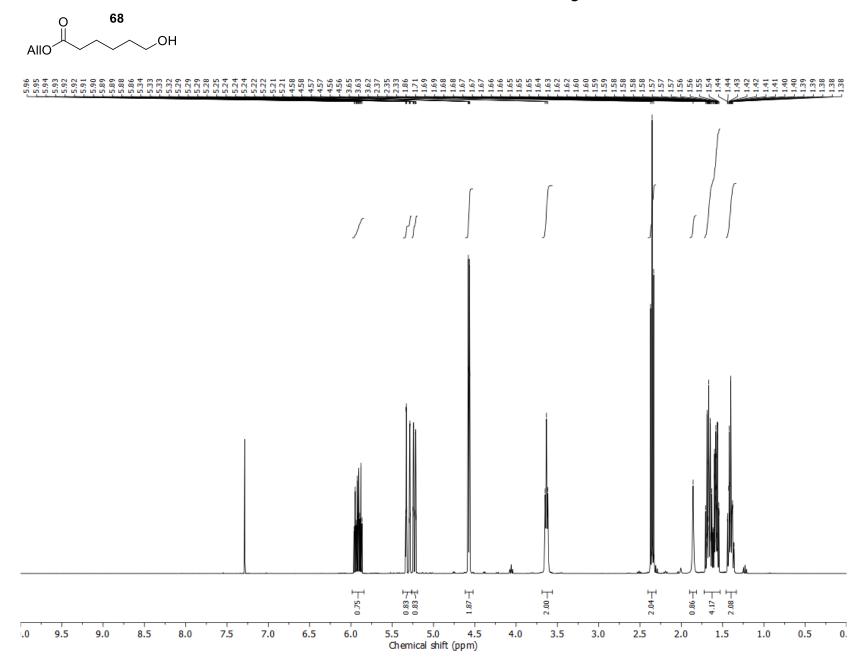
¹³C NMR (100 MHz, MeOD)



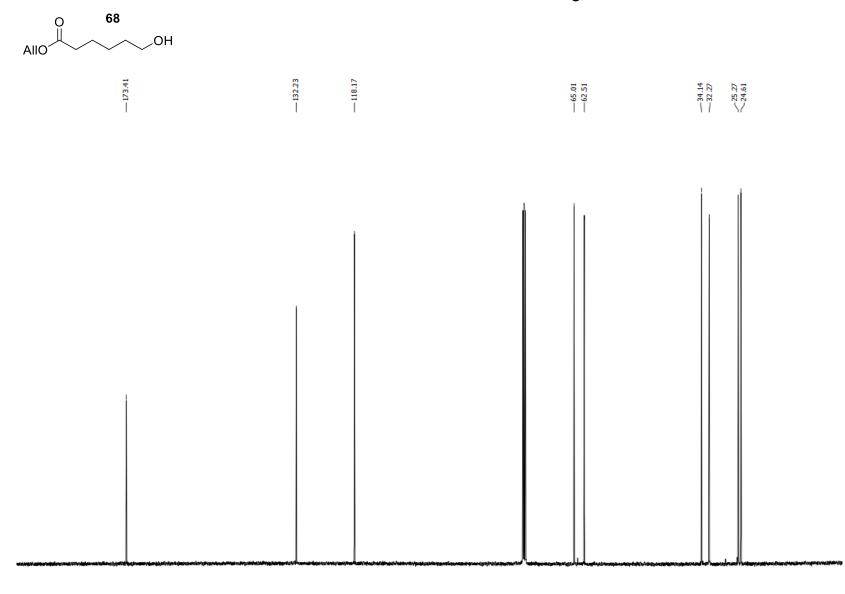


(

¹H NMR (400 MHz, CDCl₃)



¹³C NMR (100 MHz, CDCl₃)



		' '					· · ·			· · ·		' '					· · ·		· · · ·	
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(
Chemical shift (ppm)																				

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

												' '			, ,					
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(
	Chemical shift (ppm)																			