Supporting Information for

Catalytic chemoselective O-phosphorylation of alcohols

K. Domon, M. Puripat, K. Fujiyoshi, M. Hatanaka, S. A. Kawashima, K. Yamatsugu*, and M. Kanai*

Correspondence to: kanai@mol.f.u-tokyo.ac.jp (M.K.), yamatsugu@mol.f.u-tokyo.ac.jp (K.Y.)

Table of contents

Materials and Methods	
General	S3
Synthesis of peptides	S4
Preparation of PEP-H	S10
Synthesis of phosphobenzylsulfate	S10
Synthesis of ³⁴ S-labeled tetrabutylammonium hydrogen sulfate (³⁴ S-TBAHS)	S11
General procedures for catalytic phosphorylation of alcohols	S12
Reaction of POS (42) with 3-phenyl-1-propanol with varied amount of PEP-K	S13
Characterization of phosphorylated products	S14
Computational Details	S28
Supplementary Tables, Figures	S29
References	S48
Cartesian Coordinates of the Critical Points	S50
Spectral Data	S72

Materials and Methods General

NMR spectra were recorded on JEOL ECX500 (500 MHz for ¹H NMR, 126 MHz for ¹³C NMR), and JEOL ECS400 (400 MHz for ¹H NMR, 101 MHz for ¹³C NMR and 162 MHz for ³¹P NMR) spectrometers. Chemical shifts were reported in ppm on the δ scale relative to residual CHD₂S(O)CD₃ (δ = 2.50 for ¹H NMR and δ = 39.5 for ¹³C NMR), HDO (δ = 4.79 for ¹H NMR), CHD₂OD (δ = 3.31 for ¹H NMR and δ = 49.0 for ¹³C NMR), or CHD₂CN (δ = 1.94 for ¹H NMR and δ = 118.2 for ¹³C NMR) as an internal reference, and 85% H₃PO₄ aq. (δ = 0 for ³¹P NMR) as an external reference, respectively.

Preparative HPLC was conducted by using a JASCO HPLC system equipped with a UV-2075 spectrometer, PU-2086 pumps, a DG-2080-53 degasser, and an MX-2080-32 mixer. General eluent was linear gradient of MeCN in 0.1% TFA (LC-MS grade) aq. (2% acetonitrile for 3 min, followed by a linear gradient of 2–100% acetonitrile over 60 min. YMC-Triart C18, 254 nm), unless otherwise stated. C18 reverse phase column was used at 40 °C, unless otherwise stated.

Analytical HPLC was conducted by using a JASCO HPLC system equipped with a UV-2075 spectrometer, PU-2080 pumps, a DG-2080-54 degasser, and an MX-2080-32 mixer. General eluent was linear gradient of MeCN in 0.1% TFA (LC-MS grade) aq. (2% acetonitrile for 3 min, followed by a linear gradient of 2–90% acetonitrile over 13 min. YMC-Triart C18, 230 nm), unless otherwise stated. C18 reverse phase column was used at 40 °C, unless otherwise stated.

MQ means distilled water purified with a Millipore Milli-Q water purification system (Merck K. Ga. Co., Darmstadt, Germany).

LC-MS analysis was conducted by using an Agilent Technologies LC-MS (ESI) system equipped with a 1260 Infinity High Performance Degasser, an Agilent 1260 Infinity Binary Pump, a 1260 Infinity Standard Autosampler, a 1290 Infinity Thermostatted Column Compartment, a 1260 Infinity Variable Wavelength Detector, and an Agilent 6120 Single Quadrupole LC-MS or Shimadzu LCMS-2020. Retention times (Rt/min) were recorded using a gradient elution method of 2-90% B over 13 min, where solution A consisted of water (buffered with 0.1% HCO₂H) and solution B consisted of acetonitrile (LC-MS grade) unless otherwise stated. C18 reverse phase column (2.0 × 50 mm; YMC-Triart C18; YMC Co., Ltd.) was used at 40 °C at a flow rate of 0.2 mL/min. The eluent was monitored by absorbance at 230 nm, unless otherwise stated.

MALDI-TOF MS was obtained with a Shimadzu Biotech Axima ToF² spectrometer.

LC–MS/MS analyses were conducted using AB Sciex Triple TOF 4600 equipped with eksigent ekspert microLC 200. LC was carried out as follows: 3C18-CL-120 column (0.5 mm I.D × 100 mm) using a linear gradient of 2–35% acetonitrile with 0.1% formic acid (v/v) versus water with 0.1% formic acid (v/v) over 8 min at 40 °C with a flow rate of 20 μ L/min.

Reactions were carried out in dry solvents under an argon atmosphere, unless otherwise stated. ³⁴S-Labeled H₂SO₄ was purchased from Shoko Science. Other reagents were used as received from commercial sources (Aldrich, TCI, or Wako), unless otherwise stated.

Synthesis of peptides

Bz-Ser-Ala-Tyr-NH₂ (a):

Peptide (**a**) was synthesized on a solid phase in 0.196 mmol scale using NovaPEG Rink Amide resin. Fmocamino acid (3.0 equiv.) was sequentially coupled using a DIEA-COMU method in DMF for 60 min (3.0 equiv. each) at r.t. after removal of each Fmoc group with 20% piperidine-DMF for 10 min. After the last removal of Fmoc group, benzoic anhydride (5.0 equiv.) in CH₂Cl₂ was added, and stirred for 10 min. The peptide was cleaved from the resin by treatment with TFA in the presence of TIPS and H₂O (95:2.5:2.5) for 90 min at r.t., concentrated under reduced pressure, and precipitated with ether to afford crude **a**, which was purified with preparative HPLC to afford the target peptide (**a**, 23.8 mg, 0.0538 mmol, 27% yield) as white solids after lyophilization.

ESI-MS *m*/z 443.2 [M+H]⁺, Retention time (LC/MS): 6.9 min.

Bz-Thr-Ala-Tyr-NH₂ (b):

Peptide (**b**) was synthesized on a solid phase in 0.294 mmol scale using NovaPEG Rink Amide resin. Fmocamino acid (3.0 equiv.) was sequentially coupled using a DIEA-COMU method in DMF for 60 min (3.0 equiv. each) at r.t. after removal of each Fmoc group with 20% piperidine-DMF for 10 min. After the last removal of Fmoc group, benzoic anhydride (5.0 equiv.) in CH_2Cl_2 was added, and stirred for 10 min. The peptide was cleaved from the resin by treatment with TFA in the presence of TIPS and H_2O (95:2.5:2.5) for 90 min at r.t., concentrated under reduced pressure, and precipitated with ether to afford crude **b**, which was purified with preparative HPLC to afford the target peptide (**b**, 20.9 mg, 0.0458 mmol, 16% yield) as white solids after lyophilization.

ESI-MS m/z 457.4 [M+H]⁺, Retention time (LC/MS): 6.7 min.

Bz-Ser-Ala-Asp-NH₂ (c):

Peptide (c) was synthesized on a solid phase in 0.196 mmol scale using NovaPEG Rink Amide resin. Fmocamino acid (3.0 equiv.) was sequentially coupled using a DIEA-COMU method in DMF for 60 min (3.0 equiv. each) at r.t. after removal of each Fmoc group with 20% piperidine-DMF for 10 min. After the last removal of Fmoc group, benzoic anhydride (5.0 equiv.) in CH₂Cl₂ was added and stirred for 10 min. The peptide was cleaved from the resin by treatment with TFA in the presence of TIPS and H₂O (95:2.5:2.5) for 90 min at r.t., concentrated under reduced pressure, and precipitated with ether to afford crude c, which was purified with preparative HPLC to afford the target peptide (c, 17.9 mg, 0.0454 mmol, 23% yield) as white solids after lyophilization. ESI-MS *m*/z 395.2 [M+H]⁺, Retention time (LC/MS): 5.8 min.

Bz-Ser-Ala-Trp-NH₂ (d):

Peptide (**d**) was synthesized on a solid phase in 0.196 mmol scale using NovaPEG Rink Amide resin. Fmocamino acid (3.0 equiv.) was sequentially coupled using a DIEA-COMU method in DMF for 60 min (3.0 equiv. each) at r.t. after removal of each Fmoc group with 20% piperidine-DMF for 10 min. After the last removal of Fmoc group, benzoic anhydride (5.0 equiv.) in CH_2Cl_2 was added, and stirred for 10 min. The peptide was cleaved from the resin by treatment with TFA in the presence of TIPS and H_2O (95:2.5:2.5) for 90 min at r.t., concentrated under reduced pressure, and precipitated with ether to afford crude **d**, which was purified with preparative HPLC to afford the target peptide (**d**, 21.4 mg, 0.0460 mmol, 23% yield) as white solids after lyophilization.

ESI-MS m/z 466.2 [M+H]⁺, Retention time (LC/MS): 6.9 min.

Bz-Ser-Ala-Met-NH₂ (e):

Peptide (e) was synthesized on a solid phase in 0.196 mmol scale using NovaPEG Rink Amide resin. Fmocamino acid (3.0 equiv.) was sequentially coupled using a DIEA-COMU method in DMF for 60 min (3.0 equiv. each) at r.t. after removal of each Fmoc group with 20% piperidine-DMF for 10 min. After the last removal of Fmoc group, benzoic anhydride (5.0 equiv.) in CH_2Cl_2 was added, and stirred for 10 min. The peptide was cleaved from the resin by treatment with TFA in the presence of TIPS and H_2O (95:2.5:2.5) for 90 min at r.t., concentrated under reduced pressure, and precipitated with ether to afford crude e, which was purified with preparative HPLC to afford the target peptide (e, 28.0 mg, 0.0682 mmol, 35% yield) as white solids after lyophilization.

ESI-MS *m*/z 411.2 [M+H]⁺, Retention time (LC/MS): 7.0 min.

Peptide (**g**) was synthesized on a solid phase in 0.196 mmol scale using NovaPEG Rink Amide resin. Fmocamino acid (3.0 equiv.) was sequentially coupled using a DIEA-COMU method in DMF for 60 min (3.0 equiv. each) at r.t. after removal of each Fmoc group with 20% piperidine-DMF for 10 min. After the last removal of Fmoc group, benzoic anhydride (5.0 equiv.) in CH_2Cl_2 was added, and stirred for 10 min. The peptide was cleaved from the resin by treatment with TFA in the presence of TIPS and H_2O (95:2.5:2.5) for 90 min at r.t., concentrated under reduced pressure, and precipitated with ether to afford crude **g**, which was purified with preparative HPLC to afford the target peptide (**g**, 24.5 mg, 0.0521 mmol, 27% yield) as white solids after lyophilization.

ESI-MS *m*/z 471.2 [M+H]⁺, Retention time (LC/MS): 7.6 min.

Bz-Ser-Ala-His-NH₂ TFA salt (h):

Peptide (**h**) was synthesized on a solid phase in 0.147 mmol scale using NovaPEG Rink Amide resin. Fmocamino acid (3.0 equiv.) was sequentially coupled using a DIEA-COMU method in DMF for 60 min (3.0 equiv. each) at r.t. after removal of each Fmoc group with 20% piperidine-DMF for 10 min. After the last removal of Fmoc group, benzoic anhydride (5.0 equiv.) in CH₂Cl₂ was added, and stirred for 10 min. The peptide was cleaved from the resin by treatment with TFA in the presence of TIPS and H₂O (95:2.5:2.5) for 90 min at r.t., concentrated under reduced pressure, and precipitated with ether to afford crude **h**, which was purified with preparative HPLC to afford the target peptide (**h**, 18.7 mg, 0.0353 mmol, 24% yield) as white solids after lyophilization.

ESI-MS m/z 417.2 [M+H]⁺, Retention time (LC/MS): 5.6 min.

Bz-Ser-Ala-Arg-NH₂ TFA salt (i):

Peptide (i) was synthesized on a solid phase in 0.147 mmol scale using NovaPEG Rink Amide resin. Fmocamino acid (3.0 equiv.) was sequentially coupled using a DIEA-COMU method in DMF for 60 min (3.0 equiv. each) at r.t. after removal of each Fmoc group with 20% piperidine-DMF for 10 min. After the last removal of Fmoc group, benzoic anhydride (5.0 equiv.) in CH_2Cl_2 was added, and stirred for 10 min. The peptide was cleaved from the resin by treatment with TFA in the presence of TIPS and H_2O (95:2.5:2.5) for 90 min at r.t., concentrated under reduced pressure, and precipitated with ether to afford crude **i**, which was purified with preparative HPLC to afford the target peptide (**i**, 14.3 mg, 0.0260 mmol, 18% yield) as white solids after lyophilization.

ESI-MS *m*/z 436.3 [M+H]⁺, Retention time (LC/MS): 5.6 min.

Bz-Ser-Ala-Lys(Me)-NH₂ TFA salt (j):

Peptide (**j**) was synthesized on a solid phase in 0.196 mmol scale using NovaPEG Rink Amide resin. Fmocamino acid (3.0 equiv.) was sequentially coupled using a DIEA-COMU method in DMF for 60 min (3.0 equiv. each) at r.t. after removal of each Fmoc group with 20% piperidine-DMF for 10 min. After the last removal of Fmoc group, benzoic anhydride (5.0 equiv.) in CH₂Cl₂ was added, and stirred for 10 min. The peptide was cleaved from the resin by treatment with TFA in the presence of TIPS and H₂O (95:2.5:2.5) for 90 min at r.t., concentrated under reduced pressure, and precipitated with ether to afford crude **j**, which was purified with preparative HPLC to afford the target peptide (**j**, 12.0 mg, 0.0224 mmol, 11% yield) as white solids after lyophilization.

ESI-MS m/z 422.3 [M+H]⁺, Retention time (LC/MS): 5.7 min.

Bz-Ser-Ala-Lys(Me)₂-NH₂ TFA salt (k):

Peptide (**k**) was synthesized on a solid phase in 0.196 mmol scale using NovaPEG Rink Amide resin. Fmocamino acid (3.0 equiv.) was sequentially coupled using a DIEA-COMU method in DMF for 60 min (3.0 equiv. each) at r.t. after removal of each Fmoc group with 20% piperidine-DMF for 10 min. After the last removal of Fmoc group, benzoic anhydride (5.0 equiv.) in CH_2Cl_2 was added, and stirred for 10 min. The peptide was cleaved from the resin by treatment with TFA in the presence of TIPS and H_2O (95:2.5:2.5) for 90 min at r.t., concentrated under reduced pressure, and precipitated with ether to afford crude **k**, which was purified with preparative HPLC to afford the target peptide (**k**, 23.5 mg, 0.0428 mmol, 22% yield) as white solids after lyophilization.

ESI-MS m/z 436.3 [M+H]⁺, Retention time (LC/MS): 5.8 min.

Ac-Arg-Arg-Ala-Thr-Val-Ala-NH₂ TFA salt (I):

Peptide (I) was synthesized on a solid phase in 0.350 mmol scale using Rink Amide AM resin. Fmoc-amino acid (3.0 equiv.) was sequentially coupled using a DIEA-COMU method in DMF for 60 min (3.0 equiv. each) at r.t. after removal of each Fmoc group with 20% piperidine-DMF for 10 min. After the last removal of Fmoc group, 25% acetic anhydride in CH₂Cl₂ was added, and stirred for 10 min. The peptide was cleaved from the resin by treatment with TFA in the presence of TIPS and H₂O (95:2.5:2.5) for 90 min at r.t., concentrated under reduced pressure, and precipitated with ether to afford crude I, which was purified with preparative HPLC to afford the target peptide (I, 164.4 mg, 0.174 mmol, 50% yield) as white solids after lyophilization. MALDI-TOF MS m/z 714.4 [M+H]⁺, Retention time (Analytical HPLC): 8.9 min.

Ac-Asp-Ser-Gly-Glu-gly-Asp-Phe-Leu-Ala-Glu-Gly-Gly-Gly-Val-Arg-OH TFA salt (m):

Peptide (**m**) was synthesized on a solid phase in 0.320 mmol scale using Rink Amide AM resin. Fmoc-amino acid (3.0 equiv.) was sequentially coupled using a DIEA-COMU method in DMF for 60 min (3.0 equiv. each) at r.t. after removal of each Fmoc group with 20% piperidine-DMF for 10 min. After the last removal of Fmoc group, 25% acetic anhydride in CH_2Cl_2 was added, and stirred for 10 min. The peptide was cleaved from the resin by treatment with TFA in the presence of TIPS and H_2O (95:2.5:2.5) for 90 min at r.t., concentrated under

reduced pressure, and precipitated with ether to afford crude **m**, which was purified with preparative HPLC to afford the target peptide (**m**, 25.3 mg, 0.0144 mmol, 5% yield) as white solids after lyophilization. MALDI-TOF MS m/z 1507.6 [M+H]⁺, Retention time (Analytical HPLC): 10.7 min.

Preparation of PEP-H

To a stirred solution of phosphoenolpyruvic acid cyclohexylammonium salt (534.4 mg, 2.00 mmol) in MQ, ionexchange resin (DOWEX 50WX2-200) was added. After the mixture was stirred at r.t. for 1 min, resin was removed by filtration and washed with MQ three times. The filtrate was lyophilized to afford **PEP-H** (296.8 mg, 1.77 mmol, 88% yield) as white solid. ¹H NMR (D₂O, 500 MHz) δ 5.76 (d, *J* = 2.3 Hz, 1H), 5.40 (d, *J* = 2.3 Hz, 1H)

Synthesis of O-benzyl phosphosulfate

$$HO \stackrel{O}{I} \stackrel{HO}{OBn} \stackrel{TMSBr (1.0 equiv.);}{DCM, r.t., 2 h} \xrightarrow{HO OBn} \stackrel{O}{H} \stackrel{O}{OBn} \stackrel{(4.0 equiv.)}{DMF, rt, 1.5 h} \xrightarrow{O} \stackrel{O}{I} \stackrel{(Bu_3NH]_2SO_4}{OBn} \stackrel{(4.0 equiv.)}{HNEt_3} \xrightarrow{O} \stackrel{O}{I} \stackrel{O}{OBn} \stackrel{(4.0 equiv.)}{DMF, rt, 1.5 h} \xrightarrow{O} \stackrel{O}{I} \stackrel{OBn}{OBn} \stackrel{O}{I} \stackrel{O}{I} \stackrel{OBn}{HNEt_3} \xrightarrow{O} \stackrel{O}{I} \stackrel{I}{I} \stackrel{O}{I} \stackrel{O}{I} \stackrel{O}{I} \stackrel{I}{I} \stackrel{O}{I} \stackrel{I}{I} \stackrel{O}{I} \stackrel{I}{I} \stackrel{I$$

Benzyl hydrogen phosphate triethylammonium salt (S1):

An argon-flushed flask equipped with a magnetic stirrer bar was charged with dibenzyl phosphate (1.39 g, 5.00 mmol) and CH₂Cl₂ (25.0 ml). To the reaction mixture, bromotrimethylsilane (638 μ l, 5.00 mmol) was added dropwise at 0 °C, and the mixture was warmed to r.t.. After stirring for 2 h, Et₃N (2.12 ml, 15.0 mmol) and MeOH (5.0 ml) were added. The reaction mixture was concentrated under vacuum to give crude **S1**, which was separated by preparative HPLC (Eluent was linear gradient of MeCN in 50 mM triethylammonium acetate aq. and C18 reverse phase column was used at r.t..) to give **S1** (1.39 g) as white solid, which was used for the next reaction without further purification. ESI-MS *m/z* 187.0 [M–H]⁻.

Benzyl (1*H*-imidazol-1-yl)phosphonate triethylammonium salt (S2):

To a stirred solution of **S1** (1.18 g) in DMF (11.8 ml), 1,1'-carbonyldiimidazole (1.52 g, 9.40 mmol) and Et_3N (1.32 ml, 9.65 mmol) were added at r.t.. After stirring for 2 h, MeOH (10.0 ml) was added to the reaction mixture. The reaction mixture was concentrated under vacuum to give crude **S2**, which was separated by preparative HPLC (Eluent was linear gradient of MeCN in 50 mM triethylammonium acetate aq. and C18 reverse phase column was used at r.t..) to give **S2** (560 mg) as colorless oil, which was used for the next reaction without

further purification. ESI-MS *m/z* 237.1 [M–H]⁻.

O-Benzyl phosphosulfate (S3):

To a stirred solution of **S2** (560 mg) in DMF (4.17 ml), (Bu₃NH)₂SO₄ (1.56 g, 3.33 mmol) and MgCl₂ (794 mg, 8.34 mmol) were added at r.t.. After stirring for 30 min, water (5.0 ml) was added to the reaction mixture, and the mixture was purified by preparative HPLC (Eluent was linear gradient of MeCN in 50 mM triethylammonium acetate aq. and C18 reverse phase column was used at r.t..) to give *O*-benzyl phosphosulfate (**S3**, 215 mg, 0.388 mmol, 8% yield for 3 steps) as colorless oil. ¹H NMR (CD₃CN, 500 MHz) δ 7.40 (d, *J* = 7.4 Hz, 2H), 7.34 (t, *J* = 7.4 Hz, 2H), 7.28 (t, *J* = 7.4 Hz, 2H), 4.95 (d, *J* = 6.9 Hz, 2H), 3.05 (q, *J* = 7.4 Hz, 6H), 2.96 (t, *J* = 8.6 Hz, 2H), 1.64 (m, 6H) 1.31 (q, *J* = 7.4 Hz, 6H), 1.21 (t, *J* = 7.4 Hz, 9H), 0.91 (t, *J* = 7.4 Hz, 9H); ¹³C NMR (CD₃CN, 126 MHz) δ 174.4, 139.8, 129.1, 128.3, 128.3, 68.2, 52.6, 46.5, 25.7, 21.9, 20.6, 13.9, 8.8; ³¹P NMR (CD₃OD, 162 MHz) δ -40.7; ESI-MS *m/z* 267.0 [M–H]⁻; HRMS calcd for [C₇H₈O₇PS]⁻ requires *m/z* 266.9734; found 266.9734.

Synthesis of ³⁴S-labeled tetrabutylammonium hydrogen sulfate (³⁴S-TBAHS)

To a stirred solution of ³⁴S-sufluric acid aq. (2.6%, 1.20 mL, 312 μ mol), tetrabutylammonium hydroxide aq. (40%, 202 μ L, 312 μ mol) was added at 4 °C, and the mixture was stirred for 1 h at the same temperature. Lyophilization of the mixture afforded ³⁴S-TBAHS (106 mg, 312 μ mol, y. quant.) as white solids.

General procedures for catalytic phosphorylation of alcohols

Procedure S (Standard)

An argon-flushed test tube equipped with a magnetic stirrer bar was charged with substrate (1.0 equiv.), tetrabutylammonium hydrogen sulfate (0.30 equiv.) and phosphoenolpyruvate monopotassium salt (4.5 equiv.). To the reaction mixture, N,N-dimethylformamide (0.20 M) was added at r.t., and the mixture was warmed to 100 °C. After stirring for 6 h, the reaction mixture was cooled to r.t. and purified by preparative HPLC to give the corresponding phosphorylated product.

Procedure A

An argon-flushed test tube equipped with a magnetic stirrer bar was charged with substrate (1.0 equiv.), tetrabutylammonium hydrogen sulfate (0.60 equiv.) and phosphoenolpyruvate monopotassium salt (6.0 equiv.). To the reaction mixture, N,N-dimethylformamide (0.20 M) was added at r.t., and the mixture was warmed to 100 °C. After stirring for 6 h, the reaction mixture was cooled to r.t. and purified by preparative HPLC to give the corresponding phosphorylated product.

Procedure B

An argon-flushed test tube equipped with a magnetic stirrer bar was charged with substrate (1.0 equiv.), tetrabutylammonium hydrogen sulfate (0.60 equiv.) and phosphoenolpyruvate monopotassium salt (6.0 equiv.). To the reaction mixture, N,N-dimethylformamide (0.20 M) was added at r.t., and the mixture was warmed to 100 °C. After stirring for 3 h, the reaction mixture was cooled to r.t. and purified by preparative HPLC to give the corresponding phosphorylated product.

Procedure C

An argon-flushed test tube equipped with a magnetic stirrer bar was charged with substrate (1.0 equiv.), tetrabutylammonium hydrogen sulfate (0.60 equiv.) and phosphoenolpyruvate monopotassium salt (10 equiv.). To the reaction mixture, N,N-dimethylformamide (0.20 M) was added at r.t., and the mixture was warmed to 100 °C. After stirring for 4.5 h, the reaction mixture was cooled to r.t. and purified by preparative HPLC to give the corresponding phosphorylated product.

Procedure D

An argon-flushed test tube equipped with a magnetic stirrer bar was charged with substrate (1.0 equiv.), tetrabutylammonium hydrogen sulfate (0.60 equiv.) and phosphoenolpyruvate monopotassium salt (10 equiv.). To the reaction mixture, N,N-dimethylformamide (0.20 M) was added at r.t., and the mixture was warmed to 100 °C. After stirring for 3 h, the reaction mixture was cooled to r.t. and purified by preparative HPLC to give the corresponding phosphorylated product.

Procedure E

An argon-flushed test tube equipped with a magnetic stirrer bar was charged with substrate (1.0 equiv.), tetrabutylammonium hydrogen sulfate (2.0 equiv.) and phosphoenolpyruvate monopotassium salt (50 equiv.). To the reaction mixture, *N*,*N*-dimethylformamide (0.0125 M) was added at r.t., and the mixture was warmed to 100 °C. After stirring for 3 h, the reaction mixture was cooled to r.t. and purified by preparative HPLC to give the corresponding phosphorylated product.

Reaction of POS (42) with 3-phenyl-1-propanol with varied amount of PEP-K

An argon-flushed test tube equipped with a magnetic stirrer bar was charged with *O*-benzyl phosphosulfate (**S3**, 1.0 equiv.), Pd/C (30 wt%) and DMF (0.20 M). Hydrogen gas was, then, flushed, and the reaction mixture was stirred at r.t. for 30 min. The obtained crude solution of POS **42** was immediately used for the next reaction without further purification. To a stirred solution of the crude POS **42** in DMF (0.2 M) at r.t., 3-phenyl-1-propanol (1.0 equiv.) and PEP-K (0-4.5 equiv.) were added. The reaction mixture was stirred for 3 h at 100 °C, diluted with water/MeCN, and purified by preparative HPLC to give the corresponding phosphorylated (or sulfurylated) product.

Characterization of phosphorylated products

3-Phenylpropyl dihydrogen phosphate (2):

General procedure S (15.5 mg, 0.0717 mmol, 72% yield)

3-Bromophenethyl dihydrogen phosphate (3):

General procedure S (24.0 mg, 0.0853 mmol, 85% yield) ¹H NMR (CD₃OD, 500 MHz) δ 7.45 (s, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.25-

7.16 (m, 2H), 4.15 (q, J = 6.9 Hz, 2H), 2.95 (t, J = 6.9 Hz, 2H); ¹³C NMR (CD₃OD, 126 MHz) δ 142.1, 133.0, 131.4, 130.6, 128.9, 123.2, 67.8 (d, J = 5.7 Hz), 37.2 (d, J = 7.7 Hz); ³¹P NMR (CD₃OD, 162 MHz) δ 0.0; ESI-MS

m/z 279.0 [M–H]⁻; HRMS calcd for [C₈H₉BrO₄P]⁻ requires *m/z* 278.9422; found 278.9424.

2-Methoxyphenethyl dihydrogen phosphate (4):

General procedure S (20.8 mg, 0.0897mmol, 90% yield)

¹H NMR (CD₃OD, 500 MHz) δ 7.21-7.14 (m, 2H), 6.92 (d, *J* = 7.7 Hz, 1H), 6.85 (dd, *J* = 6.3 Hz, 7.7 Hz, 1H), 4.10 (q, *J* = 7.4 Hz, 2H), 3.81 (s, 3H), 2.97 (t, *J* = 7.4 Hz, 2H); ¹³C NMR (CD₃OD, 126 MHz) δ 159.3, 131.9, 129.1,

126.4, 121.5, 111.4, 67.0 (d, J = 5.7 Hz), 55.8, 32.7 (d, J = 7.7 Hz); ³¹P NMR (CD₃OD, 162 MHz) δ 0.1; ESI-MS m/z 231.1 [M–H]⁻; HRMS calcd for [C₉H₁₂O₅P]⁻ requires m/z 231.0422; found 231.0423.

4-Cyanophenethyl dihydrogen phosphate (5):

General procedure S (17.4 mg, 0.0765mmol, 77% yield) ¹H NMR (CD₃OD, 500 MHz) δ 7.65 (d, J = 8.3 Hz, 2H), 7.46 (d, J= 8.3 Hz, 2H), 4.19 (q, J = 6.9 Hz, 2H), 3.05 (t, J = 6.9 Hz, 2H); ¹³C NMR (CD₃OD, 126 MHz) δ 145.8, 133.3, 131.3, 120.0, 111.3, 67.4

(d, J = 5.7 Hz), 37.7 (d, J = 7.7 Hz); ³¹P NMR (CD₃OD, 162 MHz) δ 0.2; ESI-MS *m/z* 226.1 [M–H]⁻; HRMS calcd for [C₉H₉NO₄P]⁻ requires *m/z* 226.0269; found 226.0277.

3-(2-Ethynylphenyl)propyl dihydrogen phosphate (6):

General procedure S (19.4 mg, 0.0806 mmol, 81% yield)
¹H NMR (CD₃OD, 500 MHz) δ 7.43 (d, J = 8.0 Hz, 1H), 7.27 (dt, J = 8.0 Hz, 1.7 Hz, 2H), 7.16 (dt, J = 8.0 Hz, 1.7 Hz, 1H), 3.98 (q, J = 6.7 Hz, 2H), 3.67 (s, 1H), 2.90 (t, J = 8.0 Hz, 2H), 1.99 (tt, J = 6.7 Hz, 8.0 Hz, 2H), 3.67 (s, 1H), 2.90 (t, J = 8.0 Hz, 2H), 1.99 (tt, J = 6.7 Hz, 8.0 Hz, 2H), 3.67 (s, 1H), 2.90 (t, J = 8.0 Hz, 2H), 1.99 (tt, J = 6.7 Hz, 8.0 Hz, 2H), 3.67 (s, 1H), 2.90 (t, J = 8.0 Hz, 2H), 1.99 (tt, J = 6.7 Hz, 8.0 Hz, 2H), 3.67 (s, 1H), 2.90 (t, J = 8.0 Hz, 2H), 1.99 (tt, J = 6.7 Hz, 8.0 Hz, 2H), 3.67 (s, 1H), 2.90 (t, J = 8.0 Hz, 2H), 3.98 (tt, J = 6.7 Hz, 8.0 Hz, 2H), 3.67 (s, 1H), 3.98 (tt, J = 6.7 Hz, 8.0 Hz, 2H), 3.67 (s, 1H), 3.98 (tt, J = 6.7 Hz, 8.0 Hz, 2H), 3.67 (s, 1H), 3.98 (tt, J = 6.7 Hz, 8.0 Hz, 2H), 3.67 (s, 1H), 3.98 (tt, J = 6.7 Hz, 8.0 Hz, 2H), 3.67 (s, 1H), 3.98 (tt, J = 6.7 Hz, 8.0 Hz, 2H), 3.67 (s, 1H), 3.98 (tt, J = 6.7 Hz, 8.0 Hz, 2H), 3.67 (s, 1H), 3.98 (tt, J = 6.7 Hz, 8.0 Hz, 2H), 3.67 (s, 1H), 3.98 (tt, J = 6.7 Hz, 8.0 Hz, 2H), 3.67 (s, 1H), 3.98 (s, 1H),

Hz, 2H); ¹³C NMR (CD₃OD, 126 MHz) δ 145.3, 133.9, 130.2, 130.0, 127.2, 123.0, 82.9, 82.6, 67.1 (d, *J* = 5.7 Hz), 32.3 (d, *J* = 7.7 Hz), 31.5; ³¹P NMR (CD₃OD, 162 MHz) δ 0.2; ESI-MS *m/z* 239.1 [M–H][–]; HRMS calcd for [C₁₁H₁₂O₄P][–] requires *m/z* 239.0473; found 239.0474.

3-(2-((Trimethylsilyl)ethynyl)phenyl)propyl dihydrogen phosphate (7):

General procedure S (24.1 mg, 0.0772 mmol, 77% yield)

¹H NMR (CD₃OD, 500 MHz) δ 7.14 (d, J = 7.4 Hz, 1H), 7.04-6.99 (m, 2H), 6.91 (dt, J = 6.3 Hz, 2.3 Hz, 1H), 3.74 (q, J = 6.6 Hz, 2H), 2.63 (t, J= 7.7 Hz, 2H), 1.75 (tt, J = 6.6 Hz, 7.7 Hz, 2H), 0.00 (s, 9H); ¹³C NMR

(CD₃OD, 126 MHz) δ 145.1, 133.4, 130.2, 129.9, 127.2, 123.7, 104.8, 98.7, 67.1 (d, J = 5.8 Hz), 32.2 (d, J = 7.7 Hz), 31.7, 0.0; ³¹P NMR (CD₃OD, 162 MHz) δ 0.2; ESI-MS m/z 311.1 [M–H]⁻; HRMS calcd for [C₁₄H₂₀O₄PSi]⁻ requires m/z 311.0868; found 311.0871.

3-Formylphenethyl dihydrogen phosphate (8):

General procedure S (23.1 mg, 0.1004 mmol, 73% yield)

¹H NMR (CD₃CN, 500 MHz) δ 9.95 (s, 1H), 7.76 (s, 1H), 7.74 (d, J = 7.4 Hz, 1H), 7.55 (d, J = 7.4 Hz, 1H), 7.49 (t, J = 7.4 Hz, 1H), 4.20 (q, J = 6.9 Hz, 2H), 3.03 (t, J = 6.3 Hz, 2H); ¹³C NMR (CD₃CN, 126 MHz) δ 193.7, 140.1, 137.7, 136.1, 130.8, 130.1, 128.9, 67.9 (d, J = 4.8 Hz), 36.6 (d, J =

7.2 Hz); ³¹P NMR (CD₃CN, 162 MHz) δ 1.8; ESI-MS *m/z* 229.1 [M–H]⁻; HRMS calcd for [C₉H₁₀O₅P]⁻ requires *m/z* 229.0266; found 229.0265.

3-(2-(Phosphonooxy)ethyl)benzoic acid (9):

General procedure S (17.5 mg, 0.0710 mmol, 71% yield)

¹H NMR (CD₃OD, 500 MHz) δ 7.93 (s, 1H), 7.88 (d, *J* = 7.8 Hz, 1H), 7.51 (d, *J* = 7.8 Hz, 1H), 7.40 (t, *J* = 7.8 Hz, 1H), 4.18 (q, *J* = 6.9 Hz, 2H), 3.04 (t, *J* = 6.9 Hz, 2H); ¹³C NMR (CD₃OD, 126 MHz) δ 169.9, 139.8, 134.8, 132.1, 131.3, 129.6, 129.0, 68.0 (d, *J* = 5.8 Hz), 37.5 (d, *J* = 7.7 Hz); ³¹P

NMR (CD₃OD, 162 MHz) δ 0.0; ESI-MS *m/z* 245.1 [M–H]⁻; HRMS calcd for [C₉H₁₀O₆P]⁻ requires *m/z* 245.0215; found 245.0216.

Cinnamyl dihydrogen phosphate (10):

General procedure S (16.6 mg, 0.0777 mmol, 78% yield)

¹H NMR (CD₃OD, 500 MHz) δ 7.41 (d, J = 8.3 Hz, 2H), 7.31 (dd, J =OPO₃H₂ 8.3 Hz, 7.4 Hz, 2H), 7.24 (t, *J* = 7.4 Hz, 1H), 6.69 (d, *J* = 16.0 Hz, 1H), 6.36 (dt, J = 16.0 Hz, 6.3 Hz, 1H), 4.62 (dd, J = 6.3 Hz, 8.0 Hz, 1H); ¹³C NMR (CD₃OD, 126 MHz) δ 137.7, 133.9, 129.6, 129.0, 127.6, 125.5 (d, J = 7.2 Hz), 68.1 (d, J = 6.0 Hz); ³¹P NMR (CD₃OD, 162 MHz) δ 0.1; ESI-MS m/z 213.1 [M–H]⁻; HRMS calcd for [C₉H₁₀O₄P]⁻ requires m/z 213.0317; found 213.0316.

4-Methylbenzyl dihydrogen phosphate (11):

Me

General procedure S (14.1 mg, 0.0698 mmol, 70% yield)

¹H NMR (CD₃CN, 500 MHz) δ 7.26 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 $OPO_{3}H_{2}$ Hz, 2H), 4.95 (d, J = 6.9 Hz, 2H), 2.32 (s, 3H); ¹³C NMR (CD₃OD, 126) MHz) δ 139.1, 135.2, 130.1, 128.8, 69.1 (d, J = 6.0 Hz), 21.2; ³¹P NMR (CD₃OD, 162 MHz) δ 0.9; ESI-MS m/z201.1 [M–H]⁻; HRMS calcd for [C₈H₁₀O₄P]⁻ requires *m/z* 201.0317; found 201.0317.

4-Phenylbutan-2-yl dihydrogen phosphate (12):

General procedure S (16.4 mg, 0.0712 mmol, 71% yield)

¹H NMR (CD₃OD, 500 MHz) δ 7.27-7.10 (m, 5H), 4.44-4.34 (m, 1H), 2.78-2.60 (m, 2H), 1.96-1.76 (m, 2H), 1.34 (d, J = 6.3 Hz, 3H); ¹³C NMR (CD₃CN, 101 MHz) δ 142.8, 139.3, 129.2, 126.7, 75.9 (d, *J* = 5.7 Hz),

39.9 (d, J = 4.7 Hz), 32.0, 21.7; ³¹P NMR (CD₃OD, 162 MHz) δ -0.5; ESI-MS m/z 229.1 [M–H]⁻; HRMS calcd for $[C_{10}H_{14}O_4P]^-$ requires *m*/*z* 229.0630; found 229.0631.

tert-Butyl (2-(4-(3-(phosphonooxy)propyl)phenoxy)ethyl)carbamate (13):

General procedure S (26.1 mg, 0.0723 mmol, 72% yield)

¹H NMR (CD₃OD, 400 MHz) δ 7.16 (d, J = 9.2 Hz,

2H), 3.96 (t, J = 5.8 Hz, 2H), 3.40 (t, J = 5.8 Hz, 2H), 2.90 (t, J = 7.3 Hz, 2H), 1.43 (s, 9H); ¹³C NMR (CD₃OD, 101 MHz) δ 158.9, 158.6, 131.3, 131.1, 115.6, 80.4, 68.5 (d, *J* = 5.8 Hz), 67.9, 41.0, 36.9 (d, *J* = 7.7 Hz), 28.7; ³¹P NMR (CD₃OD, 162 MHz) δ 0.0; ESI-MS *m/z* 360.1 [M–H]⁻; HRMS calcd for [C₁₅H₂₃NO₇P]⁻ requires *m/z* 360.12121; found 360.1214.

(9*H*-Fluoren-9-yl)methyl (4-(phosphonooxy)butyl)carbamate (14):

General procedure S (29.1 mg, 0.0745 mmol, 74% yield) 1 H NMR (CD₃OD, 500 MHz) δ 7.76 (d, *J* = 7.4 Hz, 2H), 7.61 (d, *J* = 7.4 Hz, 2H), 7.37 (t, *J* = 7.4 Hz, 2H), 7.30 (t, *J* = 7.4 Hz, 2H), 4.33 (d, *J* = 6.3 Hz, 2H), 4.15 (t, *J* = 6.3 Hz, 1H), 3.96 (q, *J* = 6.3 Hz, 2H), 3.10 (t, *J* = 6.3 Hz, 2H), 1.66-1.50 (m, 4H); 13 C NMR (CD₃OD, 126 MHz) δ 158.9, 145.3, 142.6, 128.8, 128.1, 126.1, 120.9, 67.5, 67.3 (d, *J* = 5.8 Hz), 59.4, 41.8, 41.2, 28.7 (d, *J* = 5.8 Hz), 20.1; 31 P NMR (CD₃OD, 162 MHz) δ 0.4; ESI-MS *m/z* 390.1 [M–H]⁻; HRMS calcd for [C₁₉H₂₁NO₆P]⁻ requires *m/z* 390.1106; found 390.1107.

3-(Trityloxy)propyl dihydrogen phosphate (15):

General procedure S (19.6 mg, 0.0492 mmol, 49% yield)

TrtO OPO₃H₂ ¹H NMR (CD₃OD, 500 MHz) δ 7.30-7.18 (m, 15H), 4.07 (q, *J* = 6.9 Hz, 2H), 3.67 (t, *J* = 6.3 Hz, 2H), 1.86 (m, 2H); ¹³C NMR (CD₃OD, 126 MHz) δ 148.8, 129.3, 128.6, 128.0, 83.0, 64.6 (d, *J* = 5.7 Hz), 59.1, 34.3 (d, *J* = 7.7 Hz); ³¹P NMR (CD₃OD, 162 MHz) δ 0.3; ESI-MS *m/z* 397.0 [M–H]⁻; HRMS calcd for [C₂₂H₂₂O₅P]⁻ requires *m/z* 397.1205; found 397.1215.

((2*R*,3*R*,4*S*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-6-fluorotetrahydro-2*H*-pyran-2-yl)methyl dihydrogen phosphate (16):

General procedure A (19.1 mg, 0.0359 mmol, 72% yield)

¹H NMR (CD₃CN, 400 MHz) δ 7.36-7.25 (m, 15H), 5.72 (dd, *J* = 54.5 Hz, 2.3 Hz, 1H), 4.90-4.60 (m, 6H), 4.20-4.11 (m, 2H), 3.90-3.80 (m, 2H), 3.60-3.48 (m, 2H); ¹³C NMR (CD₃CN, 101 MHz) δ 139.6, 139.1, 139.0, 129.3,

129.2, 129.2, 129.0, 128.8, 128.8, 128.7, 128.6, 128.4, 106.2 (d, J = 232.2 Hz), 81.6, 80.3, 80.0, 76.9, 76.0, 75.7, 73.7, 65.8 (d, J = 3.9 Hz); ³¹P NMR (CD₃CN, 162 MHz) δ 0.8; HRMS calcd for [C₂₇H₂₉FO₈P]⁻ requires m/z 531.1584; found 531.1582.

((2*R*,3*R*,4*S*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-6-(*p*-tolylthio)tetrahydro-2*H*-pyran-2-yl)methyl dihydrogen phosphate (17):

General procedure A (49.6 mg, 0.0779 mmol, 78% yield)

¹H NMR (CD₃CN, 500 MHz) δ 7.43 (d, *J* = 8.0 Hz, 2H), 7.36-7.22 (m, 15H), 7.13 (d, *J* = 8.0 Hz, 2H), 4.85-4.57 (m, 7H), 4.23-4.10 (m, 2H), 3.67 (t, *J* = 8.6 Hz, 1H), 3.50-3.47 (m, 1H), 3.39 (t, *J* = 9.2 Hz, 2H), 2.28 (s, 3H); ¹³C NMR (CD₃CN, 126 MHz) δ 139.5, 139.3, 139.1, 138.6, 132.5, 131.1, 130.7, 129.2, 129.2, 129.1, 129.0, 128.9, 128.6, 128.5, 128.5, 128.4, 88.2, 86.8, 81.5, 78.1 (d, *J* = 8.4 Hz), 77.9, 76.0, 75.6, 75.4, 66.3 (d, *J* = 4.8 Hz), 21.0; ³¹P NMR (CD₃CN, 162 MHz) δ 0.8; HRMS calcd for [C₃₄H₃₆O₈PS]⁻ requires *m/z* 635.1869; found 635.1864.

((2R,3S,4R)-3,4-Bis(benzyloxy)-3,4-dihydro-2H-pyran-2-yl)methyl dihydrogen phosphate (18):

When purified this compound, eluent was linear gradient of MeCN in water without TFA.

General procedure B (20.8 mg, 0.0468 mmol, 47% yield)

¹H NMR (CD₃OD, 500 MHz) δ 7.40-7.22 (m, 10H), 6.38 (d, *J* = 5.7 Hz, 1H), 4.83-4.70 (m, 3H), 4.64-4.52 (m, 2H), 4.19 (t, *J* = 5.2 Hz, 2H), 4.15-4.10 (m,

1H), 4.07 (m, 1H), 3.88 (dd, J = 8.0 Hz, 6.3 Hz, 1H); ¹³C NMR (CD₃OD, 126 MHz) δ 145.6, 139.9, 129.4, 129.4, 129.3, 129.2, 129.0, 128.6, 125.3, 100.9, 78.0 (d, J = 8.4 Hz), 76.4, 75.6, 74.7, 71.3, 64.6 (d, J = 6.0 Hz); ³¹P NMR (CD₃OD, 162 MHz) δ 0.9; ESI-MS m/z 405.1 [M–H]⁻; HRMS calcd for [C₂₀H₂₂O₇P]⁻ requires m/z 405.1103; found 405.1104.

((2*R*,3*R*,4*S*,5*R*,6*S*)-3,4,5-Tris(benzyloxy)-6-(((2*R*,3*R*,4*S*,5*R*,6*S*)-3,4,5-tris(benzyloxy)-6methoxytetrahydro-2*H*-pyran-2-yl)methoxy)tetrahydro-2*H*-pyran-2-yl)methyl dihydrogen phosphate (19):

General procedure A (38.0 mg, 0.0389 mmol, 78% yield) ¹H NMR (CD₃CN, 400 MHz) δ 7.36-7.16 (m, 30H), 5.07 (d, *J* = 3.2 Hz, 1H), 4.89-4.50 (m, 13H), 4.20-4.00 (m, 2H), 3.90-3.60 (m, 8H), 3.50-3.44 (m, 1H) 3.34 (dd, *J* = 9.6 Hz, 3.7 Hz, 1H), 3.29 (s, 3H); ¹³C NMR (CD₃CN, 101 MHz) δ 140.0, 139.8, 139.6, 139.5, 139.5, 139.4, 129.2, 129.2, 129.1, 129.1, 129.1, 128.8, 128.8, 128.7, 128.6, 128.6, 128.6, 128.5, 128.4, 128.4, 128.4, 128.3, 128.3, 128.2, 98.4,

97.5, 82.4, 81.7, 81.1, 81.0, 78.4, 77.9, 75.6 (d, J = 5.8 Hz), 75.4, 75.3, 73.0, 72.7, 71.0, 70.5, 70.4, 66.7, 66.2 (d, J = 5.8 Hz), 55.3; ³¹P NMR (CD₃CN, 162 MHz) δ 0.9; HRMS calcd for [C₅₅H₆₀O₁₄P]⁻ requires *m*/*z* 975.3721; found 975.3689.

(8*R*,9*S*,10*R*,13*S*,14*S*,17*S*)-10,13-Dimethyl-3-oxo-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[a]phenanthren-17-yl dihydrogen phosphate (20):

General procedure A (24.3 mg, 0.0660 mmol, 66% yield) ¹H NMR (CD₃OD, 500 MHz) δ 5.70 (s, 1H), 4.13 (q, *J* = 8.0 Hz, 1H), 2.53-2.43 (m, 2H), 2.33-2.25 (m, 2H), 2.19-2.10 (m, 1H), 2.08 (dq, *J* = 13.7 Hz, 2.9 Hz, 1H), 1.95 (dt, *J* = 13.2 Hz, 3.4 Hz, 1H), 1.92-1.85 (m, 1H), 1.76-1.59 (m, 5H), 1.48 (dq, *J* = 12.6 Hz, 3.4 Hz, 1H), 1.45-1.34 (m, 1H), 1.24 (s, 3H), 1.17 (dt, *J* = 13.2 Hz,

4.0 Hz, 1H), 1.08-0.94 (m, 3H), 0.87 (s, 3H); ¹³C NMR (CD₃OD, 126 MHz) δ 202.6, 175.4, 124.1, 86.3, 55.3, 51.1, 44.0, 44.0, 40.0, 37.5, 36.7 (d, *J* = 3.6 Hz), 34.7, 33.8, 32.7, 29.6, 24.2, 21.6, 17.7, 11.9; ³¹P NMR (CD₃OD, 162 MHz) δ –0.1; ESI-MS *m/z* 367.2 [M–H]⁻; HRMS calcd for [C₁₉H₂₈O₅P]⁻ requires *m/z* 367.1674; found 367.1680.

tert-Butyl N-((benzyloxy)carbonyl)-O-phosphono-L-serinate (21):

General procedure S (29.1 mg, 0.0775 mmol, 77% yield)

¹H NMR (CD₃OD, 500 MHz) δ 7.38-7.26 (m, 5H), 5.10 (s, 2H), 4.38-4.34 (m, 1H), 4.30-4.18 (m, 2H), 1.46 (s, 9H); ¹³C NMR (CD₃OD, 126 MHz) δ 169.9, 158.4, 138.1, 129.5, 129.0, 128.9, 83.6, 67.8, 67.3 (d, J = 5.8 Hz), 56.6 (d, J = 9.7 Hz), 28.2; ³¹P NMR (CD₃OD, 162 MHz) δ -0.2; ESI-MS

m/z 374.2 [M–H]⁻; HRMS calcd for [C₁₅H₂₁NO₈P]⁻ requires m/z 374.1005; found 374.1003.

Methyl N-((benzyloxy)carbonyl)-O-phosphono-L-allothreoninate (22):

 $\begin{array}{l} \mathsf{PO}_3H_2 \quad & \mathsf{General\ procedure\ A\ (27.0\ mg,\ 0.0778 mmol,\ 78\%\ yield)} \\ \begin{tabular}{ll} {}^1\mathrm{H\ NMR\ (CD_3CN,\ 400\ MHz)\ \delta\ 7.40-7.25\ (m,\ 5H),\ 6.25-6.05\ (brs,\ 1H),\ 5.09} \\ & \mathsf{OMe} \end{tabular} \\ & \mathsf{(s,\ 2H),\ 4.90-4.77\ (brs,\ 1H),\ 4.42-4.30\ (brs,\ 1H),\ 3.74\ (s,\ 3H),\ 1.36\ (d,\ J=\\ 6.4\ Hz,\ 3H);\ {}^{13}\mathrm{C\ NMR\ (CD_3OD,\ 126\ MHz)\ \delta\ 171.7,\ 159.1,\ 138.1,\ 129.5,\\ 129.1,\ 128.8,\ 75.0\ (d,\ J=3.9\ Hz),\ 67.9,\ 60.1\ (d,\ J=7.7\ Hz),\ 53.0,\ 18.8;\ {}^{31}\mathrm{P} \end{array}$

NMR (CD₃OD, 162 MHz) δ –1.0; ESI-MS *m/z* 346.1 [M–H][–]; HRMS calcd for [C₁₃H₁₇NO₈P][–] requires *m/z* 346.0692; found 346.0692.

4-Hydroxyphenethyl dihydrogen phosphate (25):

General procedure A (12.9 mg, 0.0595 mmol, 60% yield)

¹H NMR (CD₃OD, 500 MHz) δ 7.06 (d, J = 8.6 Hz, 2H), 6.70 (d, J = 8.6 Hz, 1H), 4.07 (q, J = 7.4 Hz, 2H), 2.86 (t, J = 7.4 Hz, 2H); ¹³C NMR (CD₃OD, 126 MHz) δ 157.1, 131.0, 129.7, 116.2, 68.7 (d, J =

5.8 Hz), 37.0 (d, J = 7.7 Hz); ³¹P NMR (CD₃OD, 162 MHz) δ 1.1; ¹H-coupled ³¹P NMR (DMSO-d₆, 162 MHz) δ -1.0 (t, J = 7.5 Hz); ESI-MS *m*/*z* 217.1 [M–H]⁻; HRMS calcd for [C₈H₁₀O₅P]⁻ requires *m*/*z* 217.0266; found 217.0265.

2-((8*S*,9*S*,10*R*,13*S*,14*S*,17*R*)-17-Hydroxy-10,13-dimethyl-3,11-dioxo-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[a]phenanthren-17-yl)-2-oxoethyl dihydrogen phosphate (26):

General procedure C (19.3 mg, 0.0439 mmol, 88% vield)

¹H NMR (CD₃OD, 500 MHz) δ 5.71 (s, 1H), 4.99 (dd, J = 18.3 Hz, 10.3 Hz, 1H), 4.69 (dd, J = 18.3 Hz, 8.0 Hz, 1H), 2.97 (d, J = 12.6 Hz, 1H), 2.75-2.67 (m, 2H), 2.57-2.41 (m, 3H), 2.36-2.29 (m, 1H), 2.23 (dt, J = 16.6

Hz, 3.4 Hz, 1H), 2.11 (dd, J = 12.6 Hz, 6.9 Hz, 2H), 2.06-1.85 (m, 4H), 1.46 (m, 2H), 1.42 (s, 3H), 1.32 (m, 1H), 0.62 (s, 3H); ¹³C NMR (CD₃OD, 126 MHz) δ 212.2, 207.4 (d, J = 6.0 Hz), 202.7, 173.1, 124.7, 89.6, 70.8 (d, J = 4.8 Hz), 63.4, 52.4, 51.3, 50.9, 39.6, 37.8, 35.6, 35.2, 34.4, 33.5, 33.4, 24.0, 17.6, 16.0; ³¹P NMR (CD₃OD, 162 MHz) δ 0.2; ESI-MS m/z 439.1 [M–H]⁻; HRMS calcd for [C₂₁H₂₈O₈P]⁻ requires m/z 439.1527; found 439.1523.

2,4,6-Tris(benzyloxy)-3,5-dihydroxycyclohexyl dihydrogen phosphate (27, rac):

General procedure A (24.3 mg, 0.0458 mmol, 46% yield)

¹H NMR (CD₃OD, 400 MHz) δ 7.51-7.20 (m, 15H), 4.90-4.73 (m, 6H), 4.25-4.22 (m, 2H), 3.84 (t, J = 9.6 Hz, 1H), 3.67 (t, J = 10.1 Hz, 1H), 3.59 (dd, J = 10.1 Hz, 2.7 Hz, 1H), 3.49 (t, J = 9.2 Hz, 1H); ¹³C NMR (CD₃OD, 126 MHz) δ 140.5, 140.5, 140.2, 129.6, 129.2, 129.2, 129.1, 129.1, 129.0, 128.9, 128.5, 128.4, 83.3, 81.8 (d, J = 3.6 Hz), 81.7, 79.4, 79.3, 76.7, 76.1

(d, J = 7.2 Hz), 76.1 (d, J = 6.0 Hz), 72.9; ³¹P NMR (CD₃OD, 162 MHz) $\delta -0.8$; ESI-MS *m/z* 529.2 [M–H]⁻; HRMS calcd for [C₂₇H₃₀O₉P]⁻ requires *m/z* 529.1633; found 529.1623.

2,4,6-Tris(benzyloxy)-5-hydroxycyclohexane-1,3-diyl bis(dihydrogen phosphate)

General procedure A (5.2 mg, 0.00848 mmol, 8% yield)

¹H NMR (CD₃OD, 400 MHz) δ 7.53-7.20 (m, 15H), 4.95-4.74 (m, 6H), 4.55 (t, *J* = 2.7 Hz, 1H), 4.27 (ddd, *J* = 9.5 Hz, 8.7 Hz, 2.3 H, 2H), 3.83 (t, *J* = 9.5 Hz, 2H), 3.50 (t, *J* = 9.5 Hz, 1H); ¹³C NMR (CD₃OD, 126 MHz) δ 140.4, 140.1, 129.5, 129.1, 129.1, 128.8, 128.4, 128.4, 81.5 (d, *J* = 7.2 Hz), 80.1, 78.5 (d, *J* = 6.0 Hz), 76.9, 76.2, 75.4;

³¹P NMR (CD₃OD, 162 MHz) δ –1.0; ESI-MS *m*/*z* 609.1 [M–H]⁻; HRMS calcd for [C₂₇H₃₁O₁₂P₂]⁻ requires *m*/*z* 609.1296; found 609.1294.

(S)-3-(((S)-1-(((S)-1-Amino-3-(4-hydroxyphenyl)-1-oxopropan-2-yl)amino)-1-oxopropan-2-yl)amino)-2benzamido-3-oxopropyl dihydrogen phosphate (28):

General procedure D (14.2 mg, 0.0272 mmol, 75% yield)

¹H NMR (CD₃OD, 500 MHz) δ 7.93 (d, *J* = 8.0 Hz, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 8.6 Hz, 2H), 6.64 (d, *J* = 8.6 Hz, 2H), 4.73 (t, *J* = 4.9 Hz, 1H), 4.48 (dd, *J* = 9.2 Hz, 5.5 Hz, 1H), 4.37

(dd, J = 8.6 Hz, 4.9 Hz, 2H), 4.24 (q, J = 7.2 Hz, 1H), 3.12 (dd, J = 13.7 Hz, 5.5 Hz, 1H), 2.91 (dd, J = 13.7 Hz, 9.2 Hz, 1H), 1.24 (d, J = 7.2 Hz, 3H); ³¹P NMR (CD₃OD, 162 MHz) δ 0.7; ¹H-coupled ³¹P NMR (DMSO-d₆, 162 MHz) δ 0.0 (t, J = 2.5 Hz); ESI-MS m/z 521.2 [M–H]⁻; HRMS calcd for [C₂₂H₂₆N₄O₉P]⁻ requires m/z 521.1433; found 521.1427; Retention time (LC/MS): 7.4 min.

(2*S*,3*S*)-4-(((*S*)-1-(((*S*)-1-Amino-3-(4-hydroxyphenyl)-1-oxopropan-2-yl)amino)-1-oxopropan-2-yl)amino)-3-benzamido-4-oxobutan-2-yl dihydrogen phosphate (29):

General procedure C (4.8 mg, 0.00898 mmol, 57% yield)

¹H NMR (CD₃OD, 500 MHz) δ 7.95 (d, *J* = 6.9 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.4 Hz, 2H), 7.01 (t, *J* = 8.6 Hz, 2H), 6.62 (d, *J* = 8.6 Hz, 2H), 4.55-4.44 (m, 3H), 4.21 (q, *J* = 6.6 Hz, 1H), 3.10 (dd, *J* = 14.6

Hz, 6.3 Hz, 1H), 2.92 (dd, J = 14.6 Hz, 9.7 Hz, 1H), 1.41 (d, J = 6.6 Hz, 3H), 1.25 (d, J = 7.4 Hz, 3H); ³¹P NMR (CD₃SOCD₃, 162 MHz) δ 1.2; ¹H-coupled ³¹P NMR (DMSO-d₆, 162 MHz) δ 0.4 (d, J = 9.8 Hz); ESI-MS *m/z* 535.2 [M–H]⁻; HRMS calcd for [C₂₃H₂₈N₄O₉P]⁻ requires *m/z* 535.1599; found 535.1598; Retention time (LC/MS): 6.0 min.

(S)-4-Amino-3-((S)-2-((S)-2-benzamido-3-(phosphonooxy)propanamido)propanamido)-4-oxobutanoic acid (30):

General procedure C (7.9 mg, 0.0167 mmol, 71% yield) ¹H NMR (CD₃OD, 500 MHz) δ 7.91 (d, J = 8.6 Hz, 2H), 7.55 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 8.0 Hz, 2H), 4.73 (m, 2H), 4.44 (q, J = 6.6Hz, 1H), 4.40-4.34 (m, 2H), 2.86-2.81 (m, 2H), 1.39 (d, J = 6.6 Hz, 3H); ³¹P NMR (CD₃OD, 162

MHz) δ 0.8; ESI-MS *m/z* 474.1 [M–H]⁻; HRMS calcd for [C₁₇H₂₂N₄O₁₀P]⁻ requires *m/z* 473.1079; found 473.1079; Retention time (LC/MS): 5.8 min.

(S)-3-(((S)-1-(((S)-1-Amino-3-(1*H*-indol-3-yl)-1-oxopropan-2-yl)amino)-1-oxopropan-2-yl)amino)-2benzamido-3-oxopropyl dihydrogen phosphate (31):

General procedure C (8.0 mg, 0.0146 mmol, 76% yield)

¹H NMR (CD₃OD, 500 MHz) δ 7.89 (d, J = 8.0Hz, 2H), 7.59 (d, J = 7.7 Hz, 1H), 7.54 (t, J = 7.4 Hz, 1H), 7.43 (t, J = 8.0 Hz, 2H), 7.30 (d, J = 8.6 Hz, 1H), 7.10-7.04 (m, 2H), 6.97 (t, J = 7.7 Hz, 1H), 4.72 (t, J = 5.2 Hz, 1H), 4.64 (dd, J = 8.8 Hz, 5.2 Hz, 1H), 4.35 (dd, J = 8.0 Hz,

5.2 Hz, 2H), 4.25 (q, J = 7.2 Hz, 1H), 3.36 (dd, J = 14.9 Hz, 5.2 Hz, 1H), 3.22 (dd, J = 14.9 Hz, 8.8 Hz, 1H), 1.21 (d, J = 7.2 Hz, 3H); ³¹P NMR (CD₃OD, 162 MHz) δ 0.7; ESI-MS *m/z* 544.2 [M–H][–]; HRMS calcd for [C₂₄H₂₇N₅O₈P][–] requires *m/z* 544.1603; found 544.1602; Retention time (LC/MS): 6.4 min.

(S)-3-(((S)-1-(((S)-1-Amino-4-(methylthio)-1-oxobutan-2-yl)amino)-1-oxopropan-2-yl)amino)-2benzamido-3-oxopropyl dihydrogen phosphate (32):

General procedure D (14.1 mg, 0.0288 mmol, 81% yield)

¹H NMR (CD₃OD, 500 MHz) δ 7.93 (d, J = 7.4 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 8.0 Hz, 2H), 4.74 (t, J = 5.2 Hz, 1H), 4.44 (dd, J = 9.7 Hz, 4.6 Hz, 1H), 4.38 (dd, J = 8.0 Hz, 5.2 Hz, 2H),

4.33 (q, J = 6.9 Hz, 1H), 2.62-2.44 (m, 2H), 2.18-2.08 (m, 1H), 2.07 (s, 3H), 2.06-1.98 (m, 1H), 1.40 (d, J = 6.9 Hz, 3H); ³¹P NMR (CD₃OD, 162 MHz) δ 0.6; ESI-MS m/z 489.1 [M–H]⁻; HRMS calcd for [C₂₄H₂₇N₅O₈P]⁻

requires *m*/*z* 489.1214; found 489.1206; Retention time (LC/MS): 6.0 min.

(*S*)-3-(((*S*)-1-(((*R*)-1-Amino-3-(*tert*-butyldisulfaneyl)-1-oxopropan-2-yl)amino)-1-oxopropan-2-yl)amino)-2-benzamido-3-oxopropyl dihydrogen phosphate (33):

General procedure C (12.0 mg, 0.0217 mmol, 77% yield)

¹H NMR (CD₃OD, 500 MHz) δ 7.94 (d, J = 6.9 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.4 Hz, 2H), 4.73 (t, J = 5.2 Hz, 1H), 4.57 (dd, J = 9.7 Hz, 5.2 Hz, 1H), 4.39 (dd, J = 8.6 Hz, 5.2 Hz, 2H), 4.32 (q, J = 6.9 Hz, 1H), 3.25 (dd, J = 13.7 Hz,

5.2 Hz, 1H), 3.09 (dd, J = 13.7 Hz, 9.7 Hz, 1H), 1.41 (d, J = 6.9 Hz, 3H), 1.32 (s, 9H); ³¹P NMR (CD₃OD, 162 MHz) δ 0.7; ESI-MS m/z 549.1 [M–H]⁻; HRMS calcd for [C₂₀H₃₀N₄O₈PS₂]⁻ requires m/z 549.1248; found 549.1259; Retention time (LC/MS): 7.1 min.

4-((*S*)-3-Amino-2-((*S*)-2-((*S*)-2-benzamido-3-(phosphonooxy)propanamido)propanamido)-3-oxopropyl)-1*H*-imidazol-3-ium trifluoroacetate (34):

General procedure C (9.2 mg, 0.0150 mmol, 85% yield)

¹H NMR (D₂O, 500 MHz) δ 8.42 (s, 1H), 7.69 (d, *J* = 7.4 Hz, 2H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.39 (t, *J* = 8.0 Hz, 2H), 7.11 (s, 1H), 4.70-4.50 (m, 2H), 4.21-4.08 (m, 3H), 3.18 (dd, *J* = 15.8 Hz, 6.3 Hz, 1H), 3.03 (dd, *J* = 15.8 Hz, 9.7 Hz, 1H),

1.20 (d, J = 6.9 Hz, 3H); ³¹P NMR (CD₃OD, 162 MHz) δ –0.5; ESI-MS m/z 495.1 [M–H]⁻; HRMS calcd for [C₁₉H₂₄N₆O₈P]⁻ requires m/z 495.1399; found 495.1398; Retention time (LC/MS): 6.3 min.

(3*S*,6*S*,9*S*)-14-Amino-9-carbamoyl-6-methyl-1,4,7-trioxo-1-phenyl-3-((phosphonooxy)methyl)-2,5,8,13-tetraazatetradecan-14-iminium trifluoroacetate (35):

General procedure C (6.4 mg, 0.0102 mmol, 76% yield)

¹H NMR (D₂O, 500 MHz) δ 7.70 (d, J = 7.4 Hz, 2H), 7.49 (t, J = 7.4 Hz, 1H), 7.39 (t, J = 8.0 Hz, 2H), 4.50 (m, 1H), 4.23 (q, J = 7.2 Hz, 1H), 4.17-4.10 (m, 3H), 2.99 (m, 2H), 1.80-1.68 (m, 1H), 1.68-1.58 (m, 1H), 1.54-1.40 (m, 2H), 1.26 (d, J = 7.2 Hz, 3H); ³¹P NMR (CD₃OD, 162 MHz) δ 0.3; ESI-MS *m*/*z* 514.2

 $[M-H]^-$; HRMS calcd for $[C_{19}H_{29}N_7O_8P]^-$ requires m/z 514.1821; found 514.1811; Retention time (LC/MS): 6.3 min.

(S)-6-Amino-5-((S)-2-((S)-2-benzamido-3-(phosphonooxy)propanamido)propanamido)-N-methyl-6oxohexan-1-aminium trifluoroacetate (36):

General procedure C (3.06 mg, 0.00936 mmol, 22% yield)

¹H NMR (CD₃OD, 500 MHz) δ 7.92 (d, J = 6.9Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.48 (t, J =7.4 Hz, 2H), 4.67 (t, J = 4.0 Hz, 1H), 4.42 (dd, J = 10.3 Hz, 4.0 Hz, 1H), 4.38-4.26 (m, 3H), 3.00-2.90 (m, 2H), 2.63 (s, 3H), 1.92-1.70 (m, 3H), 1.66-1.55 (m, 1H), 1.55-1.34 (m, 2H),

1.42 (d, J = 7.4 Hz, 3H); ³¹P NMR (CD₃OD, 162 MHz) δ 1.4; ESI-MS m/z 500.2 [M–H]⁻; HRMS calcd for [C₂₀H₃₁N₅O₈P]⁻ requires m/z 500.1916; found 500.1896; Retention time (LC/MS): 5.7 min.

(*S*)-6-Amino-5-((*S*)-2-((*S*)-2-benzamido-3-(phosphonooxy)propanamido)propanamido)-*N*,*N*-dimethyl-6-oxohexan-1-aminium trifluoroacetate (37):

General procedure C (15.0 mg, 0.0239 mmol, 56% yield)

¹H NMR (CD₃OD, 500 MHz) δ 7.90 (d, *J* = 6.9 Hz, 2H), 7.56 (t, *J* = 6.9 Hz, 1H), 7.48 (t, *J* = 7.4 Hz, 2H), 4.74 (t, *J* = 4.6 Hz, 1H), 4.42-4.32 (m, 4H), 3.14-3.00 (m, 2H), 2.82 (s, 6H), 1.94-1.60 (m, 4H), 1.46 (m, 2H), 1.41 (d, *J* = 7.4 Hz, 3H); ³¹P NMR (CD₃OD, 162 MHz) δ 0.7; ESI-

MS m/z 514.2 [M–H]⁻; HRMS calcd for [C₂₁H₃₃N₅O₈P]⁻ requires m/z 514.2072; found 514.2064; Retention time (LC/MS): 5.8 min.

(6*S*,9*S*,12*S*,15*S*,18*S*,21*S*)-6-Acetamido-1,22-diamino-9-(3-((amino(iminio)methyl)amino)propyl)-18isopropyl-12,21-dimethyl-7,10,13,16,19,22-hexaoxo-15-((*S*)-1-(phosphonooxy)ethyl)-2,8,11,14,17,20hexaazadocosan-1-iminium trifluoroacetate (38):

General procedure D (4.5 mg, 0.00436 mmol, 54% yield) The conditions for preparative HPLC were as follows: [2% acetonitrile for 3 min, followed by a linear gradient of 2–100% acetonitrile over 60 min. YMC-Triart C18, 230 nm]

ESI-MS m/z 397.8 [M+2H]²⁺; HRMS calcd for [C₂₁H₃₃N₅O₈P]⁻ requires m/z 792.3887; found 792.3891;

Retention time (LC/MS): 5.5 min.

LC-MS/MS analysis of the phosphorylation position

(6*S*,9*S*,21*S*,24*S*,27*S*,30*S*,33*S*,39*S*,45*S*,48*S*)-1-Amino-30-benzyl-6-carboxy-21,39-bis(2-carboxyethyl)-33,48-bis(carboxymethyl)-27-isobutyl-9-isopropyl-24-methyl-8,11,14,17,20,23,26,29,32,35,38,41,44,47,50pentadecaoxo-45-((phosphonooxy)methyl)-2,7,10,13,16,19,22,25,28,31,34,37,40,43,46,49hexadecaazahenpentacontan-1-iminium trifluoroacetate (39):

General procedure E (2.52 mg, 0.00148 mmol, 59% yield) ESI-MS m/z 792.4 $[M-2H]^{2-}$; HRMS calcd for $[C_{21}H_{33}N_5O_8P]^$ requires m/z 1585.6177; found 1585.6213; Retention time (LC/MS): 8.3 min.

LC-MS chart of purified 39

LC-MS/MS analysis of the phosphorylation position

Computational Details

All the calculations were carried out at the density functional theory (DFT) with the dispersion corrected¹ B3LYP-D3 functional,² including the solvation effect by the polarized continuum model (PCM)³ with a dielectric constant of 37.219 (for DMF). The reaction pathways were searched using an automated reaction path search method, called the artificial force-induced reaction (AFIR) method.^{4,5,6} First, the initial orientations between the target molecules were determined randomly, from which the AFIR calculations were applied. At this stage, the basis set (BS1); 6-311G(d,p) for S and P,⁷ and 6-31G(d) for others,^{8,9} were used. Next, the obtained approximate local minima and transition states were fully reoptimized without any restrictions. The geometry optimization and frequency calculations were carried out using the BS1 basis set. All the transition states were confirmed by the frequency and the intrinsic reaction coordinate (IRC)¹⁰ calculations. The Gibbs free energies were evaluated using the Gibbs free energy correction terms at 373.15 K and 1 atm. These values were further corrected by an adjustment for the 1 atm to 1 M standard-state concentration change of $RT \ln(24.5 \times 373.15/298.15)$, 2.54 kcal mol^{-1,11,12} These free energy contributions were added to the single point electronic energies computed with the diffused basis set (BS2); 6-311+G(d,p) for S and P, and 6-31+G(d,p) for others. The geometry optimizations, frequency calculations, IRC calculations, and AFIR calculations were performed via the global reaction route mapping (GRRM) program,¹³ using the energies and energy derivatives computed by the Gaussian09 program.¹⁴

Table S1. Complete list of reaction conditions for optimization of the phosphorylation of 3-phenyl-1propanol (1)

		OH PEP-K ^a , Additive Solvent Conditions	•	2 OPO ₃ H ₂ HO	PEP-K	
Entry	PEP-K (equ	iv.) Additive	pK _{a1} b	Solvent	Conditions	NMR yield
1	1.5	-	-	MeCN (0.10 M)	80 °C, 12 h	0%
2	1.5	Tetrazole (20 mol%)	4.90	MeCN (0.10 M)	80 °C, 12 h	0%
3	1.5	AcOH (20 mol%)	4.76	MeCN (0.10 M)	80 °C, 12 h	0%
4	1.5	Benzoic acid (20 mo l %)	4.21	MeCN (0.10 M)	80 °C, 12 h	0%
5	1.5	2-Chlorobenzoic acid (20 mol%)	2.89	MeCN (0.10 M)	80 °C, 12 h	0%
6	1.5	H ₃ PO ₄ (20 mol%)	2.12	MeCN (0.10 M)	80 °C, 12 h	4%
7	1.5	NBu ₄ HSO ₄ (20 mol%)	1.99	MeCN (0.10 M)	80 °C, 12 h	35%
8	1.5	10-Camphorsulfonic acid (20 mol%)	1.20	MeCN (0.10 M)	80 °C, 12 h	6%
9	1.5	TFA (20 mo l %)	-0.25	MeCN (0.10 M)	80 °C, 12 h	2%
10	1.5	TsOH (20 mol%)	-2.80	MeCN (0.10 M)	80 °C, 12 h	9%
11	1.5	NBu ₄ BF ₄ (20 mol%)		MeCN (0.10 M)	80 °C, 12 h	0%
12	1.5	NBu₄PF ₆ (20 mol%)	-	MeCN (0.10 M)	80 °C, 12 h	0%
13	1.5	NBu ₄ Br (20 mol%)	-	MeCN (0.10 M)	80 °C, 12 h	0%
14	1.5	NBu ₄ HSO ₄ (20 mol%)	1.99	DMSO (0.10 M)	80 °C, 12 h	10%
15	1.5	NBu ₄ HSO ₄ (20 mol%)	1.99	NMP (0.10 M)	80 °C, 12 h	9%
16	1.5	NBu ₄ HSO ₄ (20 mol%)	1.99	1,4-Dioxane (0.10 M)	80 °C, 12 h	13%
17	1.5	NBu ₄ HSO ₄ (20 mol%)	1.99	Toluene (0.10 M)	80 °C, 12 h	17%
18	1.5	NBu ₄ HSO ₄ (20 mol%)	1.99	1,2-Dichroloethane (0.10 M)	80 °C, 12 h	33%
19	1.5	NBu ₄ HSO ₄ (20 mol%)	1.99	DMA (0.10 M)	80 °C, 12 h	19%
20	1.5	NBu ₄ HSO ₄ (20 mol%)	1.99	DMF (0.10 M)	80 °C, 12 h	43%
21	3.0	NBu ₄ HSO ₄ (30 mol%)	1.99	DMF (0.20 M)	80 °C, 24 h	80%
22	3.0	NaHSO ₄ (30 mol%)	1.99	DMF (0.20 M)	80 °C, 24 h	38%
23	3.0	KHSO ₄ (30 mol%)	1.99	DMF (0.20 M)	80 °C, 24 h	33%
24	3.0	NMe ₄ HSO ₄ (30 mol%)	1.99	DMF (0.20 M)	80 °C, 24 h	49%
25	3.0	NOct ₃ MeHSO ₄ (30 mol%)	1.99	DMF (0.20 M)	80 °C, 24 h	51%
26	3.0	PBu ₄ HSO ₄ (30 mol%)	1.99	DMF (0.20 M)	80 °C, 24 h	45%
27	4.5	NBu ₄ HSO ₄ (30 mol%)	1.99	DMF (0.20 M)	100 °C, 6 h	88%

^aThe value of pK_{a1} of PEP-H is less than 2. ^bValues in water.

Figure S1. Synthesis of *O*-benzyl phosphosulfate (A) and ³¹P NMR change in hydrogenolysis of *O*-benzyl phosphosulfate to prepare POS (42) (B).

Figure S2. A ³¹P NMR spectrum and a MS spectrum (inset) after the reaction between POS (42) and PEP-K at 100 °C for 30 min. A peak at 1.5 ppm is phosphoric acid and a peak at -3.0 ppm is PEP-K. A peak at -10.2 ppm is considered to be POSOP (43). The MS spectrum showed a peak of m/z 257.0 corresponding to POSOP (43).

Figure S3. A ³¹P NMR spectrum just after the further addition of POS (42) to the reaction mixture obtained in Fig. S2. In addition to the peak of POSOP (43) at -10.0 ppm, a new peak corresponding to POS (42) appeared at -10.1 ppm.

Figure S4. A ³¹P NMR spectrum after heating the reaction mixture obtained in Fig. S3 at 100 °C for 15 min. The peak at -10.5 ppm corresponding to POS (42) decreased and the peak at -10.4 ppm corresponding to POSOP (43) increased.

Figure S5. A ³¹P NMR spectrum after heating the reaction mixture obtained in Fig. S4 at 100 °C for additional 45 min (total 60 min after Figure S3). The peak corresponding POS (42) disappeared completely. The experiments in Figures S2-S5 showed that peaks of POS (42) and POSOP (43) appeared in very close chemical shifts, but those are different.

Figure S6. ³¹P NMR (left) and MS (right) spectra of the reaction between TBAHS and PEP-K. (A) After 20 min. A peak at 1.6 ppm is phosphoric acid. A peak at -2.4 ppm matched with that of the cyclic acyl phosphate generated from PEP cyclohexylammonium salt and *N*,*N*'-dicyclohexylcarbodiimide.¹⁵ A peak at -4.8 ppm is PEP-K. A peak at -11.4 ppm is considered to be POS (41). The MS spectrum showed a peak of *m*/*z* 177.1 corresponding to POS (41). (B) After 1 h. A peak at -10.8 ppm is considered to be POSOP (44). The MS spectrum showed a peak of *m*/*z* 257.0 corresponding to POSOP (44).

Figure S7. MS analyses of POS and POSOS using ³⁴**S-labeled TBAHS.** MS charts of the reaction using ³²S-TBAHS (**A**) and ³⁴S-TBAHS (**B**). The reaction mixtures were analyzed by LC-MS using an isocratic elution of acetonitrile over 3 min with a flow rate of 1 mL/min.
Detailed Gibbs free energy profiles and geometries

In Figures S8–S14, compounds with the same number of atoms are connected with solid lines. Dot lines are used to connect compounds with different number of atoms.

Figure S8. Gibbs free energy profile (in kcal mol⁻¹) of phosphorylation of alcohol (ROH) by POS. The reference of the relative Gibbs free energy ($\Delta G = 0.0$) is ROH 1 + POS 45. Intramolecular proton transfer from the phosphate moiety to the sulfate moiety in POS 45 occurs prior to TS1, followed by nucleophilic addition at the P atom (Int1a–Int1b). Then, the proton in ROH migrates to the phosphate moiety through the mediation by the eliminated HSO₄⁻ group (Int1b–Int1c).

Figure S9. Gibbs free energy profile (in kcal mol⁻¹) of sulfation of alcohol (ROH) by POS. The reference of the relative Gibbs free energy ($\Delta G = 0.0$) is ROH 1 + POS 45. Nucleophilic addition at the S atom and proton transfer from ROH to the phosphate moiety proceed concertedly (Int2a–Int2b).

Figure S10. Gibbs free energy profile (in kcal mol⁻¹) of sulfation of alcohol (ROH) by POS mediated by PEP-H. The reference of the relative Gibbs free energy ($\Delta G = 0.0$) is ROH 1 + POS 45 + pyruvic acid + PEP⁻. POS 45 abstracts the proton from pyruvic acid prior to Int3a, then nucleophilic addition at the S atom and proton transfer from ROH to PEP occur concertedly (Int3b–Int3c). Finally, the proton transfers from PEP-H to pyruvate (Int3d–Prod3).

Figure S11. Gibbs free energy profile (in kcal mol⁻¹) of sulfation of alcohol (ROH) by POS mediated by pyruvic acid. The reference of the relative Gibbs free energy ($\Delta G = 0.0$) is ROH 1 + POS 45 + pyruvic acid. Proton transfer from pyruvic acid to POS 45 occurs prior to Int4a, followed by nucleophilic addition at the S atom and proton transfer from ROH to pyruvate (Int4a–Int4b).

Figure S12. Gibbs free energy profile (in kcal mol⁻¹) of sulfation of alcohol (ROH) by POS mediated by HNEt₃⁺. The reference of the relative Gibbs free energy ($\Delta G = 0.0$) is ROH 1 + POS 45 + HNEt₃⁺. Proton transfer from HNEt₃⁺ to POS 45 proceeds prior to Int5a, followed by nucleophilic addition at the S atom and proton transfer from ROH to NEt₃ (Int5a–Int5b).

Figure S13. Gibbs free energy profile (in kcal mol⁻¹) of phosphorylation of alcohol by POSOP. The reference of the relative Gibbs free energy ($\Delta G = 0.0$) is ROH 1 + POSOP 48. Intramolecular proton transfer from the phosphate moiety (i) to the other phosphate moiety (ii) in POSOP 48 takes place prior to TS6, followed by nucleophilic addition of ROH at the P atom (Int6a–Int6b). Then, proton transfer from ROH to the phosphate moiety (ii) and that from (ii) to (i) take place concertedly (Int6b–Int6c). Namely, the leaving protonated POS mediates the proton transfer from ROH to the phosphate moiety (i).

Figure S14. Gibbs free energy profile (in kcal mol⁻¹) of sulfation of alcohol (ROH) by POSOP. The reference of the relative Gibbs free energy ($\Delta G = 0.0$) is ROH 1 + POSOP 48. The leaving phosphate moiety (i) abstracts a proton from the other phosphate moiety (ii) in POSOP (48) (prior to TS7). Then, the nucleophilic addition of ROH at the S atom and the proton transfer from ROH to the phosphate moiety (ii) proceed concertedly (Int7a–Int7b). Namely, the phosphate moiety (ii) mediates the proton transfer from ROH to the leaving phosphate (i).

Figure S15. Geometries of TSs for phosphorylation and sulfation by POS. Geometries of TSs for phosphorylation by POS (A), sulfation by POS without proton-transfer mediators (B), with pyruvic acid (C), with PEP (D), and with $HNEt_3^+$ (E) are shown, respectively. The bond distances are in Å. The Gibbs free energy differences are shown in Figures S8-S12.

Figure S16. Geometries of the TSs for phosphorylation (A) and sulfation (B) by POSOP. Phosphorylation is shown in **A**, and sulfation is shown in **B**. The bond distances are in Å. The Gibbs free energy differences are shown in Figures S13-S14. (i) and (ii) are the same labels as shown in Figures S13 and S14.

Table S2. Bond orders/distances (in Å) of POS 45 and PO

	POS 45	POSOP 48
P–O bond	$0.56^{\text{ a}} / 1.71^{\text{ b}}$	$0.48^{\text{ a})} / 1.77^{\text{ b})}$
S–O bond	$0.67^{a} / 1.66^{b}$	0.79 ^{a)} / 1.59 ^{b)}

^{a,b}The corresponding O–P and O–S bonds are shown in red below.

Figure S17. The frontier orbitals and their energy levels (in eV) of POS 45, POSOP 48, and 3-phenyl-1-propanol (1).

References

- 1. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. **2010**, *132*, 154104.
- Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B* 1988, *37*, 785-789.
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. *Chem. Rev.* 2005, 105, 2999-3094.
- Maeda, S.; Harabuchi, Y.; Takagi, M.; Saita, K.; Suzuki, K.; Ichino, T.; Sumiya, Y.; Sugiyama, K.; Ono, Y. Implementation and performance of the artificial force induced reaction method in the GRRM17 program. *J. Comput. Chem.* 2018, *39*, 233-251.
- Maeda, S.; Harabuchi, Y.; Takagi, M.; Taketsugu, T.; Morokuma, K. Artificial force induced reaction (AFIR) method for exploring quantum chemical potential energy surfaces. *Chem. Rec.* 2016, *16*, 2232-2248.
- Maeda, S.; Ohno, K.; Morokuma, K. Systematic exploration of the mechanism of chemical reactions: the global reaction route mapping (GRRM) strategy using the ADDF and AFIR methods. *Phys. Chem. Chem. Phys.* 2013, *15*, 3683-3701.
- McLean, A. D.; Chandler, G. S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J. Chem. Phys. 1980, 72, 5639-5648.
- Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self Consistent Molecular Orbital Methods. IX. An Extended Gaussian - Type Basis for Molecular - Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724-728.
- 9. Hariharan, P. C.; Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. *Theor. Chem. Acc.* **1973**, *28*, 213-222.
- 10. Fukui, K. The path of chemical reactions the IRC approach. Acc. Chem. Res. 1981, 14, 363-368.
- 11. Cramer, C. J. Essentials of Computational Chemistry: Theories and Models. 2nd ed.; Wiley: 2004.
- 12. Winget, P.; Cramer, C. J.; Truhlar, D. G. Computation of equilibrium oxidation and reduction potentials for reversible and dissociative electron-transfer reactions in solution. *Theor. Chem. Acc.* **2004**, *112*, 217-227.
- 13. Maeda, S.; Harabuchi, Y.; Sumiya, Y.; Takagi, M.; Suzuki, K.; Sugiyama, K.; Ono, Y.; Hatanaka, M.; Osada, Y.; Taketsugu, T.; Morokuma, K.; Ohno, K. GRRM17: http://iqce.jp/GRRM/ index_e.shtml.
- 14. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.;

Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, J. D. Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT, 2010.

15. Clark, V. M.; Kirby, A. J. Neighboring Group Participation in Phosphate Ester Hydrolysis. J. Am. Chem. Soc. **1963**, 85, 3705-3706.

Cartesian Coordinates of the Critical Points

The electronic energies and Gibbs free energies at 373.15 K and 1atm (without the correction terms of 2.54 kcal mol⁻¹) are shown in atomic unit. The Cartesian coordinates are in Å.

3-phenylpropan-1-ol (ROH: 1)

Electronic	Energy = -425.4553	530641 / Gibbs Free	Energy =-425.313460688
С	-1.293725518814	0.779219337764	-0.279277580828
Н	-0.391236683292	0.984053517740	-0.872795520465
Н	-1.475798251712	1.667203821243	0.339132877728
С	-1.041120314383	-0.444494894670	0.622517491073
Н	-0.875449150039	-1.327428766692	-0.008596485742
Н	-1.943359652073	-0.643757225986	1.215387399426
С	0.143370325407	-0.241627079621	1.541821912015
С	-0.019796559901	0.348151377347	2.803686820269
С	1.437709981998	-0.593666900101	1.132543626694
С	1.078421220543	0.579674770277	3.635384601895
Н	-1.017867862508	0.625254955527	3.136606794265
С	2.539604005995	-0.364291811149	1.959970460779
Н	1.580983430421	-1.054034854859	0.157183332383
С	2.363426003904	0.223953981186	3.215687094403
Н	0.930251653759	1.034018531675	4.611715226574
Н	3.534340779738	-0.647978896192	1.625839774816
Н	3.218805534966	0.400317105962	3.862321452731
С	-2.480392530797	0.576951280269	-1.221311609601
Н	-2.315404079210	-0.316017609569	-1.846363717953
Н	-3.394943335882	0.403137654909	-0.642553391094
0	-2.746512029024	1.725203023433	-2.026601881118
Н	-1.961814549106	1.880072551504	-2.576836628226

POS (PO₃SO₄²⁻: 45)

Electronic	Energy = -1267.18	519708 / Gibbs Free	Energy =-1267.18981843
0	-1.295814526079	-0.615525198368	0.509808060592
Р	-1.251019065406	1.000125935985	-0.040942530416
S	-0.513029847620	-1.871381349582	-0.241415867087
0	-0.335959787596	-2.832404385037	0.861622730193
0	0.768797407749	-1.289490928148	-0.739774632775
0	-1.400768049383	-2.336040567292	-1.322175010839
0	-1.714871329476	1.039119480246	-1.466687449919
0	-1.940878879818	1.777735661468	1.035943228476
0	0.358359210983	1.280555053625	0.063138928746
Н	0.814247556649	0.484884557096	-0.300831806968

Protonated POS (HPO₃SO₄-)

Electronic	e Energy = -1267.63	, 859747 / Gibbs Free	Energy =-1267.63205134
Р	1.460956834798	0.029154522616	0.134902994698
S	-1.457894957143	-0.045626101343	-0.006932517070
0	2.605913575312	-0.018725233552	1.060647383293
0	1.451560994748	-1.174555764666	-0.921903467407
Н	0.526650123683	-1.417319216046	-1.174165476140
0	-1.309778900432	-1.196628747875	-0.925521768609
0	-2.454739776590	-0.182924602091	1.045294577080
0	-1.392358792389	1.270188186069	-0.681041531699
0	0.019910018188	-0.085012554743	0.891167702918
0	1.369747187750	1.400229012279	-0.688642669737
Н	0.429789482080	1.635345259351	-0.886260857320

ROSO3⁻: 46

Electronic	Energy = -1048.873	51623 / Gibbs Free	Energy =-1048.73668369
С	-1.339944506743	0.667265379706	-0.299489178867
Н	-0.483303300179	0.501823243379	-0.965031437428
Н	-1.264255370440	1.698891676781	0.068232713574

С	-1.270060769532	-0.311843740453	0.888139608657
Н	-1.365324771357	-1.333845719990	0.505600182012
Н	-2.132895823583	-0.133886406659	1.543451401612
С	0.014429832104	-0.165137912529	1.672634861163
С	0.108384024665	0.747006517237	2.734037737762
С	1.155963546524	-0.902198245876	1.324986253171
С	1.307342694607	0.918533096043	3.430156376200
Н	-0.768552414359	1.325137186788	3.018150934637
С	2.357902333213	-0.734417464149	2.016977226374
Н	1.099357828220	-1.615695580440	0.505537106909
С	2.437683119124	0.177609877859	3.073264587230
Н	1.357898969293	1.627479694040	4.252679196318
Н	3.230121618894	-1.318303106175	1.734146739441
Н	3.370701220522	0.307389556439	3.615143338452
С	-2.628767760319	0.542099171288	-1.098436007583
Н	-3.502624772330	0.671741417846	-0.447276110820
Н	-2.673072775337	1.291576864693	-1.897525216167
0	-2.660929926549	-0.776474958267	-1.681823994678
S	-4.094036776487	-1.186930308775	-2.432215574097
0	-5.116400053094	-1.167843682035	-1.363959656690
0	-4.301708940622	-0.156764519738	-3.472805128900
0	-3.764614896244	-2.528117027015	-2.946490418283

ROPO3H⁻: 47

Electronic Energy = -992.789285324 / Gibbs Free Energy =-992.644165603 C -0.423949876064 -0.843242365958 0.755922142714

C	-0.4239498/6064	-0.843242365958	0./55922142/14
Н	-0.629852990966	0.040259483238	1.373591888735
Н	-0.814593298205	-0.629328447408	-0.247065352486
С	-1.150452594366	-2.067925995529	1.343811410257
Н	-0.748142609921	-2.279800628002	2.342874681053
Н	-0.933013654405	-2.946161804901	0.721768601445
С	-2.646220346118	-1.855906645104	1.426543191015
С	-3.234915504775	-1.323835667547	2.582639467948
С	-3.471459338037	-2.141330002486	0.328888544205
С	-4.609963165502	-1.083481596480	2.642767147891
Н	-2.608816520153	-1.098698228274	3.443499955107
С	-4.846649842766	-1.902803467505	0.383148316446
Н	-3.030204797777	-2.556498076829	-0.574871170435
С	-5.421229675874	-1.372204221724	1.541875937215
Н	-5.047512865664	-0.674094774026	3.549732620351
Н	-5.469506984630	-2.134206246524	-0.477177474121
Н	-6.491347673826	-1.188487550957	1.587322206158
С	1.081095992771	-1.054462840823	0.671533599593
Н	1.503174349359	-1.244538328909	1.667311453035
Η	1.311183829578	-1.923198679671	0.038304560971
0	1.673940196089	0.122403274146	0.109056826337
Р	3.311013146244	0.130384753750	-0.125183817592
0	4.010721499265	-0.381418946926	1.099272551983
0	3.480717615055	-1.058065838540	-1.269842926445
Н	3.137260976288	-0.737434626571	-2.120065507425
0	3.613984974403	1.467028629545	-0.736442513942

POSOP ((HPO₃)₂SO₄²⁻: 48)

Electronic Energy = -1834.96655558 / Gibbs Free Energy =-1834.9539787 -0.964298502768 -0.51066305984 0.095498394899 -2.510858522320 -1.010098058175 0.768398223570 -2.304304423642 -2.409684861191 1.292056237603 0 Р 0 -2.869124167733 0.128889076490 1.652000286176 0
 -2.869124107753
 0.128889070490
 1.032000280170

 -3.401147955071
 -1.006893495191
 -0.560958633918

 -3.274857790231
 -1.852426688363
 -1.102101259698

 0.171058236295
 -1.443223786524
 -0.525707639068
0 Н S O $1.084281982194 \quad -0.539563687433 \quad -1.206953191122$ 0 $0.701230240046 \quad -2.336066505682 \quad 0.491639797468$ Ο $-0.579096666693 \quad -2.253154543267 \quad -1.664906727057$

Р	-1.526698830284	-3.750768387977	-1.692257453043
0	-2.923908167144	-3.215139573599	-1.896389005478
0	-0.853600071603	-4.605436877163	-2.702920853697
0	-1.314231922596	-4.319178985075	-0.216419749818
Н	-1.696235118462	-3.675169105876	0.459754083189

Protonated POSOP (H(HPO₃)₂SO₄⁻)

Electronic	Energy = -1835.399	913704 / Gibbs Free	Energy =-1835.3773535
0	-1.529048800565	0.778808877735	-0.220693073102
Р	-1.743276519288	-0.810603099459	0.223664833334
0	-1.085333123300	-1.100854876013	1.522060387105
0	-1.292404355801	-1.645414290911	-1.020788238059
Н	-0.259931962040	-1.808638022179	-1.013033427020
S	-0.108724499966	1.612927861416	-0.047990662803
0	-0.271935077241	2.748684151709	-0.926937348153
0	0.130443526126	1.801450801298	1.366573993814
0	0.924417669400	0.632067298906	-0.704079704280
Р	1.920754436065	-0.741505571523	-0.105233356058
0	1.215921564704	-1.888619824101	-0.792703896365
0	3.315724330681	-0.357011110323	-0.403389738657
0	1.622618855154	-0.709028818335	1.462565542741
Н	0.675727279155	-0.925264991244	1.667775504088
0	-3.324221283029	-0.896458765477	0.282926381452
Н	-3.768414950050	-0.895358021505	-0.584753798029

ROSO ₃ P	O₃H⁻: 49		
Electronic	e Energy = -1616.63	677101 / Gibbs Free	Energy =-1616.48400844
0	2.815301447172	-0.038027973862	-0.561078427213
Р	3.241495259773	-0.863917505804	0.967188850455
S	1.860590671689	1.219600645335	-0.649632559391
0	1.128137457841	1.377458634800	0.606128431431
0	0.856301749483	0.747093569683	-1.811574588900
0	2.568502567025	2.355290455244	-1.205796297018
С	-1.351046998038	0.041571936840	-0.973396788465
Н	-1.194196745025	0.623754885951	-0.060014417109
Н	-1.836808645138	0.698535875269	-1.704284800644
С	-2.256963649621	-1.168493243507	-0.669695311474
Н	-1.748299664002	-1.822885151656	0.050005669921
Н	-2.402216882768	-1.754219155680	-1.586183072961
С	-3.596516307264	-0.737145410526	-0.113596663845
С	-4.687261653971	-0.505186332746	-0.963036772125
С	-3.759278050799	-0.513609981860	1.261264060288
С	-5.910530829193	-0.062310235696	-0.453628028289
Н	-4.576629851952	-0.675674620313	-2.031808822720
С	-4.979979703254	-0.070746824144	1.775533543192
Н	-2.921776540541	-0.691091339519	1.932733465767
С	-6.060797167259	0.156593984607	0.918538356350
Н	-6.746099301594	0.108337273453	-1.127531473882
Н	-5.088091379426	0.093183456212	2.844580838390
Н	-7.012279614860	0.498319393758	1.317023865335
С	-0.004701786600	-0.409799134368	-1.514014742979
Н	0.514238863936	-1.072827205694	-0.815980105012
Н	-0.096597439218	-0.918207023252	-2.475777063340
0	3.830830152687	0.188090927325	1.840896778646
0	3.944986234137	-2.075256699997	0.474073992217
0	1.740784586893	-1.284591473354	1.442868226328
Η	1.243275119888	-0.485802146499	1.702182877070

HSO₄-Electronic Energy = -699.852686245 / Gibbs Free Energy =-699.863727569

0	-0.979754187228	-0.438125139331	0.797270117584
0	-1.561651524229	1.967276762607	0.828123910568
0	0.026403386478	1.100522558545	-0.878441212429
0	-2.333705662084	0.529639166460	-1.073129447383

Н	-3.127116954526	0.303766964716	-0.553082641497
S	-1.101762818412	0.815529677001	0.024205193156

H₂PO₄-

Electronic	Electronic Energy = -643.771744966 / Gibbs Free Energy = -643.774758683				
0	-2.711384848174	1.530638797457	-2.171487122279		
0	-4.092744520192	2.496262942332	-4.107207237778		
Н	-3.805545036764	3.298815875505	-3.641786926024		
Р	-3.815859453293	1.183994837320	-3.132640398524		
0	-3.776511279083	-0.009261586924	-4.036987001093		
0	-5.229153652645	1.089527477143	-2.268326838476		
Н	-5.084530439851	1.504023657165	-1.402307225824		

PEP-

Electronic	Electronic Energy = -909.749353511 / Gibbs Free Energy =-909.7110822				
С	0.986299629657	1.004718245410	-0.113912068489		
С	2.264934554899	0.223613210351	-0.277550039101		
0	3.321140173334	0.614073636327	0.455683414282		
Н	3.041239725211	1.246209667729	1.141373783330		
0	2.395889035773	-0.691704659133	-1.073630120993		
0	-0.168767834466	0.356795267264	-0.411625319762		
С	1.003703237900	2.318648777049	0.153133120653		
Н	0.075843204342	2.877938344158	0.202450091816		
Н	1.930401634886	2.869272750665	0.269866680885		
Р	-0.478697534709	-1.195417156455	0.239230845578		
0	0.462644658787	-1.356268239056	1.397359377707		
0	-1.962124222633	-1.293308394216	0.368794605426		
0	-0.019116025252	-2.105349364938	-1.038789519823		
Н	0.884383862276	-1.818553885151	-1.293327391510		

PEP-H

Electronic	Energy = -910.197.	377321 / Gibbs Free	Energy =-910.150056356
С	-0.223567371120	-1.402195926277	0.497656050915
С	-0.793202466676	-2.363580729059	-0.489761589199
0	-0.029397682918	-3.439191479900	-0.679527559290
Н	-0.457589724008	-4.002188709662	-1.354081317022
0	-1.855530869728	-2.191814119149	-1.078196971198
0	-1.070963360245	-0.374772712647	0.882840631678
С	0.984907289008	-1.529148377359	1.048394989086
Н	1.343893934429	-0.793258585933	1.759215055674
Н	1.620964949276	-2.368569985771	0.798084670443
Р	-1.532455298459	0.870124183301	-0.073900128639
0	-1.786327700382	2.079997347547	0.726238141397
0	-0.390415449547	0.956654548468	-1.200967156963
0	-2.777589210984	0.323188046826	-0.886578539478
Н	-2.661973278688	-0.649374729673	-1.060194735756
Н	0.427008640033	1.387619139293	-0.892370681684

Pyruvate (CH₃COCOO⁻) Electronic Energy = -341.979953415 / Gibbs Free Energy =-341.961703762

С	0.816085483098	-0.234249868616	0.003728149777
0	0.903230107967	-1.490509440180	0.011140108535
0	1.725433686207	0.628658283166	0.000054321028
С	-0.659056335166	0.316909164641	-0.001535560315
С	-1.768813523195	-0.717383800577	-0.001445220634
Н	-1.672438627493	-1.365001874169	0.876843257763
Н	-2.748061051155	-0.230431850380	-0.006720845094
Н	-1.666359012746	-1.372000140492	-0.873827169775
0	-0.903725727514	1.514405526610	-0.005200041283

Pyruvic acid (CH₃COCOOH)

Electronic	c Energy = -342.4363	347515 / Gibbs Free	Energy =-342.404616803
С	-2.687406874957	0.686694642396	0.309518773293
0	-3.049209710068	-0.339291887288	0.840138866685

0	-3.467959855914	1.760536972044	0.163889708741
Н	-2.929242770925	2.443488255804	-0.294781306389
С	-1.265474746272	0.889307161243	-0.273356081299
С	-0.317033149778	-0.261276488821	-0.158616537446
Н	-0.738829523187	-1.136238943682	-0.666844769159
Н	0.648646523427	0.000992774036	-0.592710866577
Н	-0.200465115520	-0.538270363756	0.895464152052
0	-1.017082466811	1.968473448021	-0.784034909897

HNEt₃+

11111213			
Electronic	c Energy = -292.9223	599539 / Gibbs Free	Energy =-292.744371097
Ν	0.003446190682	0.000513001261	-0.012691192804
С	-0.762566440684	-1.236197833832	0.431731715644
Н	-0.070742886440	-2.076012183983	0.365250211322
Н	-1.007231947487	-1.074625119146	1.484039411239
С	-1.997041976870	-1.494872487453	-0.420726919478
Н	-1.728288547571	-1.663304467900	-1.469079118509
Н	-2.485319008082	-2.400515504194	-0.049428385960
Η	-2.724612321620	-0.680193891167	-0.369761243113
С	1.454231988378	-0.043803717288	0.442534297221
Н	1.830614414329	0.978117422957	0.396849019114
Н	1.430690602405	-0.354359299117	1.489383024850
С	2.306466083343	-0.963971196649	-0.419929323719
Н	2.318826638767	-0.629639162559	-1.462831866805
Н	3.333420455023	-0.932485714619	-0.044678598899
Н	1.971439689700	-2.004277359191	-0.386417377361
С	-0.685491510670	1.280433966098	0.435374328471
Н	-1.758747879796	1.098386782989	0.380244153706
Н	-0.413708192369	1.414769981792	1.484822518493
С	-0.303232250272	2.477916354791	-0.423461886633
Н	-0.838769661052	3.354503110060	-0.047553158009
Н	0.766863134009	2.700569902975	-0.386333504516
Н	-0.596595100286	2.326130343569	-1.467680942789
Н	0.009090896568	0.000831780604	-1.038881311466

Int1a

Electronic	e Energy = -1692.654	401854 / Gibbs Free	Energy =-1692.48685781
С	1.382592031227	-0.833787398685	-1.292114792775
Н	1.612479888906	-1.833695785977	-1.685002626967
Н	2.327669918626	-0.294810803326	-1.185126078630
С	0.729054877683	-0.937933562532	0.097344256701
Н	-0.170146751740	-1.566227716500	0.046083542671
Н	0.408933640553	0.069551554268	0.390416172861
С	1.686977620831	-1.475057153238	1.138547687034
С	2.765089727773	-0.679028018393	1.561110998863
С	1.555612892254	-2.763555392082	1.672153907067
С	3.686175360879	-1.163415992379	2.490214724394
Н	2.890403053329	0.317460834371	1.147172678943
С	2.475426938741	-3.250531553544	2.607642896944
Н	0.726766033997	-3.392633074354	1.352851914197
С	3.544893485356	-2.451455260109	3.019782108347
Н	4.514740702366	-0.527224223942	2.789619922111
Н	2.355803894620	-4.253201089411	3.011414518933
Н	4.261728627153	-2.829051385574	3.744915078725
С	0.519315169863	-0.065352874752	-2.293157272504
Н	-0.399286277667	-0.621418158299	-2.522396863939
Н	0.228308202890	0.892666611236	-1.837044865032
0	1.187177834528	0.147132971136	-3.535204121408
Н	1.954616870047	0.717172096312	-3.322399859938
0	4.426565877349	3.128323747875	-0.708142527712
Р	2.885763468642	2.843381385244	-1.367963720009
S	5.389457811739	1.948957121669	-0.029940668266
0	6.740453904210	2.503625776228	-0.219436389764
0	5.129441158874	0.725216247049	-0.844705699201

0	4.969862838015	1.827172210690	1.376198809235
0	2.017732172243	2.198626113435	-0.331279046001
0	2.504686439353	4.124758485703	-2.039273444039
Ō	3 311454971440	1 763773485558	-2 544186341152
U U	3.062722008107	1 138204671670	2 128225472671
п	5.902/2200819/	1.1382040/10/0	-2.1383334/30/1
TS1			
Electronic	c Energy = -1692.620	023556 / Gibbs Free	$E_{\text{nergy}} = -1692.45504314$
C	0 999506072164	-0 743655156223	-1 215365917673
ч	1 136658506275	-1 708298711308	-1 723621201287
П Ц	1.130038300273	0.264194957161	1 164221570247
п	1.9/00045590/9	-0.20416465/101	-1.1042313/934/
C U	0.50254/105114	-0.9/1/09094299	0.224809627616
H	-0.375946058838	-1.629130352119	0.235518579801
Н	0.185208/2089/	-0.002/6163//13	0.631162124450
С	1.600986929964	-1.533509866739	1.102904136394
С	2.707462299123	-0.726112856159	1.417178200522
С	1.572112095113	-2.847121638759	1.585575786829
С	3.757349875941	-1.220360539622	2.190638851968
Н	2.750021180358	0.294659237065	1.044911426534
С	2.622224578902	-3.346919540954	2.364333703760
Н	0.722879372333	-3.485410387050	1.349741485226
C	3 718221733166	-2 535713886697	2 668289979592
й	4 599163721720	-0 568834107878	2 407874454404
н	2 582/80207072	-0.300034107070	2.407874434404
и П	A 53/076308010	2 024066273460	2.75050505515002
II C	4.554570506510	-2.924900273400	2 020202675125
U U	0.091855574850	0.1/1098003933	-2.039303073123
н	-0./6/413/22429	-0.3/93339/3034	-2.449775602770
Н	-0.285680092677	0.9813/4901148	-1.410132058554
0	0.799844350900	0.824506356538	-3.110290108283
Н	1.542697529067	0.257599814426	-3.375531861863
0	4.786952713218	3.304521100870	-0.497727788741
Р	2.610615475345	2.371258933040	-1.861528856464
S	5.597893911446	2.309543959066	0.263651172812
0	7.027583430999	2.667981558875	0.370779578360
0	5.597566498975	0.968777244602	-0.667352457151
0	4.984778622298	1.925707807791	1.556635686170
0	1.829473347224	2.280021994627	-0.592123672383
0	2.494463460010	3.552269965775	-2.770112231471
0	3.529754239029	1.233482980554	-2.261181891030
Н	4.783688222625	1.016096917298	-1.266960025185
Int1b			
Electronic	c Energy = -1692.642	23495 / Gibbs Free I	Energy =-1692.4795784
С	1.226877721234	0.059924061996	-0.374683399150
Н	1.384580991916	-0.681143698489	-1.165744353976
Н	2.214020365770	0.351291724920	0.004891931400
С	0.391034422111	-0.565740700366	0.758509797946
Н	-0.603978037454	-0.815284067393	0.367185011537
Н	0.243287950364	0.173878517771	1.555605453431
С	1.044727581650	-1.808922019643	1.320167999422
С	1.852459571984	-1.749375921829	2.463983503487
С	0.889955383164	-3.044923662378	0.674831331154
Č	2.487518899736	-2.893865067348	2.954022998873
Ĥ	1 982766770596	-0 798160958182	2 975672719879
C	1 521754817492	-4 191531892259	1 160301213050
й	0 266681671384	-3 105369406166	-0 214980286147
C	2 323763134764	-1 110638301371	2 303/01065726
с u	2.525705154704	2 828012106851	2.505491005720
11 TT	3.10/10/001210	-2.020012190801	J.044/0J0JJ430 0.649020505201
п	1.383333143/18	-3.14099/951039	0.048950595501
Н	2.814031225384	-5.011439493508	2.084085230282
C	0.525115998106	1.268081252798	-0.9/3588349389
H	-0.454901590855	1.003461995276	-1.3/3/16//0860
Н	0.411451440653	2.074940854081	-0.245430972017
0	1.329828802193	1.819780034139	-2.055811020587

Н	1.531244409583	1.066595278442	-2.719783649519
0	1.747930426577	-0.170801269654	-3.656056182715
Р	0.565553130364	3.312061211858	-3.053286219213
S	0.457883838194	-0.557873567369	-4.342470985992
õ	0.609895600360	-1.770585389663	-5.164830382286
Õ	0 169758201271	0.630782264442	-5 384783210540
Õ	-0 670450342244	-0 600862246701	-3 386702599794
0	-0.889312127644	3 160795780484	-2 706952273080
0	1 362324937613	4 447377708308	-2 477445615597
0	1.007918224127	2 812161584636	-4 434555464952
н	0.488433595710	1 545930110072	-4 970480099894
11	0.400455575710	1.545750110072	-1.970400099094
TS1'			
Electronic	c Energy = -1692.64	268543 / Gibbs Free	$E_{nergy} = -1692 \ 48187878$
C	1 202635089259	-0.038246558247	-0 364438270404
н	1 422214448936	-0 796848491272	-1 124616159351
н	2 162114704333	0.310405401356	0.036563488753
C	0 3505506/15820	-0.666072735886	0.762570938818
ч	-0.600850538467	-0.000072755880	0.346079827008
и П	0.122614854658	0.008/10857/22	1 516522522145
II C	1.067480600112	1 925222210697	1.010022002140
C	1.00/469090115	-1.65522521006/	2 596472499107
C	1.012/00303330	-1.000131969400	2.3004/340019/
C	1.028434303024	-3.10/3238/1843	0.821803779938
U U	2.300437460003	-2./30/0014//34	2 056147250521
п	1.001/20001021	-0.083023029/33	5.050147559521
U U	1./1395/380225	-4.182/24914420	1.391014846008
Н	0.4533058//384	-3.253921/48291	-0.090096795136
C	2.453112/543/3	-4.001538694//6	2.564052395186
H	3.069900430643	-2.588314929955	4.0/4101402591
H	1.66858/292118	-5.161988299104	0.921425261403
Н	2.9849/609/949	-4.83/699/88162	3.010138860052
C	0.4/1983/16961	1.121403530333	-1.021865382051
Н	-0.482682793633	0.808788649306	-1.450055033052
Н	0.300509860713	1.940893188744	-0.320431809902
0	1.298913345906	1.665405192144	-2.091984286832
Н	1.442157157692	0.903449248291	-2.806963565733
0	1.563187065916	-0.216124973710	-3.734240919354
P	0.6/344126048/	3.22/0855/3661	-2.964821484153
S	0.300818425511	-0.433198246643	-4.563507814087
0	0.475218826720	-1.570420830101	-5.487752298389
0	0.151373080112	0.865691377946	-5.446719767315
0	-0.887733746512	-0.541816318179	-3.684888722015
0	-0.804396264825	3.147237961147	-2.713772701447
0	1.508462434542	4.288394525408	-2.313659482696
0	1.148244237256	2.812563270535	-4.380975416889
Н	0.598186928060	1.782885136889	-4.925896029266
Intle			
Electroni	c Energy = -1692.662	229146 / Gibbs Free	Energy = -1692.49537512
С	1.212085758584	0.336949627099	-0.379208830213
Н	1.475038685771	-0.364040519765	-1.174656271595
Н	2.145579747070	0.680885533570	0.084039691664
С	0.342508446480	-0.401705658089	0.654446293822
Н	-0.630914251657	-0.615949667532	0.193519947791
Н	0.150753416340	0.244992716892	1.519776493901
С	0.974387271500	-1.702557283144	1.101216288160
С	1.504738755604	-1.861343475217	2.387325413798
С	1.059016569046	-2.778976127488	0.201981537635
С	2.103641755689	-3.065195973225	2.773154735579
Н	1.447083628445	-1.036238064216	3.094129656940
С	1.655567133657	-3.981443961426	0.583603625530
Н	0.656640977205	-2.658734599153	-0.802094141428
С	2.180433535366	-4.129668224241	1.872437881748
Н	2.507820280627	-3.169800008372	3.776969813351

Н	1 710445121121	-4 805448641240	-0 123633458981
11	1./10/10/12/12/1	1.005110011210	0.120000100001
Н	2.643903511/15	-5.066584932806	2.1/02645/2456
С	0.472978737641	1.510011349966	-1.005674580821
	0.1/2/10/3/011	1.105022201701	1.00507 1500021
Н	-0.499926044252	1.185832281781	-1.38/1185243/8
Н	0 302875877080	2 310412863519	-0 275019508278
11 0	1.266040526516	2.510112005515	0.275015500270
0	1.266840536516	2.0142242/3065	-2.101286413259
Н	1 693624175866	0.698856617891	-3 119764330960
0	1.050125505455	0.000000017001	2 (02001 (42070
0	1.850125595455	-0.111683969830	-3.683081642878
р	0 691786009341	3 344745677400	-2 973850273712
1	0.091700009911	0.5511715077100	2.979090279712
S	0.394789972265	-0.751230114915	-4.078043057005
0	0 755531483836	-1 789160704991	-5 058664057733
0	0.755551105050	1.705100701551	1.650061057755
0	-0.385836664711	0.385391821584	-4.659064357712
0	-0 208011124078	-1 263240823827	-2 828576100217
0	-0.200011124070	-1.205240025027	-2.020370100217
0	-0.773237458724	3.489834725196	-2.669960723866
0	1 653581134280	4 478188136610	-2 766223029001
0	1.055501154200	4.470100150010	-2.700223029001
0	0.938410069444	2.770385453542	-4.479494620830
п	0 407845403330	1 047401503588	1 620787875535
11	0.407843493339	1.94/401505588	-4.0297878735555
Intla			
11112a			
Electronic	Energy = -1692.658	822584 / Gibbs Free	Energy =-1692.49066393
C	2 100661276615	0.026200121022	0 127112002002
C	2.4070043/0043	0.930208131933	0.12/112003992
Н	2.822201053035	0.489520904739	-0.782132290669
11	2 070042595566	0 (42595(71200	0.05550402(040
н	3.070042585566	0.0433830/1309	0.955504026949
С	0.992146943419	0.379624701536	0.351148685612
TT I	0.250271971247	0.75247(4200(2	0 45(500007575
н	0.3502/18/124/	0./554/6429965	-0.450522987575
Н	0.580816685916	0.765458320362	1.293672089372
C	0.0450524(4211	1 122720105240	0.25200522(252
C	0.945053464211	-1.133/28105348	0.352095326352
С	0 566780372646	-1 855570943573	1 491781714408
c	1.200606000055	1.040052656040	0.0000000000000
C	1.289696808955	-1.848953656048	-0.808906849328
C	0 526747357066	-3 253897449007	1 480648931727
	0.5207 17557000	1.21(000100505	1.100010931727
Н	0.298200439177	-1.316890120505	2.398430826861
C	1 250935101392	-3 244133079403	-0 822046973337
	1.250755101572	-5.244155079405	-0.0220+0773337
Н	1.606516362866	-1.304045752458	-1.694698541727
C	0 867663530220	-3 05/1122673700	0 321605698506
	0.007003337220	-3.734122073777	0.521005070500
Н	0.229169755636	-3.793088706159	2.376842935054
п	1 520500026604	3 781150032750	1 728617380312
п	1.520500920004	-5.781150052750	-1./2001/300312
Н	0.836946113110	-5.040669140178	0.308262027856
C	2 421045007506	2 450409611021	0.042946292710
C	2.421943097306	2.439498011921	-0.043840382/10
Н	1.608552679045	2.749978560162	-0.721785076270
11	2 220001000220	2.0407157((242	0.000005500(12
п	2.238881889229	2.949/13/00243	0.922883302013
0	3.671500107588	2.941995174474	-0.530131430179
TT I	2 (72400907(24	2 742966104249	1 40/077451010
н	3.0/240089/624	2./42800104348	-1.4908//451818
0	1.266704805887	1.027723040978	-2.903386865768
n	2 822255252050	1 042022719065	2 5((05577(041
P	2.823233333930	1.043032/18965	-3.3008337/0841
S	0.030772031454	2.064659588510	-3.299200596542
0	1 125221271790	1 2(0152020274	2 721(002(0)(5)
0	-1.1555512/1/89	1.309132029274	-2./31088300030
0	0.047274053862	2.102477209648	-4.793094134109
0	0 222006645207	2 260597211007	2 697206910071
0	0.332900043307	3.30938/31100/	-2.08/2908100/1
0	3.476443906117	2.365247840863	-3.241270677236
0	2 444008027224	0.244700577426	2 124244007222
0	5.444998957224	-0.244/995//436	-3.124244907222
0	2.471183186450	0.956585101552	-5.157207635554
U U	1 (00254104505	1 417220(20002	5 212120400207
Н	1.609254184595	1.41/330639093	-5.313139489287
TC3			
152			
Electronic	Energy = -1692.580	04377 / Gibbs Free I	Energy = -1692.4185942
C	1 /20// /0000000	0.020006200004	0 201672 407250
U	1.430048908828	-0.039806288894	-0.3010/248/339
Н	2.228105474753	-0.542013940139	-0.864043647992
11	1 000921427599	0.405110521702	0.509525047220
н	1.909821427588	0.495118521689	0.528535047330
С	0.446476913759	-1.088674909464	0.250368595604
л П	0.024022552622	1 (11020525507	0.502501522462
н	-0.024922553632	-1.011038535507	-0.392391322463
Н	-0.357743509586	-0.577153550616	0.795351927978
	1 107000014047	2 000 402 (101 (0	1 150770001107
U	1.12/08801434/	-2.088482618160	1.158//092110/
С	1.158639043422	-1.897403080232	2.547461770163
č	1.707540(1100)	2 205107440102	0.024(05125112
C	1./8/542611336	-5.205197449182	0.624695125112

С	1.829600796518	-2.795550178369	3.381587432889
Н	0.650406762672	-1.037003934345	2.977795735642
С	2.460043825080	-4.105978706963	1.453342442075
Н	1.771629995553	-3.367984025317	-0.450961992403
С	2.483727615369	-3.903786518328	2.836658497168
Н	1.838958567916	-2.631035810734	4.456119611959
Н	2.962777220823	-4.966862788303	1.019945762675
Н	3.004499764388	-4.604912628073	3.483417988294
С	0.743829221346	0.965050989644	-1.227200782706
Н	0.264346828855	0.445573476303	-2.066387913192
Н	-0.026332419395	1.524409422677	-0.681197940078
0	1.674837417329	1.913199945586	-1.729924023457
Н	2.296201686806	1.401375524566	-2.395719393989
0	0.800018615895	1.307136765367	-4.292970912515
Р	2.212414607226	0.794018989712	-4.676796197362
S	0.558697236411	3.544789023782	-3.089842090211
0	-0.619264752710	3.477468249303	-3.961438023025
0	1.836545679628	3.987494638735	-3.669302852048
0	0.233554559699	4.043294518867	-1.746049400160
0	3.092620628159	0.667473517147	-3.402577214938
0	2.228078600710	-0.412792455679	-5.593318235069
0	2.889016888246	2.041205176967	-5.569064174363
Н	2.651577410686	2.862445724028	-5.098575299024

Int2b

Electroni	c Energy = -1692.660	039709 / Gibbs Free	Energy =-1692.49439445
С	1.151964613693	0.548082811513	-0.391055023355
Н	1.784862618824	0.082857979663	-1.150074536287
Н	1.801726367506	0.991625752391	0.373527343363
С	0.248442535345	-0.528490006760	0.238503988550
Н	-0.468542426134	-0.867579383678	-0.521515940218
Н	-0.338562816430	-0.096613790552	1.058427829143
С	1.045833600705	-1.715489755429	0.734426024299
С	1.234243203800	-1.955337350434	2.101093281601
С	1.641017588991	-2.591001510604	-0.188492859433
С	1.995440592904	-3.043446946289	2.540125901367
Н	0.780118890662	-1.285547709516	2.828192325547
С	2.400970560386	-3.677996801623	0.244898454959
Н	1.505431716945	-2.408750054023	-1.252497243520
С	2.580861377628	-3.908722569684	1.613242432756
Н	2.128716065106	-3.214233291848	3.605426958266
Н	2.851722613738	-4.346807887577	-0.483937765782
Н	3.171170731339	-4.755998653356	1.952031986873
С	0.330288003799	1.624017083698	-1.080792020368
Н	-0.321157145395	1.173626007960	-1.831046863507
Н	-0.270576985075	2.203614208312	-0.368846940730
0	1.262109849097	2.512756172292	-1.750088459008
Н	2.644372405595	1.578138580357	-2.569889205893
0	1.081770751441	-0.305842043177	-3.573829080080
Р	2.370912868253	0.166902422081	-4.203038102964
S	0.617745533711	3.679434555352	-2.771440147918
0	-0.700669424696	3.177630005321	-3.195185688087
0	1.638808393234	3.701006827603	-3.850842515665
0	0.586684174701	4.910168127885	-1.963863629056
0	3.249022960900	0.998997195559	-3.080924506990
0	3.304553804364	-0.814509812939	-4.855551490794
0	2.048624003801	1.351199387168	-5.303950291616
Н	1.840664268971	2.196139348858	-4.841043745764
Int3b			

Electronic	Energy = -2602.86	136214 / Gibbs Free	Energy =-2602.6248202
С	-4.714653025801	-2.791679147741	4.231045222116
Н	-4.055849213518	-3.370673775628	4.891485174453
Н	-4.379123259148	-1.747297595645	4.281967780116

С	-6.169047215689	-2.895403628589	4.728871360629
Н	-6.488002929517	-3.945241226826	4.685191197711
Н	-6.822429233646	-2.338615057728	4.043721391648
C	-6.336160600825	-2.366280905265	6.135824201259
Č	-6 634480124925	-1 014821311172	6 363835838781
C	-6 147841300760	-3 202526145020	7 246010840424
C C	6 742018705070	0.511514805244	7.65248484004
U U	6 785250221501	0.352702000100	5 512587402210
П	-0.765250521501	-0.332/93099100	9.54(000018022
U U	-0.233113000430	-2./0499410885/	8.540990018055
Н	-5.9169926/5664	-4.253/40/65225	/.086549138654
C	-6.553492509829	-1.356033740830	8./600523/3514
Н	-6.978764267808	0.538410256502	7.816957243471
Н	-6.109089115322	-3.370987074919	9.393665339509
Н	-6.640495077750	-0.967479207966	9.771241007150
С	-4.547911260566	-3.302335152734	2.798302710571
Н	-4.891587070317	-4.344756091570	2.727928780362
Н	-5.177534282750	-2.712611705294	2.118276773513
0	-3.212887570387	-3.177139223218	2.332015939848
Ĥ	-2 673163237824	-3 835241178419	2 831101185236
C	-1 219656539380	-8 200806528689	2 137683657224
C C	0.008302470426	8 816710705302	2.137003037224
0	0.090392470420	-0.010/19/03392	1 522025651665
0	0.80//030/3348	-9.299039/303/2	1.555025051005
Н	0.528514851185	-9.008120350500	0.008112201315
0	0.4/025/851492	-8.93/129285109	3.0/993149/001
0 ~	-1./62/24318865	-7.332108237679	3.033162928103
С	-1.899814547723	-8.603545229801	1.055697955603
Н	-2.865834116022	-8.173530073703	0.827319608828
Н	-1.529619886922	-9.388671216577	0.405752164146
Р	-0.849682958368	-6.038910929193	3.644383042256
0	0.326337765592	-5.860949472532	2.733136956549
0	-1.832052278449	-4.939814176444	3.931729601527
0	-0.423789472297	-6.677825358608	5.085004844236
Н	-0.035546631639	-7.561719399400	4.906659187494
Р	-4.883649965199	-7.377983261904	-1.713633049527
S	-3 493822251651	-5 324202930513	-0 142362727193
0	-1 71853/820628	-8.420758110102	-2 7/3160168338
0	5 /2108511702/	7 067215228156	0.225527812056
U U	5 101060102001	7 271442257405	0 422646202655
П	-3.101900123291	-/.3/144333/493	1.026570010462
0	-4.100218030394	-5.988030267425	1.0265/0019463
0	-2.0/35/192/544	-5.021686062622	-0.0812/561/695
0	-4.365216448467	-4.316395608394	-0.785611729097
0	-3.504003709332	-6.620996805550	-1.326061437512
0	-5.876524726190	-6.197703569543	-2.156834399373
Н	-5.585417354777	-5.329219373040	-1.784501462335
-			
TS3			
Electronic	Energy = -2602.849	901783 / Gibbs Free	Energy =-2602.60982884
С	-4.954361440444	-3.194750793064	4.206215991623
Н	-4.135514913252	-3.487600934638	4.874567022726
Н	-4.754562784664	-2.166628134980	3.880012977831
С	-6.292191411370	-3.250753398660	4.968842445295
Ĥ	-6 478777377760	-4 284152778213	5 289063357191
н	-7 107727777858	-2 977540057806	4 286911500111
C	-6 20720/2///206	-2 33153/178732	6 170/77881685
č	-6 776158664719	-1.0177/2016611	6 060285684776
C	-0.//0130004/18	-1.01//42010011	7 400072522405
C	-3.///34804/890	-2./39030809321	7.4009/3333493
U	-0./3948811//31	-0.153803349938	/.100/30/0904/
H	-7.183423128709	-0.6/0/98135927	5.1219/1319812
C	-5.738197128934	-1.900219301545	8.501209480903
Н	-5.402984627350	-3.776715202391	7.495637375668

-6.219888832210 -0.592738458126 -7.119204573114 0.860010925172

-5.335000664839 -2.252118680254

-6.192859600054 0.076609005314

C H

H H

8.387642953052 7.068871643939

9.447337337424

9.243323352213

С	-4.952389486644	-4.114862689086	2.990532995378	
Н	-5.143609203642	-5.155170579764	3.281894710510	
н	-5 718372384781	-3 816198815787	2 268175741187	
0	-3 695311266560	-4 031040703212	2 300050649124	
U U	2 004227724740	4 465027074206	2.500050047124	
П	-2.99423//34/49	-4.40302/9/4290	2.898344439034	
Č	-0.9/268640/04/	-8.084431011482	1.850101/122/6	
С	0.266197185151	-8.741239724292	2.393459635967	
0	1.211011666368	-9.108985586760	1.511498194296	
Н	1.028280945500	-8.724403772546	0.636020190256	
0	0.433365973117	-8.987901481007	3.577841981182	
0	-1.699676434384	-7.348490575576	2.739204272248	
С	-1 428899182505	-8 341184926553	0.616848594727	
н	-2 3/1803010006	-7 802144600532	0.246386666888	
11	-2.341893919000	-7.092144000332	0.240380000888	
н	-0.9129/3180949	-9.03268915/501	-0.041115291122	
Р	-0.988535578770	-6.151345299094	3.68601/93/929	
0	0.308350573835	-5.760340538120	3.050111574155	
0	-2.081793921284	-5.148546190966	3.968067832733	
0	-0.783506048849	-6.978166398333	5.075085015021	
Н	-0.330458876081	-7.819610366028	4.846500641384	
р	-4 702733647546	-7 212736422576	-1 961669377384	
S	3 622565805477	5 22010//70027	0 472546800211	
3	-3.022303693477	7.00(4(0200075	2 2201 (0888002	
0	-4.004/21002101	-/.9964602000/5	-3.230109888903	
0	-5.221091141320	-8.196051151446	-0./6046201086/	
Н	-4.989045686758	-7.779222964950	0.094745584807	
0	-4.215111312369	-6.379047304019	1.159623284334	
0	-2.186722242027	-5.036214780484	0.426654711344	
0	-4.524940674686	-4.302222089492	-0.214060932766	
0	-3.443755188858	-6.500290988836	-1.452860810924	
Ō	-5 876403357970	-6 071111480109	-2.063657921761	
U U	5 607563402570	5 202154840458	1 533667030068	
11	-5.007505402570	-5.275154040450	-1.555007050000	
1.42				
Int3c				
Electronic	Energy = -2602.873	333713 / Gibbs Free	Energy =-2602.6350559	95
Electronic C	Energy = -2602.873 -5.075282817281	333713 / Gibbs Free -3.220402571873	Energy =-2602.6350559 4.165151571302	95
Electronic C H	Energy = -2602.873 -5.075282817281 -4.331942737097	333713 / Gibbs Free -3.220402571873 -3.649904009295	Energy =-2602.6350559 4.165151571302 4.847799264388	95
Electronic C H H	Energy = -2602.873 -5.075282817281 -4.331942737097 -4.725413844831	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652	Energy =-2602.6350555 4.165151571302 4.847799264388 3.893901161515	95
Int3c Electronic C H H C	Energy = -2602.87 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135	Energy =-2602.6350555 4.165151571302 4.847799264388 3.893901161515 4.881130645563	95
Int3c Electronic C H H C H	Energy = -2602.873 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6 782200131888	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4 131800371970	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137734718370	95
Int3c Electronic C H H C H H	Energy = -2602.873 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 7 176369403286	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 2.607358962634	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190003169802	95
Int3c Electronic C H H C H H C	Energy = -2602.87 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 6.249876726440	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 2.277070200002	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131225022041	95
Int3c Electronic C H H C H H C C	Energy = -2602.87 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.27407029000	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.07155444922	95
Electronic C H H C H H C C C C	Energy = -2602.87 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440 -6.546468339576	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623	95
Electronic C H H C H H C C C C C	Energy = -2602.873 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440 -6.546468339576 -6.016998279399	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484	95
Electronic C H H C H H C C C C C C	Energy = -2602.873 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440 -6.546468339576 -6.016998279399 -6.417272862967	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393 -0.095095070663	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484 7.215128053982	95
IntSc Electronic C H H C C C C C C C H	Energy = -2602.873 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440 -6.546468339576 -6.016998279399 -6.417272862967 -6.804819768643	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393 -0.095095070663 -0.426098652561	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484 7.215128053982 5.120822672426	95
Electronic C H H C H H C C C C C C H C C C H C C	Energy = -2602.873 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440 -6.546468339576 -6.016998279399 -6.417272862967 -6.804819768643 -5.886811406230	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393 -0.095095070663 -0.426098652561 -2.062632788737	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484 7.215128053982 5.120822672426 8.512223290557	95
IntSc Electronic C H H C C C C C C C H C C H H C H	Energy = -2602.87 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440 -6.546468339576 -6.016998279399 -6.417272862967 -6.804819768643 -5.886811406230 -5.860941030361	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393 -0.095095070663 -0.426098652561 -2.062632788737 -3.925028686257	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484 7.215128053982 5.120822672426 8.512223290557 7.427405815715	95
IntSc Electronic C H H C C C C C C C H C C H C C H C C H C C H C C H C C H C H C H C H C H C H C H C H C H C C H C C H C C H C C H C C H C C H C	Energy = -2602.87: -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440 -6.546468339576 -6.016998279399 -6.417272862967 -6.804819768643 -5.886811406230 -5.860941030361 -6.086613397677	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393 -0.095095070663 -0.426098652561 -2.062632788737 -3.925028686257 -0.681069443634	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484 7.215128053982 5.120822672426 8.512223290557 7.427405815715 8.440321713924	95
IntSc Electronic C H H C C C C C C C H C C H C C H H C H C H H C H C H H H H C H	Energy = -2602.87: -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440 -6.546468339576 -6.016998279399 -6.417272862967 -6.804819768643 -5.886811406230 -5.860941030361 -6.086613397677	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393 -0.095095070663 -0.426098652561 -2.062632788737 -3.925028686257 -0.681069443634 0.077983846425	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484 7.215128053982 5.120822672426 8.512223290557 7.427405815715 8.440321713924 7.140702581230	95
IntSc Electronic C H H C H H C C C C C C H C C H C H C	Energy = -2602.873 - 5.075282817281 - 4.331942737097 - 4.725413844831 - 6.436581830637 - 6.782200131888 - 7.176369403286 - 6.348876726440 - 6.546468339576 - 6.016998279399 - 6.417272862967 - 6.804819768643 - 5.886811406230 - 5.860941030361 - 6.086613397677 - 6.577634157109	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393 -0.095095070663 -0.426098652561 -2.062632788737 -3.925028686257 -0.681069443634 0.977983846425	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484 7.215128053982 5.120822672426 8.512223290557 7.427405815715 8.440321713924 7.149792581239 0.461039022342	95
IntSc Electronic C H H C C C C C C C H C C C C H C H C	Energy = -2602.873 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440 -6.546468339576 -6.016998279399 -6.417272862967 -6.804819768643 -5.886811406230 -5.860941030361 -6.086613397677 -6.577634157109 -5.632486827128	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393 -0.095095070663 -0.426098652561 -2.062632788737 -3.925028686257 -0.681069443634 0.977983846425 -2.527952560491	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484 7.215128053982 5.120822672426 8.512223290557 7.427405815715 8.440321713924 7.149792581239 9.461038932343	95
IntSc Electronic C H H C C C C C C C C C C H C C H C H	Energy = -2602.873 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440 -6.546468339576 -6.016998279399 -6.417272862967 -6.804819768643 -5.886811406230 -5.860941030361 -6.086613397677 -6.577634157109 -5.632486827128 -5.988137299510	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393 -0.095095070663 -0.426098652561 -2.062632788737 -3.925028686257 -0.681069443634 0.977983846425 -2.527952560491 -0.067017507603	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484 7.215128053982 5.120822672426 8.512223290557 7.427405815715 8.440321713924 7.149792581239 9.461038932343 9.331474248124	95
IntSc Electronic C H H C C C C C C C C H C C C C H H C C H H C C H C H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C C H H H C C C H H H C C C H H H C C C H H H C C C H H H C C C C H H H C C C C H H H C C C C C C C C C H H H C	Energy = -2602.873 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440 -6.546468339576 -6.016998279399 -6.417272862967 -6.804819768643 -5.886811406230 -5.860941030361 -6.086613397677 -6.577634157109 -5.632486827128 -5.988137299510 -5.161861128167	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393 -0.095095070663 -0.426098652561 -2.062632788737 -3.925028686257 -0.681069443634 0.977983846425 -2.527952560491 -0.067017507603 -4.076965464869	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484 7.215128053982 5.120822672426 8.512223290557 7.427405815715 8.440321713924 7.149792581239 9.461038932343 9.331474248124 2.912153570182	95
IntSc Electronic C H H C C C C C C C C H C C H C C H H C C H H C C H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H H C C H H H H C C H H H H C C H H H H C C H H H H C C H H H H C C H H H H C C H H H H C C C H H H H C C C H H H H C C C H H H H C C C C H H H H H H H H C C C C H	Energy = -2602.873 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440 -6.546468339576 -6.016998279399 -6.417272862967 -6.804819768643 -5.886811406230 -5.860941030361 -6.086613397677 -6.577634157109 -5.632486827128 -5.988137299510 -5.161861128167 -5.461324416757	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393 -0.095095070663 -0.426098652561 -2.062632788737 -3.925028686257 -0.681069443634 0.977983846425 -2.527952560491 -0.067017507603 -4.076965464869 -5.104429330945	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484 7.215128053982 5.120822672426 8.512223290557 7.427405815715 8.440321713924 7.149792581239 9.461038932343 9.331474248124 2.912153570182 3.143214979293	95
IntSc Electronic C H H C C C C C C C H C C H H C H H C H H C H H C H H C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C C H H H C C H H H C C H H H C C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C C H H H C C C H H H C C H H H H C C C H H H H C C C H H H H C C C H H H H C C H H H H C C H H H H C C C H H H H C C C H H H C C C H H H H C C C C H H H H C C H H H H C C C H H H H C C C H H H H C C C C H H H H C C C C C H H H H C C C H H H H C C C C C H H H H C C C C C H H H H C C C C C H H H H H C C C C C H H H H C C C C C H H H H C	Energy = -2602.873 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440 -6.546468339576 -6.016998279399 -6.417272862967 -6.804819768643 -5.886811406230 -5.860941030361 -6.086613397677 -6.577634157109 -5.632486827128 -5.98813729510 -5.161861128167 -5.461324416757 -5.864377524677	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393 -0.095095070663 -0.426098652561 -2.062632788737 -3.925028686257 -0.681069443634 0.977983846425 -2.527952560491 -0.067017507603 -4.076965464869 -5.104429330945 -3.654914342080	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484 7.215128053982 5.120822672426 8.512223290557 7.427405815715 8.440321713924 7.149792581239 9.461038932343 9.331474248124 2.912153570182 3.143214979293 2.185458267879	95
IntSc Electronic C H H C H H C C C C C C H C C C H C H	Energy = -2602.873 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440 -6.546468339576 -6.016998279399 -6.417272862967 -6.804819768643 -5.866811406230 -5.860941030361 -6.086613397677 -6.577634157109 -5.632486827128 -5.988137299510 -5.161861128167 -5.461324416757 -5.864377524677 -3.839503745235	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393 -0.095095070663 -0.426098652561 -2.062632788737 -3.925028686257 -0.681069443634 0.977983846425 -2.527952560491 -0.067017507603 -4.076965464869 -5.104429330945 -3.654914342080 -4.098318773882	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484 7.215128053982 5.120822672426 8.512223290557 7.427405815715 8.440321713924 7.149792581239 9.461038932343 9.331474248124 2.912153570182 3.143214979293 2.185458267879 2.311403751315	95
IntSc Electronic C H H C H H C C C C C C H C C H H C H H C H H C H H C H H C H H C H H C H H C H H H C H H H C C H H H C H H H C C H H H H C C H H H C C H H H C C H H H H C C H H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H H C C H H H C C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H H C C H H H H C C H H H C C H H H H C C H H H H C C H	Energy = -2602.873 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440 -6.546468339576 -6.016998279399 -6.417272862967 -6.804819768643 -5.886811406230 -5.860941030361 -6.086613397677 -6.577634157109 -5.632486827128 -5.988137299510 -5.161861128167 -5.461324416757 -5.864377524677 -5.864377524677 -3.839503745235 -2.685767803949	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393 -0.095095070663 -0.426098652561 -2.062632788737 -3.925028686257 -0.681069443634 0.977983846425 -2.527952560491 -0.067017507603 -4.076965464869 -5.104429330945 -3.654914342080 -4.098318773882 -4.797415951287	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484 7.215128053982 5.120822672426 8.512223290557 7.427405815715 8.440321713924 7.149792581239 9.461038932343 9.331474248124 2.912153570182 3.143214979293 2.185458267879 2.311403751315 3.376994683208	95
IntSc Electronic C H H C C C C C C C C C C C H C C C C	Energy = -2602.873 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -6.348876726440 -6.546468339576 -6.016998279399 -6.417272862967 -6.804819768643 -5.886811406230 -5.860941030361 -6.086613397677 -6.577634157109 -5.632486827128 -5.988137299510 -5.161861128167 -5.461324416757 -5.864377524677 -3.839503745235 -2.685767803949 -0.934496378289	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393 -0.95095070663 -0.426098652561 -2.062632788737 -3.925028686257 -0.681069443634 0.977983846425 -2.527952560491 -0.067017507603 -4.076965464869 -5.104429330945 -3.654914342080 -4.098318773882 -4.797415951287 -8.02236197852	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484 7.215128053982 5.120822672426 8.512223290557 7.427405815715 8.440321713924 7.149792581239 9.461038932343 9.331474248124 2.912153570182 3.143214979293 2.185458267879 2.311403751315 3.376994683208 1.771718445904	95
IntSc Electronic C H H C C C C C C C C C C C C C H H C C C C H H C C C H H H C C C H H H C C C H H H C C C H H H C C C H H H C C C C C C H H H C C C C C H H H C C C C C H H H C C C C C C C H H H C	Energy = -2602.873 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440 -6.546468339576 -6.016998279399 -6.417272862967 -6.804819768643 -5.886811406230 -5.860941030361 -6.086613397677 -6.577634157109 -5.632486827128 -5.988137299510 -5.161861128167 -5.461324416757 -5.864377524677 -3.839503745235 -2.685767803949 -0.934496378289 -0.934496378289 -0.934496378289	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393 -0.095095070663 -0.426098652561 -2.062632788737 -3.925028686257 -0.681069443634 0.977983846425 -2.527952560491 -0.067017507603 -4.076965464869 -5.104429330945 -3.654914342080 -4.098318773882 -4.797415951287 -8.022236197852 -8.7852703881	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484 7.215128053982 5.120822672426 8.512223290557 7.427405815715 8.440321713924 7.149792581239 9.461038932343 9.331474248124 2.912153570182 3.143214979293 2.185458267879 2.311403751315 3.376994683208 1.771718445904 2.30452023623	95
IntSc Electronic C H H C C C C C C C C C C H H C C C C	Energy = -2602.873 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440 -6.546468339576 -6.016998279399 -6.417272862967 -6.804819768643 -5.886811406230 -5.860941030361 -6.086613397677 -6.577634157109 -5.632486827128 -5.988137299510 -5.161861128167 -5.461324416757 -5.864377524677 -3.839503745235 -2.685767803949 -0.934496378289 0.239610961794	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393 -0.095095070663 -0.426098652561 -2.062632788737 -3.925028686257 -0.681069443634 0.977983846425 -2.527952560491 -0.067017507603 -4.076965464869 -5.104429330945 -3.654914342080 -4.098318773882 -4.797415951287 -8.022236197852 -8.785952703881 0.4122261	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484 7.215128053982 5.120822672426 8.512223290557 7.427405815715 8.440321713924 7.149792581239 9.461038932343 9.331474248124 2.912153570182 3.143214979293 2.185458267879 2.311403751315 3.376994683208 1.771718445904 2.304252033623	95
IntSc Electronic C H H C C C C C C C C C H H C C C C H H C C H H C C H H C C H H C C H H C C H H C C H H C C C H H C C C C C H H C C C C C C H H C C C C C C H H C	Energy = -2602.873 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440 -6.546468339576 -6.016998279399 -6.417272862967 -6.804819768643 -5.886811406230 -5.860941030361 -6.086613397677 -6.577634157109 -5.632486827128 -5.988137299510 -5.161861128167 -5.461324416757 -5.864377524677 -3.839503745235 -2.685767803949 -0.934496378289 0.239610961794 1.042986432955	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393 -0.095095070663 -0.426098652561 -2.062632788737 -3.925028686257 -0.681069443634 0.977983846425 -2.527952560491 -0.067017507603 -4.076965464869 -5.104429330945 -3.654914342080 -4.098318773882 -4.797415951287 -8.022236197852 -8.785952703881 -9.418361613269	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484 7.215128053982 5.120822672426 8.512223290557 7.427405815715 8.440321713924 7.149792581239 9.461038932343 9.331474248124 2.912153570182 3.143214979293 2.185458267879 2.311403751315 3.376994683208 1.771718445904 2.304252033623 1.439836602696	95
IntSc Electronic C H H C C C C C C C H C C C C H C C C H H C C H H C C H H C C H H C C H H C C H H C C C H H C C C H H C C C C H H C C C C C H H C C C C C H H C C C C C C C C H H C	Energy = -2602.873 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440 -6.546468339576 -6.016998279399 -6.417272862967 -6.804819768643 -5.866811406230 -5.860941030361 -6.086613397677 -6.577634157109 -5.632486827128 -5.988137299510 -5.161861128167 -5.464327524677 -3.839503745235 -2.685767803949 -0.934496378289 0.239610961794 1.042986432955 0.824683002931	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393 -0.095095070663 -0.426098652561 -2.062632788737 -3.925028686257 -0.681069443634 0.977983846425 -2.527952560491 -0.067017507603 -4.076965464869 -5.104429330945 -3.654914342080 -4.098318773882 -4.797415951287 -8.022236197852 -8.785952703881 -9.418361613269 -9.207078636192	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484 7.215128053982 5.120822672426 8.512223290557 7.427405815715 8.440321713924 7.149792581239 9.461038932343 9.331474248124 2.912153570182 3.143214979293 2.185458267879 2.311403751315 3.376994683208 1.771718445904 2.304252033623 1.439836602696 0.516014318560	95
IntSc Electronic C H H C C C C C C C C C C H C C C C H C C C C H H C C C C C H H C C H H C C C H H C C C H H C C C H H C C C C H H C C C C C H H C C C C H H C C C C H H C C C C C C C H H C	Energy = -2602.873 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440 -6.546468339576 -6.016998279399 -6.417272862967 -6.804819768643 -5.886811406230 -5.860941030361 -6.086613397677 -6.577634157109 -5.632486827128 -5.988137299510 -5.161861128167 -5.461324416757 -5.864377524677 -3.839503745235 -2.685767803949 -0.934496378289 0.239610961794 1.042986432955 0.824683002931 0.489269784582	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393 -0.095095070663 -0.426098652561 -2.062632788737 -3.925028686257 -0.681069443634 0.977983846425 -2.527952560491 -0.067017507603 -4.076965464869 -5.104429330945 -3.654914342080 -4.098318773882 -4.797415951287 -8.022236197852 -8.785952703881 -9.418361613269 -9.207078636192 -8.862147650448	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484 7.215128053982 5.120822672426 8.512223290557 7.427405815715 8.440321713924 7.149792581239 9.461038932343 9.331474248124 2.912153570182 3.143214979293 2.185458267879 2.311403751315 3.376994683208 1.771718445904 2.304252033623 1.439836602696 0.516014318560 3.499454819498	95
IntSc Electronic C H H C C C C C C C C H C C C C H H C C C C H H C C C C C H H C C C C H H C C C H H C C C H H C C C H H C C C H H C C C C H H C C C H H C C C H H C C C C H H C C C C H H C	Energy = -2602.873 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440 -6.546468339576 -6.016998279399 -6.417272862967 -6.804819768643 -5.886811406230 -5.860941030361 -6.086613397677 -6.577634157109 -5.632486827128 -5.988137299510 -5.161861128167 -5.461324416757 -5.864377524677 -5.864377524677 -3.839503745235 -2.685767803949 -0.934496378289 0.239610961794 1.042986432955 0.824683002931 0.489269784582 -1.635745512267	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393 -0.095095070663 -0.426098652561 -2.062632788737 -3.925028686257 -0.681069443634 0.977983846425 -2.527952560491 -0.067017507603 -4.076965464869 -5.104429330945 -3.654914342080 -4.098318773882 -4.797415951287 -8.022236197852 -8.785952703881 -9.418361613269 -9.207078636192 -8.862147650448 -7.315706638974	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484 7.215128053982 5.120822672426 8.512223290557 7.427405815715 8.440321713924 7.149792581239 9.461038932343 9.331474248124 2.912153570182 3.143214979293 2.185458267879 2.311403751315 3.376994683208 1.771718445904 2.304252033623 1.439836602696 0.516014318560 3.499454819498 2.730816785408	95
IntSc Electronic C H H C C C C C C C C C C H C C C C C	Energy = -2602.873 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440 -6.546468339576 -6.016998279399 -6.417272862967 -6.804819768643 -5.886811406230 -5.860941030361 -6.086613397677 -6.577634157109 -5.632486827128 -5.988137299510 -5.161861128167 -5.461324416757 -5.864377524677 -3.839503745235 -2.685767803949 -0.934496378289 0.239610961794 1.042986432955 0.824683002931 0.489269784582 -1.635745512267 -1.396373132974	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393 -0.095095070663 -0.426098652561 -2.062632788737 -3.925028686257 -0.681069443634 0.977983846425 -2.527952560491 -0.067017507603 -4.076965464869 -5.104429330945 -3.654914342080 -4.098318773882 -4.797415951287 -8.022236197852 -8.785952703881 -9.418361613269 -9.207078636192 -8.862147650448 -7.315706638974 -8.090777124376	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484 7.215128053982 5.120822672426 8.512223290557 7.427405815715 8.440321713924 7.149792581239 9.461038932343 9.331474248124 2.912153570182 3.143214979293 2.185458267879 2.311403751315 3.376994683208 1.771718445904 2.304252033623 1.439836602696 0.516014318560 3.499454819498 2.730816785408 0.520169555423	95
IntSc Electronic C H H C C C C C C C C C C C C C C C C	Energy = -2602.873 -5.075282817281 -4.331942737097 -4.725413844831 -6.436581830637 -6.782200131888 -7.176369403286 -6.348876726440 -6.546468339576 -6.016998279399 -6.417272862967 -6.804819768643 -5.886811406230 -5.860941030361 -6.086613397677 -6.577634157109 -5.632486827128 -5.988137299510 -5.161861128167 -5.461324416757 -5.864377524677 -3.839503745235 -2.685767803949 0.239610961794 1.042986432955 0.824683002931 0.489269784582 -1.635745512267 -1.396373132974 -2.261933833565	333713 / Gibbs Free -3.220402571873 -3.649904009295 -2.217333917652 -3.122254628135 -4.131800371970 -2.697358962634 -2.274070290002 -0.887157078424 -2.850106816393 -0.095095070663 -0.426098652561 -2.062632788737 -3.925028686257 -0.681069443634 0.977983846425 -2.527952560491 -0.067017507603 -4.076965464869 -5.104429330945 -3.654914342080 -4.098318773882 -4.797415951287 -8.022236197852 -8.785952703881 -9.418361613269 -9.207078636192 -8.862147650448 -7.315706638974 -8.090777124376 -7.526062921280	Energy =-2602.6350559 4.165151571302 4.847799264388 3.893901161515 4.881130645563 5.137234718370 4.190903169802 6.131235032041 6.071754648623 7.365772697484 7.215128053982 5.120822672426 8.512223290557 7.427405815715 8.440321713924 7.149792581239 9.461038932343 9.331474248124 2.912153570182 3.143214979293 2.185458267879 2.311403751315 3.376994683208 1.771718445904 2.304252033623 1.439836602696 0.516014318560 3.499454819498 2.730816785408 0.520169555423 0.197366714966	95

Р	-0.959176064664	-6.148134475875	3.656164240712
0	0 192432491792	-5 483071956410	3 005584839795
0	-2 20/13828/607	-5.2809/08/00/0	1 102265325159
0	0.661664001445	6 200212471492	5.020761850626
0	-0.001004991445	-0.0903124/1403	J.059/01859020
н	-0.204408425/39	-/./42038060514	4.810494859845
P	-4.60249/143/6/	-/.39113928844/	-2.100834204835
S	-3.690882767016	-4.983948409409	0.879730573777
0	-5.091083430638	-8.260539462068	-3.222841295575
0	-5.007134383311	-8.155783889015	-0.699515346678
Н	-4.726201613519	-7.592081376572	0.054332208359
0	-4.238182408337	-6.312562525600	1.233476008514
0	-2.242150578377	-4.907893414977	0.690511272663
0	-4.513618532803	-4.254871139822	-0.111873808539
0	-3.160860284854	-6.947542292673	-2.020350457892
0	-5.566740271514	-6.052717716653	-2.062766825196
Ĥ	-5 184631970721	-5 379318560711	-1 459093263971
11	5.101051970721	5.577510500711	1.159095205971
Int49			
Electronic	$E_{nergy} = -2035 110$	012456 / Gibbs Free	$E_{pergy} = -2034 89051447$
	0.2220/1856081	0 276416010447	0.044547101434
D	0.245000472701	1 240291020407	0.022772000080
P	-0.2439004/3/91	-1.349281930407	0.923773009089
5	-1.5118365241/3	1.212/53998604	0.08/9/44/0233
0	-2.746887308392	0.4396/8306985	0.276724132594
0	-0.9903/304826/	1.260212426309	-1.282887538069
0	-1.439646843094	2.477457796811	0.832525205297
0	0.962199336514	-1.772091431402	1.671103067683
0	-1.586872266443	-1.894087210782	1.591572716456
0	-0.251092503869	-1.810410800380	-0.587462051226
Н	-1.147062269698	-1.786986593600	-1.091370244768
С	-5.637029795223	1.850714550939	-0.481015999679
Н	-5.205096177415	0.851713823030	-0.370601491825
н	-5 133629588721	2 485390768015	0 259439727019
C	-7 149374932205	1 807965175401	-0 196362650554
н	-7 651821311807	1 236475022141	-0.988257505005
и П	7 555762224709	2 828087604727	0.241202429735
II C	7 450229569405	1 107452727467	1 148750620272
C	-/.439328308403	1.10/433/2/40/	1.148/300203/3
C	-/.20403/860904	1.891050866558	2.335924818012
C	-/.961/919/5555	-0.11/4/6/85928	1.24632/9/8236
С	-7.438078231272	1.306909674297	3.582210525148
Н	-6.815740128108	2.905803674627	2.279361726110
С	-8.197356482269	-0.708313545293	2.491098828642
Н	-8.172224209967	-0.676669227261	0.337866845175
С	-7.934751485562	0.002041514575	3.664837693320
Н	-7.234032327417	1.870041745475	4.489415723925
Н	-8.586886600350	-1.721969413419	2.541992909190
Н	-8.116799522659	-0.454184338749	4.634225919032
С	-5.310881126830	2.361125424574	-1.885450281311
Н	-5.862480025275	1.759709448183	-2.626912529712
н	-5 645481188573	3 401264069733	-1 997735550514
0	-3 917971762516	2 346140993299	-2 163802391729
н	-3 66572/111858	1 300732826152	-2 1007/0026123
II C	2 488220472088	1.305164813850	1 881/0757271/
0	-3.400223473000	-1.303104813830	2 572575002561
0	-+.0430/4093/30	-0.4230/03002/0	-2.3/23/3003301
U	-2.328/313830/6	-1./8/0033204/0	-2.023019140004
Н	-2.395/492202/3	-1.886940896988	1.0053/684512/
C	-4.36/686557695	-1.923125879473	-0./64015935686
C	-5.829972566313	-2.098217333211	-1.081692680999
Н	-5.936704255090	-2.800400321452	-1.918829914558
Н	-6.370260256945	-2.472709041929	-0.210057331618
Н	-6.246994358057	-1.145171721508	-1.417344861018
0	-3.911636766706	-2.256561625731	0.325159938234

TS4 Electronic Energy = -2035.08000571 / Gibbs Free Energy =-2034.85769271

0	0.153792810290	0.360727880760	0.874670911614
Р	0.277409778772	-1.150398926547	0.836307220880
S	-1.956615476741	1.408258524617	-0.552727782750
0	-2.632570398025	0.407962961280	0.256477915100
0	-1.126410162423	1.023182542776	-1.676888716671
0	-1.816483534864	2.749391330308	0.000599575027
0	1.546610858946	-1.775831574804	1.347509183309
0	-0.972891692162	-1.843072180578	1.650776077627
0	0.040382063714	-1.719430926467	-0.682624091101
Н	-0.867497641794	-1.568205323009	-1.037328254563
С	-5.480765763807	1.699885526190	-0.206259899262
Н	-5.734724381435	0.736933468263	-0.659699578398
Н	-4.842062757982	1.483273293420	0.654929268338
С	-6.765674739546	2.408147162897	0.257433291454
Н	-7.387448976869	2.639058312017	-0.618307318815
Н	-6.514856528787	3.365288877596	0.731391721920
С	-7.539718533853	1.535411976235	1.222104406062
С	-7.494506481327	1.759729097628	2.603969657632
С	-8.272853971260	0.436549205996	0.746683599874
С	-8.163538237835	0.910831640458	3.490755405622
Н	-6.929131681425	2.605794313853	2.988553155633
С	-8.940425143264	-0.415958157427	1.628074676438
Н	-8.319303414385	0.250707123343	-0.324491561228
С	-8.887516481778	-0.180958290913	3.005761583946
Η	-8.117620535884	1.103143249439	4.559625459351
Η	-9.503469787870	-1.260978555440	1.240210461038
Н	-9.407492040893	-0.842142922576	3.693709100792
С	-4.701834467267	2.518210417063	-1.229951201573
Η	-5.343616392752	2.811135320023	-2.069696862511
Η	-4.273396088930	3.423522661863	-0.792173689574
0	-3.581480160363	1.794529222541	-1.800256997224
Н	-3.880027961461	0.842350937280	-2.050017848282
С	-3.597479557873	-1.477815072027	-1.572835147967
0	-4.384351535668	-0.633574556430	-2.112576869351
0	-2.436879745261	-1.771846732899	-1.912982068545
Н	-1.804976984039	-1.860736599674	1.128836210505
С	-4.199880134746	-2.189479894642	-0.335669876690
С	-5.688782508641	-2.440117291418	-0.325554838114
Н	-6.055180044544	-2.710295580921	-1.320138193909
Н	-5.932062675099	-3.216622774545	0.404151231512
Н	-6.201168747541	-1.514304704977	-0.034458851964
0	-3.498661508487	-2.489044061509	0.622165470017
Int4b			
Electronic	Energy = -2035.112	275123 / Gibbs Free	Energy =-2034.889
0	0.557930394771	-0.252927600308	1.668925950892
Р	0.077286513047	-1.381996513312	0.791222936869

Electronic	Energy = -2035.112	275123 / Gibbs Free	Energy =-2034.88953015
0	0.557930394771	-0.252927600308	1.668925950892
Р	0.077286513047	-1.381996513312	0.791222936869
S	-2.356592307725	1.881056093410	-0.471385600967
0	-2.629615850308	1.098358875160	0.756256883765
0	-1.185561524007	1.409978522572	-1.236772063510
0	-2.455049164060	3.334860551542	-0.296099560624
0	0.631087720230	-2.770149582400	0.943378102427
0	-1.566085578287	-1.504016288366	0.933272663136
0	0.251844121411	-0.970535356659	-0.789725490043
Н	-0.277735918497	-0.169862355608	-0.996245523720
С	-5.664407415214	1.673254511947	-0.154060655835
Н	-5.787921416815	0.584510286050	-0.198246657991
Н	-5.102035759069	1.892199731452	0.759078312730
С	-7.047607468514	2.349460670946	-0.090844136188
Н	-7.600404745743	2.130806362388	-1.013676155708
Н	-6.914179999920	3.438279206066	-0.050727770337
С	-7.844506064269	1.884087534091	1.108064878501
С	-7.708694831654	2.522095652696	2.349344684902
С	-8.697636332466	0.775253249922	1.016347669690

С	-8.407165399804	2.066448672623	3.469831991113
Н	-7.050808752625	3.384290504612	2.435918569963
С	-9.398614301338	0.315364913182	2.133868152862
Н	-8.814266804449	0.270309035055	0.059703786776
С	-9.255496678080	0.960304703097	3.365549441791
Н	-8.291332546726	2.576517732522	4.422666396594
Н	-10.058006293657	-0.543853914935	2.041773644459
Η	-9.801817670983	0.605885886974	4.235504596211
С	-4.877457567625	2.146524343833	-1.371523585051
Η	-5.412965748998	1.917380793887	-2.297374752676
Η	-4.688767752930	3.223425042913	-1.334985184655
0	-3.603839474904	1.461833257360	-1.533689103652
Η	-3.845446823703	-0.288080687773	-1.318858757918
С	-3.021453837119	-2.000179771846	-1.494999576050
0	-3.936326894560	-1.200344123480	-0.939419430686
0	-2.328050414552	-1.710336027899	-2.446397423555
Η	-1.982453060876	-0.612972404290	0.911581434036
С	-2.959492079006	-3.382309596515	-0.801217276869
С	-3.888684412475	-3.629497041480	0.356382726588
Η	-4.926892412052	-3.441210076776	0.061395079284
Η	-3.774413873759	-4.657528107960	0.706679640131
Н	-3.641124707109	-2.925742298098	1.156874878070
0	-2.171830422401	-4.201802121651	-1.230706370377

Int5a

Electronic	c Energy = -1985.57	507104 / Gibbs Free	Energy =-1985.2096902
0	0.906494463368	-2.295142163051	-1.730168986440
Р	2.190409953906	-1.735882981090	-2.556000413650
S	-0.277312790154	-1.176382158971	-1.082988920468
0	-1.244242581229	-2.077005432957	-0.471488426339
0	-0.716478031575	-0.472084582685	-2.303810408198
0	0.549719177089	-0.377416516308	-0.154924610000
0	2.890868055917	-0.693052028239	-1.559168733525
0	3.103135425610	-2.797833876826	-3.017149682786
0	1.558367699798	-0.887779505867	-3.762389583166
Н	0.664995265677	-0.545666757541	-3.510518710156
С	-4.196734114293	2.690456495605	0.296572595561
Н	-4.092288601408	3.279040497183	-0.622256004442
Н	-4.853185095464	1.845119779919	0.053269784849
С	-4.845488969752	3.565226109375	1.384908784541
Н	-4.147799268632	4.368036604679	1.659123746165
Н	-5.004875623330	2.963125287589	2.288829063018
С	-6.153710825290	4.165705021576	0.921042600261
С	-7.370018573023	3.501567289259	1.133446853122
С	-6.170373429751	5.377514254294	0.213867856722
С	-8.570764734598	4.031405299533	0.654012181076
Н	-7.374508053310	2.561244428228	1.680686440400
С	-7.367596306190	5.911688674768	-0.267758463438
Н	-5.234970543318	5.906308416068	0.042167474621
С	-8.573752075807	5.239434512503	-0.048984966426
Н	-9.503613336294	3.502564914884	0.832352655729
Н	-7.359191513199	6.853508927598	-0.810543166156
Н	-9.506931315600	5.654378345981	-0.420408668094
С	-2.819013508442	2.158332923038	0.700521914096
Н	-2.187120125752	2.994579026165	1.046874614521
Н	-2.919594531604	1.469874001373	1.549361871334
0	-2.187544378021	1.438582485149	-0.344169040493
Н	-1.935030474595	2.085125457708	-1.052749789792
Ν	-1.537058076339	3.276759139690	-2.498601330662
С	-2.715918640575	3.172517920800	-3.388624366168
Н	-3.488383874200	3.838649791281	-2.994095671647
Н	-2.463098505599	3.549745323308	-4.396976279793
С	-3.304954578177	1.763027827854	-3.483851454489
Н	-3.553016948420	1.383393498608	-2.488959196179

н	-4 217216253249	1 790424700744	-4 090556411091
11	2 (15049792521)	1.0517(2110(21	2.049(1401(52)
п	-2.013948/83331	1.031/02110031	-3.948014910321
С	-1.247493091229	4.696026334423	-2.195857029809
Н	-0.244705886370	4.746923322263	-1.764987486598
н	1 21/716310777	5 279539155940	-3 134598652712
	-1.21+/10319///	5.252070(07702	-3.13+376032712
C	-2.215858606473	5.3529/960//92	-1.211191115401
Н	-2.204681469977	4.833730697920	-0.248380599885
Н	-1.911219549318	6.391692668682	-1.040462370596
н	3 2/7372002337	5 371003283468	1 576853517715
	0.255(225(1524	2.640776760525	-1.570055517715
C	-0.355622561534	2.640776760525	-3.126625615419
Н	-0.675938155059	1.676465271416	-3.521319367197
Н	-0.011293399970	3.247073805268	-3.984916287450
C	0 794219413642	2 385854607747	-2 151350331318
	1.5(1042172507	1 77(704041415	-2.151550551518
Н	1.5619431/359/	1.//6/94041415	-2.642000123287
Н	1.275684730953	3.308203572973	-1.809725178962
Н	0.432095270810	1.830995599065	-1.283376160818
н	2 240465057600	-0.3/31//161680	-0.900867396286
11	2.240403937099	-0.545144101080	-0.900807390280
TS5			
Electronic	$E_{nerov} = -1985.56^{\circ}$	328217 / Gibbs Free	$E_{nergy} = -1985 \ 19762162$
	0 772775204420	2 100021610421	1 227129946059
0	0.775775594420	-2.108021019451	-1.22/138840038
Р	2.116122144209	-1.773457081719	-1.880183429135
S	-0.874289631691	-0.395085708807	-1.198274880599
0	-1 776484815235	-1 295789028130	-0 506069599928
0	0.012025240601	0.2002020100	2 650122152215
0	-0.812033349091	-0.388382244480	-2.039133133213
0	0.064508906320	0.423911237091	-0.425704602648
0	2.699924207776	-0.438668296752	-1.124586609100
0	3 205339786417	-2 790697085633	-1 953844912069
Ő	1 700702854124	1 242129292127	2 401600706502
0	1./99/92834124	-1.24312828313/	-3.401009790392
Н	0.886481207069	-0.893256199766	-3.423810934638
С	-4.087856250794	2.351284969740	-0.105432724916
н	-4 024595501545	3 144462309387	-0 858560323678
11	4 922975621210	1 622625251710	0.466748614024
п	-4.8528/3021510	1.052055251/10	-0.400/48014024
С	-4.545727222060	2.963636495333	1.231412003182
Н	-3.769563236501	3.651507942282	1.592798434421
Н	-4 641374918541	2 170129695802	1 982857254409
C	5 856200180451	2.170129093002	1.002126662407
Č	-3.830299180431	5./04/95452255	1.083120002497
C	-/.0/669215380/	3.08/466521605	1.3886/206419/
С	-5.876022637227	5.014590783410	0.580699139150
С	-8.287158281969	3.759966159683	1.199279336104
ŭ	7 077678212535	2 071833000007	1 778421821025
	-7.077076212333	2.0/183300909/	1.770421031923
C	-/.0825/3040609	5.690584590734	0.388934948125
Н	-4.935811955840	5.506279433310	0.338938207280
С	-8.293970382738	5.064211316173	0.698068918904
й	-0 223//3520822	3 265600000570	1 445178638729
11	7.077401070410	6.70(2(402(8(2	0.000077527070
н	-/.0//4212/2412	0./00304920803	0.002077537279
Н	-9.234049520263	5.589374407645	0.552041910413
С	-2.738042580674	1.652948523247	0.012226562146
н	-1 972816353870	2 314303289340	0 437889306098
11	-1.972010355070	0.7710400000	0.45/00/5000/0
п	-2.815519669374	0.//1242222334	0.054458056269
0	-2.309054587277	1.181668165884	-1.276751215775
Н	-1.905933568318	1.970140454947	-1.839116165628
Ν	-1 454325620812	3 140147403132	-2 878883774816
C	2 716419029744	2 426502606270	2.609719204100
C	-2./10418028/44	5.450502000270	-3.008/18294199
Н	-3.419287935735	3.859814647746	-2.88/9353/8333
Н	-2.527123784233	4.213439946530	-4.368660425363
С	-3.369813506932	2.214886969419	-4.257984490737
ŭ	2 4714250500/52	1 207806259477	3 537251727461
11	-J.+/1433738703	1.37/0002384//	-5.557251727401
н	-4.370281530354	2.491333081817	-4.60/244902315
Н	-2.807835937631	1.849553796017	-5.121963912030
С	-0.900955999746	4.374919001941	-2.264241104953
й	0 022200823702	4 095348663720	-1 753330513653
11 TT	0.022207023/93	-1.0755+0005/29 5.005072265106	-1./33330313033
н	-0.62/820156938	5.0858/3365196	-3.002/30/331/6
С	-1.809222810028	5.069941598558	-1.249349674034

Н	-2.086806126167	4.396362215347	-0.433369675199
Н	-1.262633483319	5.911583109868	-0.810895236855
Н	-2.724389452019	5.471150385855	-1.694129718817
С	-0.459217220044	2.536641441824	-3.811600629097
Н	-0.870147842914	1.580496086626	-4.135427630874
Н	-0.363214525816	3.179672119563	-4.702700484005
С	0.920003503036	2.286939303558	-3.199181810515
Н	1.469231276802	1.578714548318	-3.827704063580
Н	1.517495171635	3.200474550542	-3.123567270302
Н	0.835181266335	1.842616008603	-2.205377784949
Н	1.947056025477	0.043189035927	-0.727229322242

Int5b

Electronic	$F_{\rm nergy} = -1985.609$) 14888 / Gibbs Free	$E_{\rm rerov} = -1985 2402816$
O	1 335517792693	-2 709438561452	-1 443505248142
P	2 252296988568	-1 718903949901	-2 119823321684
S	-1 299380458326	-0.195332277848	-1 007300043985
0	-2.030163507032	-1 304760172425	-0.396452873144
0	1 053452288505	-1.304/091/2423	2 450803800013
0	-1.055452288595	0.286148055164	0.220003002160
0	-0.13800331449/	0.260146933104	1 125220769229
0	2.42000//3209/	-0.410490360660	-1.155559706526
0	1 469024209040	1.092010965250	-2.383000337301
U U	1.408934308949	-1.083919803230	-3.420929013147
п	4 122972905710	-0.630211003013	-5.10158/015900
U U	-4.1228/2893/10	2.31//0//2/313	0.032424348430
п	-3.9/2/013133/3	3.082800093937	-0./1/9905085//
п	-4.880904143098	1.0203/9803830	-0.332904/10/38
C II	-4.025450418982	2.992205844074	1.342388444448
H	-3.84354/91586/	3.662453433674	1./2302/05/558
Н	-4./91098391459	2.228009612938	2.112018/50933
C	-5.89864/084899	3.773678447593	1.102484099615
С	-/.15396/483/62	3.203683758613	1.353/95861561
С	-5.845818276950	5.071924129861	0.573598137924
С	-8.328683331630	3.9116618/91//	1.086127780700
H	-7.210345222346	2.197768691903	1.764019625028
С	-7.016711361769	5.783224681977	0.303577097796
H	-4.877815266922	5.527907604861	0.375450062191
С	-8.263510872814	5.204280575820	0.559467006421
Н	-9.293191632091	3.454511737808	1.291299011862
Н	-6.956238894834	6.789765641656	-0.102183147711
Н	-9.175739566447	5.757396494946	0.352743834125
C	-2.824628467554	1.559447201356	0.278668609669
Н	-2.051733736085	2.186035910170	0.738222181766
Н	-2.992138373575	0.686684986632	0.917481158861
0	-2.349647615184	1.115776365940	-1.018667152492
Н	-1.483870945861	2.388113965403	-2.152671228003
Ν	-1.262641548626	3.032904437659	-2.933613637423
С	-2.540264227061	3.147418704692	-3.742818807898
Н	-3.281287614257	3.590976805009	-3.077559293108
Н	-2.334380105491	3.856091158604	-4.549415140805
С	-3.050867561346	1.809662812981	-4.268019339485
Н	-3.080736464921	1.061728288952	-3.471902504673
Н	-4.067281987199	1.960909690640	-4.643916784944
Н	-2.444237793297	1.425449340819	-5.091431219535
С	-0.844779378726	4.368107645045	-2.351917089276
Н	0.127942906072	4.210514603539	-1.888771578363
Н	-0.716111189991	5.043741749781	-3.201438271438
С	-1.811872409113	4.930942935057	-1.317670896033
Н	-1.938985667051	4.242908337255	-0.477016667456
Н	-1.379376010783	5.855053430832	-0.922457200356
Н	-2.792915030512	5.178509510988	-1.730289795349
С	-0.138415711707	2.393591031094	-3.731025889529
Н	-0.523220397332	1.431005960080	-4.057332310020
Н	0.022394077678	3.032701998930	-4.603129644282

С	1.131651579689	2.183724240916	-2.914474743322
ц Ц	1 73/136810212	1 /18078/03610	3 408000464708
11	1.737130019212	2.004709722022	2.01(0(1042070
н	1./2//31/06/46	3.094/88/33932	-2.816861942878
Н	0.902248747294	1.792375216590	-1.920193785948
Н	1.560136810774	-0.185143302671	-0.737166314106
T			
Int6a			
Electronic	Energy = -2260.442	276572 / Gibbs Free	Energy =-2260.25684432
С	-2.216647110223	-1.444476041189	-0.972851997617
н	-2 749647426928	-2 401307681984	-0 954755380352
ц Ц	2.7 19017 120920	0.000107052045	0.020082115211
п	-2.320009030104	-0.966167252045	0.020083113211
С	-2.848092747080	-0.539/045/341/	-2.04/82669063/
Н	-2.742768835765	-1.038375378658	-3.018665744730
Н	-2.286861849205	0.402835973550	-2.106147423838
C	-4 307107078008	-0.248581188207	1 774831624112
c	4 711 4 4 0 2 5 4 0 7	0.0(4207110(15	1 100457942056
Č	-4./1144402340/	0.90428/119013	-1.19943/842030
С	-5.288111263631	-1.212086544067	-2.05851/150/27
С	-6.057519307455	1.213611021986	-0.915171129793
Н	-3.963771976525	1.722209611062	-0.973877144404
C	-6 632989918608	-0.967771433132	-1 773634568331
U U	5.000021400654	0.967771135132	2 407444285220
п	-3.000951400034	-2.102001043078	-2.49/444283320
С	-7.024952694314	0.247021145038	-1.201825843031
Н	-6.349303986618	2.162926482619	-0.472497127730
Н	-7.375142736491	-1.729443352120	-2.000737185582
Н	-8.072376020386	0.438414986922	-0.983078349565
C	-0 733887370746	-1 710414146553	-1 241793962686
U U	0 612061022004	2 10022277704	2 262960611204
п	-0.013001923004	-2.100222////94	-2.202800011304
Н	-0.171521066190	-0.768634195685	-1.186124481619
0	-0.151825380037	-2.591260761586	-0.286973324190
Н	-0.518812172606	-3.483529179200	-0.472457561778
0	-0 618491545398	-4 355400830496	-3 511016525449
D	0.340700440001	5 575341246275	2 201286532805
	1 05022(200002	(95211001(200	2.021757019077
0	-1.059230308803	-0.852110910209	-2.931/5/0180//
0	1.127419389093	-5.714908147173	-2.271545697987
0	-1.114483047330	-5.081817668198	-1.076470194966
Н	-2.751483071247	-4.902454395648	-0.826017051159
S	-1 961195155469	-3 976881767985	-4 293678839708
õ	-1 730620262352	-2 637233503767	-4 812096001993
0	-1.759029202552	-2.03723333373707 5.0200779111(1	5 22202840701
0	-2.30828/5/5481	-5.0399//811161	-5.222028407016
0	-3.051437632331	-3.841347850392	-3.151915454827
Р	-4.132963174287	-5.048229735582	-2.449086751765
0	-3.739908811141	-4.757752695311	-0.922390901649
Ō	-5 508175408241	-4 576001460206	-2 753476185704
0	2 626720546006	6 2019/672917/	2.008502210050
U U	-5.020/29540000	-0.391040/301/4	-2.908392310039
Н	-2.06/52/538802	-6.761996391220	-2.91908/394295
TS6			
Electronic	$E_{nerov} = -2260.41^{\circ}$	553305 / Gibbs Free	$E_{nergy} = -2260.2369786$
C	1 721106217116	1 557607220407	1 209/5292210/
C II	-1./3110021/110	-1.337062336462	-1.506455655104
Н	-2.261859923/16	-2.490669577313	-1.516858136840
Н	-1.826625418915	-1.350752478054	-0.232306167693
С	-2.389822840614	-0.422231717829	-2.113054614808
Н	-2.299336081192	-0.658746610502	-3.179065467825
н	-1 852468189804	0 518037554316	-1 931121210429
C	2 850780146077	0.261756402024	1 751180172765
	-3.030/0914002/	-0.201/30403024	-1./511001/2/05
C	-4.264205440573	0.684529542302	-0.803386491920
С	-4.818069592490	-1.103154741573	-2.324133392219
С	-5.608284208686	0.792585022996	-0.433802031700
Н	-3.525599663615	1.343571292630	-0.350925343983
С	-6 160991381299	-0 998713023871	-1 956001738676
й	_1 510086156072	-1 830027228876	-3.060008155/07
	- T.J 100001J00/J	-1.037027230070	1 00000013377074
C H	-0.302302319838	-0.05009/50209/	-1.00699322/924
Н	-5.908843407940	1.535524651792	0.301082431491
Н	-6.896293226405	-1.657719202866	-2.411870897275

Н	-7.608353701525	0.031350579604	-0.724321034523
С	-0.260649752225	-1.753741630994	-1.657461626126
Н	-0.165474978528	-1.952172257810	-2.730271561619
н	0 312023404997	-0 843392224905	-1 423306441808
0	0.326856904070	-2 853765532463	-0.942536243182
U U	0.2520030904070	2 210021107055	0.252760872200
п	-0.5558/5552498	-3.21902118/033	-0.332/098/3200
0	-1.608/508/4108	-3.752838278190	-3./13314195959
Р	-0.264964949629	-5.710974354707	-1.077587944410
0	-0.537709829705	-6.266342993234	-2.445520982874
0	1.050743447056	-5.891369577485	-0.418069468435
0	-1.406187842077	-5.046294337105	-0.344450941692
й	-2 792485887053	-4 746144793573	-1 127000898358
S S	2.772403007033	2 560692512450	4 752177141029
3	-2.033363061323	-3.309062313430	-4./321//141938
0	-2.99408/44382/	-2.1/8094828969	-5.05/591060319
0	-2.495310507183	-4.444519036746	-5.925777651984
0	-4.088791065488	-4.130269516308	-4.010562146288
Р	-4.145845168429	-5.259683650820	-2.839554718319
0	-3 702787694742	-4 529804184608	-1 500558886056
õ	5 524580501562	5 802528753005	2 788328166425
0	-3.324363331302	-3.802328733993	2 185(205((050
0	-3.038888/33438	-0.303930903915	-3.185620566050
Н	-2.094030898553	-6.180579934894	-2.957920438227
Int6b			
Electronic	Energy = -2260.43'	770976 / Gibbs Free	Energy =-2260.26105014
С	-3.073084231496	-0.780857825379	-1.010842712080
Ĥ	-3 991169172632	-1 332434888315	-1 245624024150
и П	2 005462777046	0 56097524141	0.065550161275
П	-5.065405777640	-0.3096/3244143	1.70(5090025(5
C	-3.042/85592/22	0.5445/33/0596	-1./96508903565
Н	-3.019411293613	0.325102837773	-2.871582711217
Н	-2.115309583771	1.081629909595	-1.560632097522
С	-4.238691089973	1.413904395870	-1.473511971220
С	-4.192919841600	2.330870197965	-0.413734657534
С	-5 434107787638	1 284208899924	-2 194702650324
Ĉ	-5 3111001/0235	3 100053032828	-0.083035486176
U U	2 2722027(95(4	2.442082547222	0.15402(120(79
п	-3.2/2303/08304	2.443082347222	0.154936130678
C	-6.555214564142	2.050868439182	-1.868057839552
Н	-5.484371174378	0.577153958487	-3.020054356336
С	-6.497193389040	2.962066487707	-0.809635973267
Н	-5.255268097179	3.807972218824	0.739870360076
н	-7 471982987579	1 938621953543	-2 441136702423
н	-7 367308485064	3 561170666003	-0 555213907231
II C	1 969475260021	1 647750427025	1 226440246926
C .	-1.8084/5209051	-1.04//5945/025	-1.330449340820
н	-1.84/48/364459	-1.948026804/36	-2.385931326801
Н	-0.923699426856	-1.154411498546	-1.087829639968
0	-1.946180319766	-2.895818459089	-0.583372444605
Н	-1.911256058129	-2.663443086946	0.419338472816
0	-0.379540526709	-1.902765415960	6.367932822892
p	-0 533118619684	-4 142381403505	-0.915758116371
0	0.662062285585	2 221447806216	0.652525257278
0	0.002903263363	-5.25144/690210	-0.032323337278
0	-0.825/32241361	-4.536/02139984	-2.325258486245
0	-0.885852904238	-5.098467319286	0.217423616982
Н	-0.530752050678	-4.707168804527	1.666320089769
S	-1.250493185983	-1.900002404466	5.189031156346
0	-2.159032526197	-3.046405192108	5.062304310605
0	-1.812490859324	-0.597594440304	4.816511877047
õ	_0.0357056373/0	_2 177/8//22/00	3 0/71/8000702
D	0.033793032240	2.1// 707722790	2.77/170200/22 2.477000745740
r	-0.54/100105101	-2./11/08888998	2.4//700/47/40
0	-0.286435725544	-4.2924/319/829	2.581976837002
0	-1.640196366159	-2.220151901056	1.871590604322
0	0.937093685617	-2.214146182812	1.692157016047
Н	0.908277802875	-2.588458506426	0.727864809198

TS6' Electronic Energy = -2260.43748288 / Gibbs Free Energy =-2260.26313317

С	-3.028816503787	-0.838448573817	-0.987949769482
Н	-3.951441316595	-1.392592288547	-1.197272073008
Н	-3.000536773123	-0.647206385320	0.091520171091
С	-3.038088166093	0.502247853266	-1.748171530671
Н	-3.071100687746	0.306570253267	-2.827411745979
Н	-2.098989656668	1.034141003981	-1.548784505693
С	-4.213790116834	1.364366105264	-1.342419027095
С	-4.121906866538	2.223597515413	-0.237925899726
С	-5.433740935454	1.285140160763	-2.028448748867
С	-5.219411015813	2.984319052415	0.171503817239
Н	-3.181380226981	2.296336927352	0.304064919346
С	-6.534568429219	2.043977904857	-1.623081145141
H	-5.520069435872	0.624010340729	-2.888156700257
C	-6.430849713820	2.896520619620	-0.520465745222
Ĥ	-5.127767483688	3.646582648581	1.028498431978
Н	-7.471272817009	1.971265645260	-2.169696059061
Н	-7 285263584255	3 489177625004	-0 204807473684
C	-1 830301373970	-1 688857325390	-1 373584521138
н	-1 849689729303	-1 983713399638	-2 424541201996
Н	-0.882002995838	-1 186187399530	-1 159719872085
0	-1 864259507039	-2 939581499203	-0.616609028896
й	-1 840688198080	-2 702132564445	0.412702391147
0	-0 525129673150	-1 643569778057	6 259083709060
р	-0 473733209539	-4 142301495845	-0.940680177710
0	0.729451101986	-3.209020610046	-0.657997146517
õ	-0.692863750605	-4 511338619705	-2 367571564566
Õ	-0.787127952843	-5.114354248531	0.178830211968
Ĥ	-0.571739932786	-4.812427783386	1.787321417909
S	-1.344769522096	-1.724847138245	5.045412849928
õ	-2.308176185971	-2.832490200569	5.000971491122
õ	-1 826533056957	-0 442045852085	4 520302694355
õ	-0.099764378376	-2 188744976420	3 902138359689
p	-0.367629856506	-2 799847444492	2 449256938063
0	-0 422185476600	-4 379807960969	2 690301138568
õ	-1 644855556611	-2 300344332505	1 796750927064
õ	0 923074775333	-2 452010441808	1 651861578628
Ĥ	0.865367896042	-2 804595048146	0 553672864812
	0.00000000012	2.001090010110	0.555072001012
Int6c			
Electronic	Energy = -2260.45'	797362 / Gibbs Free	Energy =-2260.27973443
С	-2.937980426005	-0.830367104232	-1.038806367541
Н	-3.875532728214	-1.395413813338	-1.107698270033
Н	-2.809712705793	-0.545528166719	0.013116276925
С	-3.029103444231	0.440796519244	-1.904579820783
Н	-3.146200630931	0.153052307064	-2.957163325612
Н	-2.083782614237	0.993542737169	-1.828848777638
С	-4.179849487697	1.327802404281	-1.482057455054
С	-4.021630206864	2.258511576528	-0.444846292711
С	-5.440816495855	1.204189572249	-2.082089635233

-5.093498741306 3.045709319544 -0.017982322065

1.989435172653

0.487151616508

2.913535696255

3.763531339540

1.881173147685

3.526853378887

-1.905322213592 -2.059893979480 -2.499833395533

2.366551951493 0.030035529016

-1.659297529000

-2.888511554146

-0.624780550818

0.785540042177

-2.139390708654 -0.295967000524

-1.464071319671

-1.381640874983

-0.600749731264

1.068279790730

6.374438566263

-0.957419524847

-3.048713914341

-6.516349379111

-5.579388966052

-6.345983519697

-4.950053334819

-7.485571415488

-7.180647195946

-1.782914084880 -1.723283983116

-0.824414754679 -1.196540866117

-1.756721463587 -2.882625911492

-1.916340840622 -2.428968678625

-0.443459197334 -1.828366035997

-0.661628319526 -4.100035635500

С

Н

С

Η

С

Н

Η

Η

С

Н

Η

0

Η

0

Р

0	0.747203439978	-3.297764899921	-0.907157803245
0	-0.881480521634	-4.607949855998	-2.342136498894
0	-0.797494512982	-5.024596595858	0.241086148301
Н	-0.487232858750	-4.627327173231	1.707973799023
S	-1.334207263911	-1.904432473902	5.212471366225
0	-2.129163912702	-3.131640843436	5.094798112149
0	-2.024535730319	-0.660008732503	4.858235810944
0	-0.116361885270	-2.045036200473	3.941384346611
Р	-0.302516215055	-2.625016590201	2.472938882412
0	-0.316032388888	-4.202883776324	2.630293230697
0	-1.772741445122	-2.176628743086	2.021386343359
0	0.770940596125	-2.121366578350	1.554273953118
Н	0.868013062192	-2.850856929808	-0.026424050352

Int7a

Electronic	Energy = -2260.43	540016 / Gibbs Free	Energy =-2260.25488877
С	-2.964027990533	-1.295564787674	-1.769634718932
Н	-3.803328026650	-1.698690540500	-1.190616782936
Н	-2.213065377243	-0.976289582943	-1.039400084541
С	-3.434301227844	-0.089826869004	-2.602805652643
Н	-4.198206834560	-0.414650836428	-3.321573662087
Н	-2.588697684817	0.292218271720	-3.191205382025
С	-3.986607546736	1.013414171265	-1.727466205021
С	-3.122489910087	1.920653680916	-1.095757879663
С	-5.362055490734	1.121854714834	-1.479390312916
С	-3.617195242847	2.909534538316	-0.243083551630
Н	-2.051889816696	1.847416618196	-1.275432410890
С	-5.863104569487	2.109202763824	-0.626511623690
Н	-6.045966199084	0.425219986717	-1.959749709081
С	-4.991645811572	3.007565854912	-0.005237320773
Н	-2.930771483753	3.604335166690	0.234267847638
Н	-6.933504532449	2.177468932762	-0.449428295002
Н	-5.378930973415	3.777447552466	0.656837013935
С	-2.373763987043	-2.416342067810	-2.627130133036
Н	-3.129961368610	-2.758445392739	-3.357186247407
Н	-1.523466237809	-2.034636982441	-3.208012693843
0	-1.881584547140	-3.502552217857	-1.854080360059
Н	-2.626446794153	-3.804665553036	-1.286962952578
0	-1.252190719039	-1.958374369333	3.197140566212
Р	-2.193984426882	-2.763336486969	4.437867053040
0	-2.128451392851	-4.236974921551	4.116416932004
0	-1.637288795354	-2.193084617512	5.690802051134
0	-3.650427509297	-2.166165150193	4.137849115711
Н	-4.143911769027	-2.673474185866	3.423478861773
S	-1.158459012407	-2.362170407550	1.652147529505
0	-0.716539045022	-1.159123854044	0.967629883609
0	-0.385608546199	-3.582942344643	1.496160316936
0	-2.677977071637	-2.590185882757	1.260197628422
Р	-3.740816830152	-3.985617024153	1.206643877621
0	-4.813205190726	-3.552574914165	2.172945339076
0	-4.030556181138	-4.208569474072	-0.242718534410
0	-2.827895815221	-5.158445692596	1.777619493044
Н	-2.520407019327	-4.929733942258	2.714285570173

TS7

Electronic	E = -2260.390	062638 / Gibbs Free	Energy =-2260.21487389
С	-2.829311719038	-0.966296348826	-1.231086622333
Н	-3.770357707914	-1.494613472375	-1.045268308000
Н	-2.503550040537	-0.548261506540	-0.274316944897
С	-3.061069110890	0.174977309599	-2.240022436260
Н	-3.393460180122	-0.247821020694	-3.196673436292
Н	-2.110882325735	0.690034350653	-2.430830502768
С	-4.088550338262	1.159566978884	-1.724670980252
С	-3.701628498863	2.252142123783	-0.935987206608

С	-5.454063654328	0.965944953887	-1.976768100063
С	-4.653357497543	3.130836322304	-0.412992622039
Н	-2.645533585286	2.414114941433	-0.730993762427
С	-6.409717941388	1.841726214735	-1.456241874878
Н	-5.769324004806	0.121533529269	-2.586014002228
С	-6.011866495180	2.927958441056	-0.671643627234
Н	-4.333952379828	3.973781034461	0.194344176691
Н	-7.463695911674	1.676760379477	-1.664567715429
Н	-6.753764389997	3.611080457844	-0.266901356077
С	-1.787372195398	-1.951357793306	-1.745181513079
Н	-2.051548369184	-2.340766088548	-2.732942270349
Н	-0.790607908497	-1.509630371630	-1.794226715747
0	-1.647163313757	-3.142449776936	-0.904575294487
Н	-2.604639306394	-3.594385081994	-0.739256959741
0	-0.466566215282	-2.617171866464	3.661150830391
Р	-1.620149069675	-2.825784875952	4.619363630555
0	-2.279536753693	-4.311725488449	4.409399800753
0	-1.423525770537	-2.639655197623	6.095555868047
0	-2.854625207024	-1.830710876287	4.145957512752
Н	-2.786661839023	-1.717169887679	3.179789581462
S	-1.030935588360	-2.872986716778	0.906866176108
0	-0.070913203454	-1.807583667133	0.693884545778
0	-0.601703543829	-4.237889318260	1.126107457401
0	-2.354477714457	-2.464884589725	1.444737106193
Р	-4.252721402738	-3.810849534611	1.137568225975
0	-5.219034399724	-2.713767064566	1.406065078967
0	-3.853178835526	-4.103390996267	-0.303988272709
0	-3.862633465398	-4.809296156300	2.181881312573
Н	-2.773155400891	-4.401144609879	3.560079118925

Int7b

Electronic	Energy = -2260.42	39871 / Gibbs Free I	Energy = -2260.2453447
С	-2.692837405173	-0.796187506396	-1.184376864694
Н	-3.599567473478	-1.407310008430	-1.250790050959
Н	-2.548384528093	-0.556981420827	-0.126235736970
С	-2.872318543724	0.510404148357	-1.982431413108
Н	-3.033786679604	0.270024924864	-3.040779405953
Н	-1.947332484390	1.098790323371	-1.926132785623
С	-4.032901412616	1.324914257423	-1.453953802224
С	-3.854318004743	2.210331599694	-0.381394106116
С	-5.319058533823	1.173498127325	-1.990175943276
С	-4.932193082996	2.927469656358	0.142394351853
Н	-2.861558675205	2.337473880644	0.045096717050
С	-6.400455520395	1.889332543801	-1.470493148427
Н	-5.473044247598	0.489579366847	-2.822095437228
С	-6.210180996795	2.769262164232	-0.401552522153
Η	-4.773723700112	3.610899710514	0.972548907517
Η	-7.390053613023	1.760967721709	-1.901415138919
Η	-7.049767909297	3.328046160785	0.003071152282
С	-1.503795236686	-1.589147811011	-1.709042280312
Η	-1.585055798763	-1.768085402095	-2.782968027180
Н	-0.553180890719	-1.090862710208	-1.500836634483
0	-1.433878888969	-2.956551166788	-1.174653612638
Η	-2.954107511665	-5.486040975765	0.043514702979
0	-0.728799058338	-3.394729190040	4.081909045504
Р	-1.811225459559	-2.524551773987	4.672551261954
0	-3.208884389891	-3.376637881159	4.773631831255
0	-1.625421986079	-1.828904355454	5.990672025483
0	-2.189814461719	-1.341779162537	3.574781778352
Η	-2.124999236274	-1.706854194167	2.674655931238
S	-1.108150174050	-3.156256595481	0.385971448397
0	-0.179993644606	-2.132232480433	0.828375852988
0	-0.793845028692	-4.568944857297	0.516310300500
0	-2.497716653340	-2.827568027292	1.086264156463

Р	-3.916571459324	-3.897505001579	1.162765678638
0	-5.047095987462	-2.976026985276	0.895357948918
0	-3.651307784598	-4.829426400957	-0.135593276552
0	-3.726598923498	-4.681465436392	2.424334597304
Η	-3.371125135236	-3.885678938762	3.940688793842

2 PP03H2

DFILE18kd_3-phenyl-1-propanol-tm_P-1-1.alsCCMNTDATIMDATIM07-03-201904:58:29DATIM07-03-201904:58:29CBNUC31PCBNUC158.59MHZ0BSET7.99CBSET9.23HERQU64102.56FREQU64102.56PMI2.0000SCANS0.4089ACQTM0.4089PMI2.000IBNUC1HCTEMP20.00SINNTCD3ODCTEMP20.0EXREF0.000PM20.0STREF0.21BF0.12STREF0.52KGAIN56

S74

3 OPO₃H₂

 DFILE
 18kd3076HPLC3_P-1-1.als

 CCMMUT
 01-09-2018 04:50:03

 DATIM
 01-09-2018 04:50:03

 DBNUD
 31P

 EXMOD
 carbon.jxp

 OBENU
 319

 COBERQ
 138.59 MHz

 OBENU
 52.14

 PREQU
 64102.56 Hz

 ACCTM
 2.2614

 FREQU
 64108 sec

 PD
 2.0000 sec

 FM1
 4.80 usec

 SLINF
 0.10

 SLINF
 0.00 ppm

 SLINF
 0.00 ppm

 SLINF
 0.00 ppm

 SLINF
 0.00 ppm

 BF
 0.12 Hz

 RGAIN
 56

S77

 DFILE
 18kd3077HPLC3_P-1-1.als

 CCMNT
 01-09-2018 05:44:45

 CONNUC
 31P

 DATIM
 01-09-2018 05:44:45

 CONNUC
 31P

 DEXMOD
 carbon.jxp

 OBERQ
 158.59 MHz

 OBERQ
 158.59 MHz

 OBERQ
 2.221 Hz

 POLTIM
 9.221 Hz

 SCANS
 0.4102.56 Hz

 ACQTM
 64102.56 Hz

 SCANS
 0.4089 Sec

 PD
 2.0000 Sec

 PMI
 4.80 usec

 SLVNT
 CD3OD

 SLVNT
 CD3OD

 SKREF
 0.00 ppm

 BF
 0.12 Hz

 SF
 56

S80

N 5 5

DFILE 18kd3122tm_P-1-1.als CCMNUT DATIM 07-03-2019 05:13:36 DBNUC 31P EXMOD carbon.jxp OBFRQ 158.59 MHz OBFRQ 158.59 MHz OBFRIT 9.28 Hz FOINT 6412.56 Hz SCANS 1.12 62:14 FREQU 6412.56 Hz SCANS 1.12 62:14 CTEMP 2.0000 sec FWI 4.80 usec IRNUC 1H 4.80 usec SLIVNT CD3OD 4.80 usec SLIVNT CD3OD 0.00 ppm BRAIN 56

 DFILE
 18kd3087HFLC3_P-1-1.als

 CCMNT
 01-09-2018
 23:06:27

 DATIM
 01-09-2018
 23:06:27

 DENUC
 31P
 158.59

 COBFIN
 52.81
 158.59

 POLNT
 52.21
 7.99

 COBFIN
 9.23
 HZ

 POLNT
 56.21
 7.99

 SCANS
 2.6214
 26214

 FREQU
 64102.56
 HZ

 SCANS
 2.99
 2.0000 sec

 PUT
 2.0000 sec
 118

 CTEMP
 2.0000 sec
 SLVNT

 CHAND
 1H
 20.2

 SLVNT
 CD3OD
 0.00

 SLVNT
 CD3OD
 0.00

 SLVNT
 CD3OD
 0.12

 BF
 0.12
 HZ

 SKANN
 56
 5

6 OPO_{3H2}

<u> </u>							
- o							
_							
	*						
40							
	Ŧ						
	1						
	1						
ω -	1						
	1						
	Ŧ						
	Ŧ						
	<u>*</u>						
	ŧ						
20	主						
° –							
	4						
	1						
	Ŧ						
	ž						
1	1						
0							
-	Ŧ						
	1						
. –	1	The second se		 	 		1.//314
·	囊						
	1						
	ŧ						
	a de la de l						
-10.			·				
-10.0			·				
-10.0							
-10.0							
-10.0	والمواجدة والمحافظة والمحافظ						
-10.0	કેલ નામ કરવાના કરવા છે. તેવું કે વધુ						
-10.0 -20	મેન્દ્ર માં અને						
-10.0 -20.0	વે તે કે તે આવેલા કે વસે બંધ જેવી ત્યાં છે. તે		·				
-10.0 -20.0	સ્વત્ર કે						
-10.0 -20.0	સ્ટેન્સ્ટેન્સ્ટ્રેન્સ્ટ્રેન્સ્ટ્રેન્સ્ટ્રેન્સ્ટેન્સ્ટેન્સ્ટ્રેન્સ્ટ્સ્ટ્						
-10.0 -20.0	મેને આવે છે. તે તે તે તે આવે છે છે છે છે છે છે છે છે છે છે. તે છે						
-10.0 -20.0	મને મેને સેને કે બે કે તે તે કે તે તે કે તે કે તે કે તે કે તે						
-10.0 -20.0 -30	સિકો સ્ટેક્સ કરવે છે. તે કે કે કે કે કે સ્ટેક્સ કરે કરો કરો કે						
-10.0 -20.0 -30.0	મહાનું આવ્યું છે. આ ગામ કે બુધ્ધ અને કે બુધ્ધ અને આ ગામ છે. આ ગામ આ ગામ આ ગામ કે આ ગામ કે આ ગામ કે આ ગામ કે આ ગ આ ગામ આ ગા આ ગામ આ ગ						
-10.0 -20.0 -30.0	મેરે સમ્હૂર હકી જ કે જ અહેવ કે આવે છે. તે કે તે કે બે						
-10.0 -20.0 -30.0	મિંગ ને જે છે. તે આવેલા છે છે. તે છે						
-10.0 -20.0 -30.0	સ્ટિકોર્ન કે		· ·				
-10.0 -20.0 -30.0	فتختلها فالمتلاط والمحمد والمعاجمة ومناجعة والمعتاب فأحطاخ المحاليات والمحالما والمتلاطية المتلاط والمحال والمعارفية						
-10.0 -20.0 -30.0 -40	માં વકે મહાનો મેથી તેને જે કરે હાથી છે. તેને જે કાર્ય કાર્ય કરે કે		· ·				
-10.0 -20.0 -30.0 -40.0	فيغطفهم فتحاط فالإطلاع المجامعة الاعالات المنافذ فالمعاولة والمحاجة والمحاجمة معاجمة محاليها والإطراح المراحة مخرديهم		•				
-10.0 -20.0 -30.0 -40.0	હેરે અર્થ બન્દ્રા હતું કે		•				
-10.0 -20.0 -30.0 -40.0	મેં આ બે કે આ બે કે આ બે કે બે કે બે કે અને આ બે અને બે અને બે અને બે						
-10.0 -20.0 -30.0 -40.0	માં મુંદ્ર સંદેશ કે મુંદ્રાય કે સાથકો છે છે. તેમ ક [્] ય છે, આવેલ મુંદ્ર પ્રદાય કે સ્ટેપ્સ કે બેંદ્ર પ્રધાર કે સ્ટેપ્સ કે સાથકો છે. આ ગામ જે મુંદ્ર પ્રધાર કે સ્ટેપ્સ કે		•				
-10.0 -20.0 -30.0 -40.0	والإستعادية وأوافقه والمحادثة	•					
-10.0 -20.0 -30.0 -40.0	وده لا بلاسه والم مؤلم الموالية المؤلم المؤلم المحالية والمعالمة والمعالمة والمعالية والمحالية والم						
-10.0 -20.0 -30.0 -40.0							
-10.0 -20.0 -30.0 -40.0							

онн н в
 DFILE
 18kd_Ald-tm_P-1-1.als

 COMMT
 07-03-2019
 05:00:51

 DATIM
 07-03-2019
 05:00:51

 DENUC
 31P
 55

 COMPTO
 158.59
 MHZ

 OBFEQ
 64102.56
 HZ

 POINT
 2.22
 HZ

 FREQU
 64102.56
 HZ

 ACCTM
 0.4089
 Sec

 PW1
 1.4.80
 usec

 IRNUC
 1H
 2.0000

 CTEMAR
 19.9
 C

 SLVNT
 CD3OD
 0.12

 BF
 0.12
 HZ

9 OPO₃H₂
 DFILE
 18kd3081HFLC1_P-1-1.als

 CCMNT
 04-09-2018
 07;09:38

 DATIM
 04-09-2018
 07;09:38

 DENUC
 31P
 158.59

 DUBRQ
 158.59
 HHZ

 OBERQ
 1.58.59
 HHZ

 OBERQ
 1.58.59
 HHZ

 OBERQ
 2.6214
 FREQU

 FREQU
 64102.56
 HZ

 SCANS
 0.4089
 sec

 PUT
 2.0000 sec
 PUT

 TIRNUC
 1H
 4.80
 usec

 SLVAT
 CD3OD
 20.1
 C

 SLVAT
 CD3OD
 0.00
 Dpm

 BF
 0.12
 HZ

 SRAFF
 0.12
 HZ

 DFILE
 18kd3457HFLC3_P-1-1.als

 CCONT
 13-03-2019
 00:49:53

 DBNUC
 31P
 31-03-2019
 00:49:53

 DBNUC
 31P
 158.59
 MHZ

 OBSER
 158.59
 MHZ
 158.59

 OBSER
 1.58
 53.41
 158.59

 POINT
 9.23
 HZ
 158.59

 POINT
 6412.56
 HZ
 52.41

 POINT
 6412.56
 HZ
 52.41

 POINT
 6412.56
 HZ
 52.41

 POINT
 64102.56
 HZ
 56

 POINT
 2.0000
 sec
 94.60
 usec

 PMI
 4.60
 usec
 118.10
 14.80
 usec

 SILVER
 D3.07
 C
 51.20
 HZ
 1.20
 HZ

 BF
 1.20
 HZ
 1.20
 HZ
 1.20
 HZ

 DFILE
 18kd_benzyl_tm_P_MccN-1-1.als

 DATATIM
 20-03-2019
 01:33:49

 DATATIM
 20-03-2019
 01:33:49

 DARTIM
 20-03-2019
 01:33:49

 DARTIM
 20-03-2019
 01:33:49

 DARTIM
 20-03-2019
 01:33:49

 DARTIM
 2158.59
 MHz

 DOBERQ
 158.59
 MHZ

 DOBERQ
 0.23
 Hz

 POINT
 9.23
 HZ

 POINT
 64102.56
 Hz

 SCANS
 0.4089
 sec

 PMI
 2.0000
 sec

 PMI
 4.80
 usec

 INNUC
 119.7
 C

 SLIVNT
 CD3CN
 0.00
 Ppm

 BF
 0.10
 Ppm

 BF
 0.10
 Ppm

 SF
 0.10
 Ppm

 SF
 0.10
 Ppm

12 Me

DFTLE 18kd3074HPLC3_P-1-1.als CCMMTM 01-09-2018 23:03:20 GBNUC 31F EXMCD carbon.jxp OBFRQ 158,59 MHZ OBFRT 9:23 HZ POLNT 64102.56 HZ SCANS 64102.56 HZ SCANS 64102.56 HZ SCANS 2:0000 sec PM1 2:0100 sec PM1 4.00 usec INNUC 1H 2:0.1 c SLIVNT CD3OD 0.00 ppm BF 0.12 HZ

	
-0.0	
0301	

BocHN

DFILE 18kd_Boc_tm_MeOH_P-1-1.als CCMNT DATUM 21-03-2019 10:04:21 DENUC 31P DENUC 31P OBFRO OBERO OBERO

DFILE 18kd3435tm_P-1-1.als CCMMT DATIM 07-03-2019 05:16:05 DENNOC 31P EXMOD carbon.jxp OBFRQ 158.59 MHZ OBSERT 9.23 Hz FOINT 64102.56 HZ SCANS 0.4089 sec PM1 64102.56 HZ SCANS 0.4089 sec PM1 2.0000 sec PM1 4.00 usec IRNUC 1H CTEMP 2.0000 sec SLVNT CD30D 0.00 ppm BF 0.10 HZ EXREF 0.10 Pm BF 0.10 Pm S6

FmocHN,

OPO3H2

14

"OBn

DETLE 18kd3454HPLC6_P-1-1.als CCOMMT 13-03-2019 05:33:112 OBNUC 31P COBERQ 156.59 MHz OBEER 7.99 KHZ OBEEN 9.23 HZ POINT 26214 FREQU 64102.56 HZ SCANS 0.4089 sec PD 2.0000 sec PM 2.0000 sec FMI 14 19.6 c SLUMT CD3CN 0.00 PPm BF 0.12 HZ

0 -10.0 -20.0 -30.0 -40.0 -50.0	50 <mark>.0 40.0 30.0 20.0 10.0 0.</mark>
ĬĬĬŎĊŔŢŔŢŎŶĬŎĊŔĸŢŎĸĹŔĹŢĹŎĬŔĬĊŎŶŢĬĬĬŢŎŔĸĬĬĔĊŔĬĊĬŎĬĔŎĬĔĊŔŎĊĬĊĊĊĔĊŔŎŎĬĬĬĬĬĬĬĔĊŎĊĔĊŎŎĬĬŎŎŎĿŎŎŎŎĬĬŎŎŎŎŎŎŎŎŎŎŎ	
	0.84802
crtion/18kd3455HPLC2_P-1-1.als	C:\Documents and Settings\Administrator\fffXfNfgfbfv\Gousei\K.Domonli\Data colle

EXREF BF RGAIN	IRNUC CTEMP SLVNT	PD PW1	ACOTM	POINT FREQU	OBFIN	OBFRQ	EXMOD	COMNT DAT IM	DFILE
0.00 ppm 0.12 Hz 56	1H 19.7 c CD3CN	2.0000 sec 4.80 usec	11 0.4089 sec	26214 64102.56 Hz	7.99 KHz 9.23 Hz	158.59 MHz	31P carbon.jxp	13-03-2019 05:35:34	18kd3455HPLC2_P-1-1.als

50.0 40.0 30.0 20.0 10		C: Documents and Settings Administrator\ffXfNfgfbfv\Gousei \K. Dom
		- 0.92511
-40.0 -50.0	H ₂ O ₃ PO BnO OBn	DFILE 18kd341HFLC5_carbon_P-1-1. CCMMT DATIM 28-0-2-2019 16:03:57 OBNER OBSER OBSER OBSER OBSER OBSER OBSER POLY POLY POLY POLY POLY POLY POLY POLY

RGAIN	BF	EXREF	SLVNT	CTEMP	IRNUC	PW1	PD	ACOTM	SCANS	FREQU	POINT	OBFIN	OBSET	OBFRQ	EXMOD	OBNUC	DATIM	COMNT	DFILE
56	0.12 Hz	mqd 00.0	CD3CN	19.8 c	1H	4.80 usec	2.0000 sec	0.4089 sec	T	64102.56 Hz	26214	9.23 Hz	7.99 KHz	158.59 MHz	carbon.jxp	31P	13-03-2019 05:38:02		18kd3456HPLC1_P-1-1.als

EXREF BF RGAIN	CTEMP	PWI	SCANS ACQTM	POINT FREQU	OBSET	EXMOD OBFRQ	DATIM	DFILE
0.00 ppm 0.12 Hz 56	19.9 c CD3OD	2.0000 sec 4.80 usec	5 0.4089 sec	26214 64102.56 Hz	7.99 KHz 9.23 Hz	carbon.jxp 158.59 MHz	07-03-2019 05:18:19 31P	18kd3437tm_P~1-1.als

 DFILE
 18kd3174HFLC1_P-1-1.als

 DATMY
 01-10-2018
 04:38:41

 DRNUC
 31F
 01-10-2018
 04:38:41

 DBNUC
 31F
 05
 MHZ

 OBSET
 158.59
 MHZ
 0158.59

 OBSET
 9.23
 HZ

 POINT
 64.12.56
 HZ

 SCANS
 0.4069
 sec

 PMI
 2.0000
 sec

 PMI
 4.80
 usec

 INNUC
 1H
 20.2

 SLIVNT
 CD3OD
 0.00

 STARF
 CD3OD
 0.00

 BF
 0.12
 HZ

 RGAIN
 56
 45

EXREF BF RGAIN	CTEMP SLVNT	PD PW1	SCANS ACOTM	POINT FREQU	OBSET	OBFRO	OBNUC	DATIM	DFILE
0.00 ppm 0.12 Hz 56	1H 19.9 c CD3OD	2.0000 sec 4.80 usec	13 0.4089 sec	26214 64102.56 Hz	7.99 KHz 9.23 Hz	158.59 MHz	31P	07-03-2019 05:20:26	18kd3438tm P-1-1.als

HO 25

 DFILE
 18kd3118tm_P-1-1.als

 CCMMY
 07-03-2019
 05:05:07

 DATIM
 07-03-2019
 05:05:07

 DATIM
 07-03-2019
 05:05:07

 DBNUC
 31P
 158.59

 DBFRQ
 158.59
 MHz

 OBSER
 7.99
 KHz

 OBSER
 9.2214
 9.2214

 POINT
 64102.56
 Hz

 SCANS
 2.6000
 sec

 PW1
 2.0000
 sec

 IRNUC
 1H
 20.00
 c

 CTEMP
 20.00
 c
 SLVNT

 EXREF
 0.00
 ppm
 56

S137

25

OPO3H2

EXREF BF RGAIN	CTEMP SLVNT	PD PW1	ACOTM	POINT	OBSET	EXMOD OBFRQ	DAT IM OBNUC	DFILE
0.00 ppm 0.12 Hz 56	1H 20.1 c CD3OD	2.0000 sec 4.80 usec	13 0.4089 sec	26214 64102.56 Hz	7.99 KHz 9.23 Hz	carbon.jxp 158.59 MHz	07-03-2019 05:10:35 31F	18kd3422tm_P-1-1.als

BF RGAIN	CTEMP SLVNT EXREF	PD PW1	ACOTM	OBFIN POINT FREQU	EXMOD OBFRQ OBSET	DFILE COMNT DATIM OBNUC
0.12 Hz	20.1 c CD3OD 0.00 ppm	2.0000 sec 4.80 usec	15 0.4089 sec	9.23 Hz 26214 64102.56 Hz	carbon.jxp 158.59 MHz 7.99 KHz	18kd3447HPLC3_P-1-1.als 05-03-2019 03:40:21 31P

H₂O₃PO^HOBn H₂O₃PO^HOBn
 DFILE
 18kd3447HFLC2_P-1-1.als

 DEFUR
 05-03-2019
 03:33:56

 OBNUC
 31P
 05000

 DEXMOD
 cathon.jxp
 05000

 OBSER
 158.59
 MHz

 OBSER
 7.99
 KHz

 OBSER
 7.99
 KHz

 POINT
 9.214
 72000

 PERCO
 64102.56
 Hz

 ACCIM
 2.0000
 sec

 PMI
 2.0000 sec
 14.80

 CTEMP
 20.1
 C

 SIAVE
 CD300
 0.00

 SIAVE
 0.000
 pm

 BF
 0.000
 pm

 BF
 0.12
 Hz

 SIAVE
 56
 1

DFILE 18kd3107HPLC4_P-1-1.als CCMMT 18-09-2018 09:45:45 CBMUC 31P DEFERQ arbon.jxp OBEFRQ 158.59 MHz OBEFI 7.99 KHz OBEFI 7.99 KHz OBEFI 26.14 POLYT 2614 POLYT 2614 SCANS 64102.56 Hz SCANS 0.4080 sec PPD 2.0000 sec PPD 2.0000 sec INNUC 1H 4.80 usec INNUC 1H 4.80 usec CTEMP CD3OD 20.2 c SLVNT CD3OD 0.00 PPM SF 0.12 Hz NGALN 55

 DFILE
 18kd3128HPLC5_P-1-1.als

 COMMU
 20-09-2018 08:28:17

 DARTM
 20-09-2018 08:28:17

 DBNUC
 31P

 DEARDO
 31P

 DBNUC
 31P

 DBNUC
 31P

 DBNUC
 31P

 DBNUC
 31P

 DBSER
 1.58.59

 DBSER
 9.23

 POINT
 5.23

 POINT
 5.23

 POINT
 5.24

 POINT
 5.24

 POINT
 64102.56

 SCANS
 1014

 SCANS
 1049

 SCANS
 1044

 SCANS
 1049

 SCANS
 1044

 SCANS
 2.0000

 PMI
 20.03

 CTENP
 20.3

 SLAVNT
 DMSO

 SLAVT
 0.12

 BARAIN
 56

 DFILE
 18kd3110HPLC5_P-1-1.als

 COMMT
 18-09-2018
 09:17:33

 OBNUC
 31P
 20

 DEXIMOD
 Carbon.jxp
 09:17:33

 OBSET
 1.8.59
 MHZ

 OSEFN
 9.23
 HZ

 POLINT
 26214
 539

 ACQCIM
 0.4089
 sec

 PM
 2.0000
 sec

 PM
 2.0000
 sec

 SCANS
 0.4089
 sec

 PM
 2.0000
 sec

 SUNT
 1H
 20.4 c
 scans

 SLINT
 CD30D
 0.00
 ppm

 SLINT
 CD30D
 0.00
 ppm

 SLINT
 CD30D
 0.12
 HZ

 BF
 0.12
 HZ
 14

 D30D
 0.10
 ppm

 SLINT
 CD30D
 0.12
 HZ

S155

 DFILE
 18kd3106HFLC7_P-1-1.als

 CCMNT
 18-09-2018
 09:41:24

 CBNUC
 31P
 08:50

 CBNUC
 31P
 156,59

 CBERQ
 0156,59
 MHZ

 OBSET
 1.99
 KHZ

 COBNT
 64102.56
 HZ

 SCANS
 0.4069
 sec

 PM
 2.0000
 sec

 PM
 2.0000
 sec

 TANUC
 1H
 20.3 c

 CTENMF
 2.030D
 2.03

 SCANNT
 CD30D
 2.0.3

 STANT
 2.030D
 2.0.3

 STANT
 2.030D
 2.0.3

 STARET
 0.0.00
 ppm

 BF
 0.12
 HZ

 RGAIN
 56
 56

S157

 $\mathbf{M}_{\mathbf{M}} = \mathbf{M}_{\mathbf{M}} =$

 DFILE
 18kd3108HFLC4_P-1-1.als

 CCMMY
 18-09-2018 09:50:17

 DATIM
 18-09-2018 09:50:17

 DBNUC
 31P

 DERENO
 Carbon.jxp

 OBSET
 7.99 KHz

 OBSET
 9.23 Hz

 POLNY
 26214

 PREQU
 64102.56 Hz

 SCANS
 0.4089 sec

 PD
 2.0000 sec

 PM
 4.80 usec

 TRNUC
 1H

 SCANY
 CD3OD

 SLARF
 0.00 ppm

 BF
 0.100 ppm

 SLARF
 0.010 ppm

 STREF
 0.20 z

 SLARF
 0.10 ppm

EXREF BF RGAIN	CTEMP SLVNT	PD PW1	ACQTM	POINT	OBSET	OBFRQ	DATIM	DFILE
0.00 ppm 0.12 Hz 56	1H 20.3 c CD3OD	2.0000 sec 4.80 usec	8 0.4089 sec	26214 64102.56 Hz	7.99 KHz 9.23 Hz	carbon.jxp 158.59 MHz	28-09-2018 18:58:16 31F	18kd3167HPL5_P-1-1.als

 DFILE
 18kd3403tm_P-1-1.als

 CCMNUT
 07-03-2019
 04:55:01

 DATIM
 07-03-2019
 04:55:01

 DBNUC
 31P
 58.59

 DEXMOD
 carbon.jxp
 05FRQ

 OBFEN
 158.59
 MHZ

 OBFEN
 2.23
 HZ

 POLIVIT
 2.6214
 SFRQ

 POLIVIT
 2.6142.56
 HZ

 SCANS
 37
 ACQTM

 ACQTM
 0.4089
 sec

 PM
 2.0000
 sec

 PMI
 4.80
 usec

 IRNUC
 1H
 20.0
 C

 SILVAT
 CD3OD
 0.00
 ppm

 SILVAT
 CD3OD
 0.00
 ppm

 BF
 0.12
 HZ
 14

 RAAIN
 54
 54
 54

S163

0.00 ppm 0.12 Hz 56 19.8 c

Ö

....

Т

NH₂

ა 35

PO₃H₂

CF3CO0

Ï

H₂N

NH2

 $\begin{array}{c} \begin{array}{c} & & \\$

 DFILE
 18kd3176HPLC7_P-1-1.als

 CCOMMT
 03-10-2018
 21:53:46

 CRANT
 31-0
 21:53:46

 CRANT
 31-0
 21:53:46

 CRANT
 31-0
 21:53:46

 CRANT
 158.59
 MHZ

 CREAD
 catbon.jxp
 29.23

 CREAT
 1.9.24
 HZ

 CONFT
 2.614
 77

 ACCTM
 0.4080
 sec

 PUL
 1.4.80
 0.408

 FREQU
 1.4.80
 usec

 FREQU
 1.4.80
 usec

 CTEMP
 2.030D
 20.2

 CTEMP
 2.030D
 2.0.2

 CTEMP
 2.030D
 2.0.2

 EXREP
 0.00
 Ppm

 EXREP
 0.12
 HZ

 SAR
 56
 56

Me~H~Me

,NH2