

Supplemental Information Figure 1. Related to Figure 3. 21 fitted pAkt distributions and 3 fitted sEGFR distributions used in parameter inference for synthetic data; parametrization 1: Wild type. We show all fitted single cell distributions (pAkt fits in red, sEGFR fits in blue, *in silico* experimental data in black) used in the inference.

Supplemental Information Figure 2. Related to Figure 3. 21 fitted pAkt distributions and 3 fitted sEGFR distributions used in parameter inference for synthetic data; parametrization 2: EGFR overexpression. We show all fitted single cell distributions (pAkt fits in red, sEGFR fits in blue, *in silico* experimental data in black) used in the inference.

38 Supplemental Information Figure 3. Related to Figure 3. 21 fitted pAkt 39 distributions and 3 fitted sEGFR distributions used in parameter inference for 40 synthetic data; parametrization 3: PTEN loss. We show all fitted single cell 41 distributions (pAkt fits in red, sEGFR fits in blue, *in silico* experimental data in black) 42 used in the inference.

.)

56 Supplemental Information Figure 4. Related to Figure 3. 21 fitted pAkt 57 distributions and 3 fitted sEGFR distributions used in parameter inference for 58 synthetic data; parametrization 4: PTEN loss. We show all fitted single cell 59 distributions (pAkt fits in red, sEGFR fits in blue, *in silico* experimental data in black) 60 used in the inference.

Supplemental Information Figure 5. Related to Figure 3. 21 fitted pAkt distributions and 3 fitted sEGFR distributions used in parameter inference for synthetic data; parametrization 5: PTEN loss. We show all fitted single cell distributions (pAkt fits in red, sEGFR fits in blue, *in silico* experimental data in black) used in the inference.

- .

- ~

88 Supplemental Information Figure 6. Related to Figure 3. Prediction pAkt levels at 89 late times for different perturbations to the EGFR pathway. Comparison between 90 single cell heterogeneity in steady state pAkt levels (3 hours of continuous EGF 91 stimulation) as observed in in silico data (black circles) and MERIDIAN based 92 predictions (dashed lines) in the "wild type" parametrization of the EGFR pathway (first 93 row, green, a: 0.1 ng/ml EGF, b: 1 ng/ml EGF, c: 10 ng/ml EGF), a parametrization with 94 two-fold overexpression of EGFR (second row, blue, d: 0.1 ng/ml EGF, e: 1 ng/ml EGF, 95 f: 10 ng/ml EGF), a parametrization with a ten-fold decrease in Akt dephosphorylation 96 (third row, red, g: 0.1 ng/ml EGF, h: 1 ng/ml EGF, i: 10 ng/ml EGF), a parametrization 97 with a two-fold decrease in EGFR endocytosis rate (fourth row, pink, j: 0.1 ng/ml EGF, k: 98 1 ng/ml EGF, I: 10 ng/ml EGF), a parametrization with a two-fold decrease in EGFR 99 dephosphorylation (third row, brown, m: 0.1 ng/ml EGF, n: 1 ng/ml EGF, o: 10 ng/ml 100 EGF).

bin number

Supplemental Information Figure 7. Related to Figure 3. 21 fitted pAkt 107 **distributions and 3 fitted sEGFR distributions used in parameter inference.** We 108 show all fitted single cell distributions (pAkt fits in red, sEGFR fits in blue, experimental 109 data in black) used in the inference. Error bars represent experimentally estimated 110 standard errors in the mean and model estimated uncertainties.

Supplemental Information Figure 8. Related to Figure 3. Model predictions agree for two independent calculations. The correlation between experimentally estimated bin fractions (x axis) and predicted bin fractions (y axis) for two independent searches for the Lagrange multipliers (red and blue dots).

143 Supplemental Information Figure 9. Related to Figure 3. Inferred marginal 144 distributions of all 20 model parameters. Parameters #1 to #17 are on a log₁₀ scale.

pAkt (a. u.)

Supplemental Information Figure 10. Related to Figure 4. Population dynamics has not reached steady state at 45 minutes. We plot single cell distributions of pAkt levels at 45 minutes (gray lines) and at 180 minutes (experiments in black lines, model fit in red lines) across a broad range of EGF doses. Error bars represent experimentally estimated standard errors in the mean. For simplicity, we do not show the model estimated uncertainties.

Rate description (and references)	Variable	lower bound	upper bound	Units
EGE hinding to EGER (Schoebert Eichler Jonsson et		(log 10)	(109 10)	
al. 2002)	k 1	-2.3	-1.3	(ng/ml) ⁻¹ sec ⁻¹
EGF unbinding from EGFR (Chen, Schoeberl et al. 2009)	k ₋₁	-1	0	sec ⁻¹
EGF-EGFR and EGFR dimerization (Chen, Schoeberl et al. 2009)	k ₂	-4.2	-3.2	a. u.
EGF-EGFR-EGFR undimerization (Chen, Schoeberl et al. 2009)	k2	-2	-1	sec⁻¹
EGFR dimer phosphorylation (Chen, Schoeberl et al. 2009)	k _{ap}	-0.5	0.5	a. u.
p-EGFR dephosphorylation (Kleiman, Maiwald et al. 2011)	k _{dp}	-1.5	-0.5	sec ⁻¹
degradation of active EGFRs (Hendriks, Wiley et al. 2003)	k [*] _{deg}	-3	-2	sec⁻¹
degradation of inactive EGFRs (Shankaran, Zhang et al. 2012)	k _{deg}	-4.1	-3.1	sec⁻¹
EGFR delivery to the membrane	k _{syn}	-2.2	-1.2	a. u.
Internalization of inactive EGFRs (Wiley, Herbst et al. 1991)	k _i	-4.25	-3.25	sec ⁻¹
Recycling rate of inactive EGFR (Herbst, Opresko et al. 1994)	k _{rec}	-4	-3	sec⁻¹
Internalization of active EGFRs (Wiley, Herbst et al. 1991)	k [*] i	-3	-2	sec⁻¹
Recycling rate of active EGFRs (Herbst, Opresko et al. 1994)	k [*] _{rec}	-4.9	-3.9	sec⁻¹
effective rate of p-EGFR binding to Akt	k _{bind}	-3.5	-2	a. u.
effective rate of p-EGFR unbinding from pEGFR-Akt	k _{db}	-0.7	0.8	sec⁻¹
Rate of pAkt dephosphorylation	κ _ρ	-2	-0.5	sec ⁻¹
Rate of Akt phosphorylation	k _a	-0.25	1.25	sec ⁻¹
Total Akt abundance (not log)	Akt	400	2400	a. u.
Background fluorescence in pAkt (not log)	b ₀	0	160	a.u.
Background fluorescence in sEGFR (not log)	S ₀	0	50	a.u.

179Supplemental Information Table 1. Names of parameters and their ranges. Related180to Figure 2, 3, and 4.

•	Species symbol	
Free EGF	и	
Free EGFR monomer	R	
Internalized free EGFR monomer	R_i	
EGF bound EGFR monomer	В	
Internalized EGF bound EGFR monomer	B_i	
1 EGF bound EGFR dimer	D ₁	
Internalized 1 EGF bound EGFR dimer	D_{1i}	
2 EGF bound EGFR dimer	D_2	
Internalized 2 EGF bound EGFR dimer	D _{2i}	
Phosphorylated 1 EGF bound EGFR dimer	P_1	
Internalized phosphorylated 1 EGF bound EGFR dimer	P _{1i}	
Phosphorylated 2 EGF bound EGFR dimer	P_2	
Internalized phosphorylated 2 EGF bound EGFR dimer	P_{2i}	
Unphosphorylated Akt	Akt	
Phosphorylated Akt	pAkt	
P1 bound to Akt	P _{1Akt}	
P2 bound to Akt	P_{2Akt}	
Supplemental Information Table 2. Variables names. Rela	ated to Figure 2, 3	
Supplemental Information Table 2. Variables names. Rela	ated to Figure 2, 3	
Supplemental Information Table 2. Variables names. Rela	ated to Figure 2, 3	
Supplemental Information Table 2. Variables names. Rela	ated to Figure 2, 3	
Supplemental Information Table 2. Variables names. Rela	ated to Figure 2, 3	

4.

- 199 Supplemental Information Tables 3, 4, and 5 are big and are attached as separate
- files.

Parameter	Correlation
'k1 '	-0.1794
'kn1 '	0.1565
'k2 '	-0.1888
'kn2 '	0.0022
'kp '	-0.1053
'kdp '	0.1197
'kdeg '	0.2162
'kdegs '	-0.0108
'ki '	0.3173
'kis '	-0.0439
'krec '	-0.2369
'krecs '	-0.0203
'kbind '	0.0932
'kdb '	-0.0382
'kpakt '	0.1088
'kdpakt'	-0.2936
'ksyn '	0.3183
'Akt '	0.0938
'pAkt0 '	0.2874
'sEGFR0'	0.1032
sEGFR steady state	0.3954

Supplemental Information Table 6. Correlation of parameters with steady state pAkt levels at EGF = 10 ng/ml. Related to Figure 4.

Allowed ranges	Experimental		In silico	
		upper	lower	upper
pAkt	lowe bound	bound	bound	bound
0 ng/ml	1.0123	139	1.0123	139
0.1 ng/ml 5min	6.2849	276.6	6.2849	276.6
0.1 ng/ml 15min	7.1279	321.6	7.1279	321.6
0.1 ng/ml 30min	2.0056	265.6	2.0056	265.6
0.1 ng/ml 45min	3.6327	263	3.6327	263
0.31 ng/ml 5min	11.9039	441.8	11.9039	441.8
0.31 ng/ml				
15min	15.9734	540.6	15.9734	540.6
0.31 ng/ml				
30min	6.1803	396.9	6.1803	396.9
0.31 ng/ml	C 1440	201 4	C 1447	201 4
	0.1442	281.4	0.1442	281.4
3.1 ng/mi 5min	14.2768	896	14.2768	896
3.1 ng/ml 15min	20.48	857.6	20.48	857.6
3.1 ng/ml 30min	37.5317	563	37.5317	563
3.1 ng/ml 45min	4.3151	344.4	4.3151	344.4
10 ng/ml 5min	52.7802	1123	52.7802	1123
10 ng/ml 15min	19.1342	869.4	19.1342	869.4
10 ng/ml 30min	12.4531	627.2	12.4531	627.2
10 ng/ml 45min	7.0271	397.3	7.0271	397.3
100 ng/ml 5min	26.5866	1235.6	26.5866	1235.6
100 ng/ml 15min	13.3069	921.2	13.3069	921.2
100 ng/ml 30min	18.592	620.9	18.592	620.9
100 ng/ml 45min	12.5386	462.9	12.5386	462.9
		upper	lower	upper
sEGFR	lower bound	bound	bound	bound
0 ng/ml	102.7394	664.5042	102.7394	664.5042
1 ng/ml	23.4873	198.7291	23.4873	198.7291
100 ng/ml	0.0819	106.7056	0.0819	106.7056

Supplemental Information Table 7. Allowed upper and lower bounds for pAkt and sEGFR when inferring parameter distributions from data. Related to Figure 3 and

4.