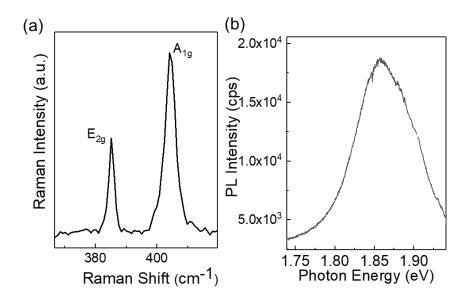
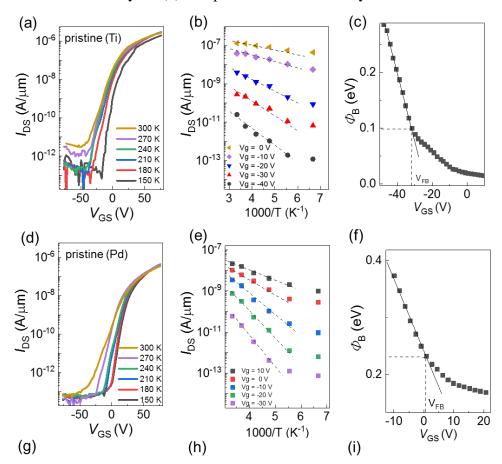
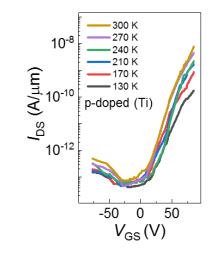
Supporting Information

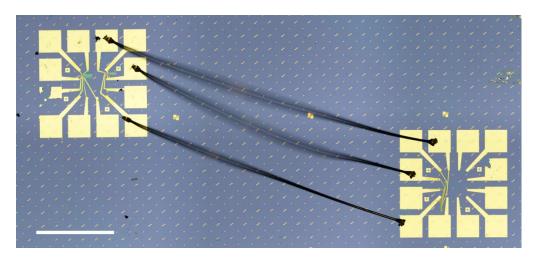
Improved Contacts to p-Type MoS₂ Transistors by Charge-Transfer Doping and Contact Engineering

Siyuan Zhang,^{*} Son T. Le, Curt A. Richter, Christina A. Hacker*

Dr. S. Zhang, Dr. S. T. Le Theiss Research, La Jolla, CA 92037, USA E-mail: siyuan.zhang@nist.gov

Dr. S. Zhang, Dr. S. T. Le, Dr. C. A. Richter, Dr. C. A. Hacker Physical Measurement Laboratory, National Institute of Standards and Technology (NIST) Gaithersburg, MD 20899, USA E-mail: christina.hacker@nist.gov


Figure S1. Characterization of the MoS₂ layer thickness. (a) Raman spectrum of MoS₂ used in this study. The A_{1g} and E_{2g} peak frequencies of 404.1 cm⁻¹ and 385.0 cm⁻¹ confirm it is monolayer.¹ (b) PL spectrum of the monolayer MoS₂.

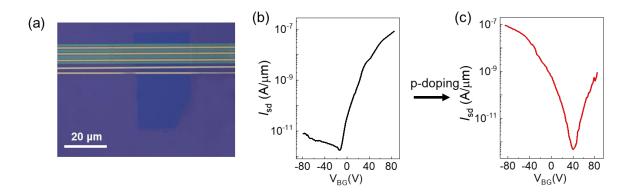

Figure S2. Schottky barrier extraction. For pristine MoS_2 transistor with Ti contacts: (a) experimental transfer characteristics at different operating temperature; (b) Arrhenius-type plot constructed at different gate voltages; (c) extracted Schottky barrier height as a function of applied gate voltages. For pristine MoS_2 transistor with Pd contacts: (a) experimental transfer characteristics at different operating temperature; (b) Arrhenius-type plot constructed at different gate voltages; (c) extracted Schottky barrier height as a function of applied gate voltages. For pristine MoS_2 transistor with Pd contacts: (a) experimental transfer characteristics at different operating temperature; (b) Arrhenius-type plot constructed at different gate voltages; (c) extracted Schottky barrier height as a function of applied gate voltages. The bias voltage fixed at 5 V and the channel length is 5 μm .

Figure S3 Experimental transfer characteristics for p-doped MoS₂ transistor with Ti contacts at different operating temperature. The tunneling regime was not observed.

Figure S4. Optical image of the MoS₂ inverter (scale bar is 1 mm). n-FETs and p-FETs were connected through wire-bonding.

Figure S5. (a) Optical image of the initial design of the inverter. The n-FETs were protected by 100 nm SiO₂. (b) The transfer characteristics of a pristine MoS_2 FET covered by 100 nm SiO₂. (c) The same transistor after 10 min p-doping. $V_{DS} = 5$ V. The channel length *L* is 3 µm. The protected transistor showed p-doping effects after 10 min treatment. These data suggest that the dopants can diffuse beneath the SiO₂ layer.

Reference

1. H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier and D. Baillargeat, Adv. Funct. Mater. **22** (7), 1385-1390 (2012).