Derivations of Equations 9 and 10

To derive equation 9 note that:
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Happily, the integral reduces to a standard form with a simple solution (see, for instance,
Methods of Mathematics Applied to Calculus, Probability, and Statistics, by Richard W.
Hamming, Elsevier Academic Press, 1985):
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Here, C(a, b) is the number of combinations of a items taken b at a time, and ['(z) is Euler’s
gamma function which equals (z—1)! for positive integers. Putting this together (and moving
the constant out of the summation) gives
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Equation 10 assumed that the counts of the findings, {#f = c¢s}, are conditionally
independent. To show this, suppose there are findings fi, ..., f,. We want to show that:
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We will show this by induction on n. It is trivial for n = 1. Suppose it is true for n — 1. We
will suppress the conditions #B, #U which are common to all formulas, and assume they
are part of the knowledge base.



We can express P(#f1 = ¢1,...,#fn = ¢,) as a sum of probabilities of truth-assignments
to the {f;;} that obey the constraints # f; = c1,...,#f, = ¢,. We can also separate each
of these probabilities into a product of two terms where the left term is the probability of a
truth-assignment to the {f; ;} and the right term is the probability of a truth-assignment to
the {fis1,}-

Let {a,} be the set of all truth assignments to {f; ;} that satisfy the constraints, and let
{B,} be the set of all truth assignments to {f;~1,} that satisfy the constraints. Then:
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Undistributing the {ay,}:
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The inner sum is over the set of probabilities of truth assignments that satisfy #f, =
C1...,#fn=cp, so:
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Undistibute again to get:

PE#fi=c1,....#fo=cn) = D_Poy)][PF#fa=c2..., 3 fu = )] (15)

p

Now, the sum is over the set of probabilities of truth assignments that satisfy #f; = ¢y, so:
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Finally, applying the inductive hypothesis gives:
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