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Supplementary Materials

We describe the approach used to calculate the universal phase diagram, its network

determining the node degree distribution in the network in the following sections S1–S2.

representation

and

The T = 0 K phase diagram for a given chemical space is determined by the so-called convex

hull construction. A phase is thermodynamically stable iffit lies on (i.e. is a vertex of) the convex

hull of T = 0 K formation energies of all phases in the chemical space. And phases that are directly

connected by a tie-line, i.e., phases that lie on the same facet of the convex hull, are in equilibrium

with one another. Determining a binary A-B phase diagram requires constructing a 2-dimensional

convex hull of formation energies of all AxBy compounds (composition x and formation energy

being the two dimensions), a ternary A-B-C phase diagram requires constructing a 3-dimensional

convex hull of formation energies of all AxByCz compounds (compositions x and y, and formation

energy being the three dimensions), and so on. The determination of an d-nary phase diagram

requires the construction of an d-dimensional convex hull of formation energies of all the N phases

in the chemical space.

For low dimensions, i.e. d = 2 or 3 (binary or ternary systems), finding the convex hull of

N points (total number of phases) has a worst-case time complexity of O(N log N). For higher

dimensions, standard methods of determining convex hulls such as the Quickhull algorithm, have

worst-case time complexities of O(N [d/2]) (39). For random data, even the average-case time

complexity at higher dimensions scales as O(logd−1N), i.e. exponentially with d (43). Such scaling

behaviors mean that for moderately large number of points N and dimensions d, finding the convex

hull becomes increasingly practically challenging. For instance, to find the convex hull of all known

inorganic materials, even restricting ourselves to experimentally reported compounds in the Open

Quantum Materials Database (OQMD), N ≈ 40, 000 and d = 89, making the calculation of the

convex hull practically impossible with a traditional single-shot approach.
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We tackle this challenge of calculating the convex hull at high-dimensions by using a divide-

and-conquer approach. While the representational complexity of the convex-hull increases at least

exponentially with d, we know from the set of existing materials that not many of them are high-

dimensional by themselves. In fact, 99.5% of materials in the OQMD have 4 unique elemental

components or fewer. Since the stability of a material is determined only within the chemical

subspace of elements that it is made of, we first determine the vertices (i.e. stable materials) of

the 89-dimensional convex hull at a reduced computational cost by computing the convex hulls in

low-dimensional subspaces for each individual material separately. For instance, to determine if the

compound CaMnO3 is stable, it is sufficient to construct the convex hull of all phases CaxMnyOz

in the Ca-Mn-O subspace. This process of constructing convex hulls separately for each unique

chemical subspace yields all the vertices of the full convex hull: ∼ 2.1 × 104 stable materials out

of the >5.5× 105 total materials calculated in the OQMD. Having determined the vertices of the

full convex hull, in the second stage, we exhaustively evaluate the existence of a tie-line between

any given pair of stable compounds in the OQMD by constructing the convex hull of formation

energies in the combined chemical spaces of such candidate pairs, rather than the full 89-dimensional

space itself. For example, to determine whether there exists a tie-line between Li2O and NaCl, we

construct the Li-Na-Cl-O convex hull, and find that there indeed exists a Li2O-NaCl tie-line. In

contrast, from a Na-K-F-Cl convex hull we find that NaCl and KF, in fact, “react” to form a

NaF-KCl two-phase equilibrium. Overall, we construct convex hulls for all 2.1×104C2 ≈ 2.3 × 108

stable phase combinations, and find a total ∼41× 106 tie-lines.

The computational cost of constructing a convex hull for a unique chemical subspace is ex-

pectedly highly dependent on the number of components, and ranges from a few seconds to a few

minutes on a standard desktop computer utilizing a single core (some sample times for checking if

a tie-line exists between two known materials are provide in Table 1). With a conservative estimate

of 15–20 seconds per tie-line, the total time required to exhaustively evaluate all possible tie-lines

is more than 1 million CPU hours.

We then represent stable compounds as nodes and tie-lines as edges, thereby generating the

“universal phase diagram” as a complete thermodynamic phase stability network of all inorganic ma-

terials. We use the Qhull library (39) as implemented in the qmpy package (pypi.org/project/qmpy)

for all the convex hull calculations reported in this work.

https://pypi.org/project/qmpy


Phase 1 Phase 2 # Components Time (s)
Na2O KCl 4 ∼3
Fe2S3 Li2MnO4 5 ∼6
Li3PS4 SrTiO3 6 ∼8
Ba2Li3TaN4 LiCoO2 6 ∼14
Ba2Li3TaN4 NaCoO2 7 ∼32
Mn2Hg2SF6 Li4CrCoO6 8 ∼34
Mn2Hg2SF6 Ba2Ca3Tl2Cu4O12 9 ∼65

The time required is highly dependent on the number of components, i.e. unique elements in the combined
chemical space, and further depends on the number of all known compounds in the chemical space. Each
calculation was performed on a standard desktop computer utilizing a single core.

The probability distribution of node connectivity (number of tie-lines a material has) in the

phase stability network of all inorganic materials is heavy-tailed. We examine which of the common

heavy-tailed distributions best fit our empirical data. In particular, several well-studied techno-

logical, social, and biological networks are thought to have power-law distributions. Is the ther-

modynamic network of materials similar to other common natural/man-made networks exhibiting

power-law behavior or not? To answer this question, we directly compare pairs of heavy-tailed

distributions using the method of log likelihood ratios as described in Clauset et al. (42). For the

full materials network, we find that a lognormal distribution (µ = 8.06, σ = 0.65) is the best fit by

far (see Fig. 1).

We note that most empirical phenomena obey power-laws only for values greater than some

minimum value, i.e. only the tail of the distribution follows a power-law. We investigate if this

is indeed the case for the materials network. We find the optimal lower-bound for a power-law

behavior, kmin, for the materials network as the value that minimizes the Kolmogorov-Smirnov

distance between the data and the fit (42). We find kmin for the materials network = ∼5800,

and the power-law scaling parameter α = 4.4. We note that a kmin of 5800 retains only 17% of

the overall materials network (i.e. only 17% of all materials have more than 5800 tie-lines each).

Furthermore, even over this tail region of the degree distribution, a lognormal distribution is a

better fit (see the inset in Fig. 1): the log likelihood ratio R for power-law versus lognormal is

−7.15 with a p-value of 0. In other words, even in the kmin = 5800 region (tail) of the materials

Table S1. Sample compute times for calculating the existence of a tie-line between two phases. 
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The complementary cumulative
distribution function of the node degree in the network of all materials is shown as dashed black lines.
Power-law (PL), lognormal (LogN), and exponential (Exp) distributions fit to the data are shown as solid
red, blue, and grey lines, respectively. The inset shows power-law and lognormal fits to the tail of the degree
distribution for degree k > kmin = 5800.

network, the lognormal distribution fits the data far better than a power-law.

All analyses of fits of degree distributions mentioned above were performed with the powerlaw

package (41). We note that the graph-theoretic analyses reported in this work (e.g. local clustering

and centrality meaures) performed with the graph-tool package (40), while requiring more than 8 G

of memory, take a few hours on a standard desktop utilizing up to 4 cores.

A comparison of the nobility index Zn of elements against elemental properties such as elec-

tronegativity, boiling point, melting point, atomic volume, etc., as collected by Ward et al. (33)

shows little correlation between Zn and other properties, with Pearson correlation coefficients close

to 0 for most properties (see Fig. for a sample comparison set). This indicates that the no-

bility index defined in this work truly encodes new information about an element/a material not

adequately captured by other common properties.

Further, data-driven metrics such as nobility index capture materials knowledge that is not

immediately intuitable or is sometimes even counter-intuitive. For instance, intuition derived only

from a few elements and some of their compounds may imply that multivalent elements (e.g.

Fig. S1. Fitting node connectivity data to candidate distributions. 
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transition metals) are likely to have a higher number of tie-lines than monovalent elements (e.g.

alkali metals) simply by the virtue of a higher number of compound-forming possibilities. However,

data from all materials known so far shows no correlation between number of compounds formed

by an element and its total number of tie-lines (i.e. nobility; see Fig. 3). In fact, monovalent metals

seem to form more compounds on average than their multivalent counterparts!

�2.5 0.0 2.5
0

2000

4000

6000

B
oi

lin
g

po
in

t(
K

)

⇢ = �0.03

�2.5 0.0 2.5
0

10

20
D

en
si

ty
(k

g
m

�
3 ) ⇢ = 0.24

�2.5 0.0 2.5
0

2

4

E
le

ct
ro

ne
ga

tiv
ity ⇢ = �0.02

�2.5 0.0 2.5

10

20

Io
ni

za
tio

n
en

er
gy

(e
V

)

⇢ = 0.24

�2.5 0.0 2.5
0

2000

4000

M
el

tin
g

po
in

t(
K

)

⇢ = 0.02

�2.5 0.0 2.5

5

10

15

G
ro

up
nu

m
be

r ⇢ = 0.13

�2.5 0.0 2.5

50

100

Vo
lu

m
e

(A
ng

3 /
at

om
)

⇢ = �0.01

�2.5 0.0 2.5
0

50

A
to

m
ic

nu
m

be
r ⇢ = 0.08

Nobility index (Zn)

There is little to no
correlation between the nobility index of an element and any of its properties such as (counterclock-wise
from top-left) boiling point, density, electronegativity, first ionization energy, atomic number, atomic volume,
group in the periodic table, and melting point. The Pearson correlation coefficient ρ for each comparison is
on the top-left of the corresponding panel.

Fig. S2. Comparison of nobility index versus common elemental properties. 



Multivalent metals indicated are all transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, Mo, W, Hf, Pd, Pt), and
monovalent metals indicated are mostly alkali/alkaline earth metals (Li, Na, K, Rb, Be, Mg, Ca, Sr, Al, Zn).

Fig. S3. Comparison of number of compounds formed by an element versus its node degree. 
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