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1 Supplementary Notes

SI Note 1. Out of all 616 pneumococcal strains (Supplementary Table 4a), after the ancestral reconstruction
step 485 were associated with susceptibility to ceftriaxone, 484 to erythromycin, 341 to benzylpenicillin, 480
to trimethoprim-sulfamethoxazole, and 551 to tetracycline (Supplementary Table 5a). In case of gonococcus,
ancestral reconstruction was needed only for cefixime (62 records affected). Out of all 1102 gonococcal strains
(Supplementary Table 4b), 808 were associated with susceptibility to azithromycin, 833 to cefixime, 508 to
ciprofloxacin, and 1033 to ceftriaxone (Supplementary Table 5b). In our subsequent experiments, if original
MIC data were not available for the best match in the RASE database, the relevant strain was tested to
confirm resistance phenotype (Methods).

SI Note 2. We evaluated how long it took for resistance genes to be reliably detected in nanopore reads.
For SP02 we observed that at least 25 minutes were needed to detect resistance (i.e., to observe all resistance
genes at least once), assuming that the genes in question can be unambiguously identified in nanopore data
despite the high per-base error rate, and that the presence of the loci is directly linked to the resistance
phenotype (Extended Data Fig. 2). If this is not the case (for example if resistance is conferred by a single
SNP, requiring coverage with multiple reads), further delays would be expected. Thus, genomic neighbor
typing can offer a time advantage compared to methods based on identifying the presence of resistance genes
even in a sample of DNA from a purified isolate as opposed to a metagenome, potentially allowing for more
rapid changes to antimicrobial therapy.

SI Note 3. We originally attempted to evaluate a multidrug-resistant isolate (GCGS0938 in the GISP
collection); however, RASE placed it onto a distant part of the phylogeny and identified it as GCGS0324 or
GCGS1095. A subsequent analysis revealed that the sample was mislabeled and that it was indeed GCGS1095,
i.e., the same strain as in GC02, although from a different stock.

SI Note 4. We evaluated how RASE performs in extremely unfavorable sequencing conditions; we sequenced
an isolate (GC05) from the GISP collection with the use of an expired flow cell (purchased in October 2017,
expired in December 2017, and the sequencing done in April 2018). In consequence, we obtained only 3.5
Mbps of low-quality reads (only 7% of matching k-mers compared to 20% obtained in the other isolates)
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(GC05 in Table 2a). An experiment with such a low yield would normally be discarded; despite that RASE
provided correct and stabilized predictions (once the first long read was obtained from the sequencer at
t=21mins).

SI Note 5. We evaluated how genomic neighbor typing would perform if RASE used Kraken (Wood and
Salzberg 2014) instead of ProPhyle (Břinda et al. 2017) for the read-to-strain comparison (the matching
step in Fig. 1). Both tools use k-mer-based matching to assign sequencing reads to a phylogenetic tree,
but with several key differences. Whereas Kraken stores for each k-mer the lowest common ancestor (LCA)
only, assigns reads to the LCA of the best hits and ignores low-complexity k-mers, ProPhyle indexes all
k-mers using an exact index and can thus resolve ambiguities both on the level of individual k-mers and read
assignments.

To compare both tools, we implemented a RASE wrapper for Kraken (Methods) and applied that to the
same read and database data. We then compared the final inference results obtained with Kraken (with k=18
and k=31) with the results obtained from the standard RASE pipeline (Supplementary Table 7).

For S. pneumoniae and N. gonorrhoeae, the number of inference errors increased more than 1.5x and 1.7x,
respectively (in case of both k-mer sizes). In the case of N. gonorrhoeae, RASE-Kraken showed large
systematic biases in neighbor typing, assigning 16 (k=18) and 18 (k=31) out of the gonococcal 33 samples to
a single strain (GCGS1028), whereas RASE-ProPhyle identified this strain only once. While in the WHO
dataset the numbers of RASE-ProPhyle and RASE-Kraken errors were comparable (10 vs. 12 and 11), in the
RaDAR-Go dataset it increased from 1 to 8 and 10. Overall, the obtained results suggest that Kraken is less
suited for the use in genomic neighbor typing than ProPhyle.

SI Note 6. We analyzed the results of the WHO gonococcal samples (Supplementary Table 1). First, we
evaluated the RASE ability to predict MLST sequence types. In all cases, either RASE predicted the correct
sequence type (n=9), or the true sequence type was not present in the reference database (n=5). The latter
was the case only in the samples F through P, which belonged to the initial 2008 WHO reference panel
and were collected primarily in the late 1990s, with the majority of specimens isolated from the Eastern
Hemisphere (Unemo et al. 2009). The GISP database, comprising strains collected in the US from 2000–2013,
may not be representative then of the circulating lineages in those regions during that time span, which could
result in both sequence type and antibiogram prediction errors. However, we observed perfect prediction of
sequence types in the additional 2016 WHO reference strains comprising U through Z that were collected in
2007 and onwards (Unemo et al. 2016).

We next sought to evaluate the resistance predictions. In 7 cases (F, K, N, O, P, U, W), the antibiograms were
identified fully correctly; in 4 (G, V, X, Z) and 3 cases (L, M, Y) one and two mistakes were made, respectively.
To explain these discrepancies, we inferred a recombination-corrected phylogenetic tree comprising the GISP
database isolates as well as the WHO samples (Supplementary Data 1). With the exception of G and Y, the
WHO isolates and their respective RASE-predicted best matches were the closest GISP isolates, indicative of
accurate matching by RASE. While branch lengths of L, M and V on the tree reveal that the corresponding
parts of the phylogeny are not well sampled in the database, the X, Y, and Z samples emerged from lineages
that are well-represented but have acquired an atypically high level of cephalosporin resistance. Whereas X
and Z acquired a novel resistance-conferring mosaic penA allele (Ohnishi et al. 2011), Y acquired a novel
active site mutation in the context of a pre-existing mosaic penA allele (Unemo et al. 2011). While both
of these adaptations resulted in high-level resistance, these mutations also appear to incur fitness costs in
vitro and in the gonococcal mouse model (Vincent et al. 2018). In line with this, these strains have only
been sporadically observed in genomic surveillance of clinical isolates. These results highlight how ancestral
or emerging resistant lineages may not be well-captured by sequence-based methods including RASE and
emphasize the value of continuous updating of the RASE database for public health.

SI Note 7. Further analysis of the reads from SP12 using Krocus (Page and Keane 2018) suggested that
the pneumococcal DNA present was from the ST180 clonal complex, and matched specifically either to
the sequence type ST180 or ST3798. This is consistent with identification as serotype 3, because this
clonal complex contains the great majority of strains with this capsule type, which historically has not been
associated with resistance (Nicholas J. Croucher et al. 2013). However, improved sampling and study of this
lineage has recently found highly divergent subclades that are associated with resistance. These lineages were
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previously rare, and thus were less likely to be included in our database, but now are increasing in frequency
(Azarian et al. 2018). In this case, ST3798 is found to be in clade 1B, which is notable for exhibiting sporadic
tetracycline resistance. Again, the failure to match to this is a result of the original database not containing
a suitable example for comparison.

SI Note 8. The suitability of genomic neighbor typing for a specific species-drug combination is a result of
complex tradeoffs, which ultimately must be tested empirically. Generally speaking, the method relies on the
resistance phenotype being correlated with the variation across the genome. In practice, this means that any
situation reducing this correlation would limit the application. This includes too little within-species genomic
variation, as this would lower the precision of nearest neighbor identification. Another example is resistance
emerging rapidly on independent and diverse genomic backgrounds breaking down the correlation. Overall,
the criteria for suitability of genomic neighbor typing are a fruitful subject for future research/

2 Supplementary Tables

Supplementary Table 1. Predicted phenotypes of N. gonorrhoeae for the WHO strains. Pre-
dicted phenotypes of N. gonorrhoeae for the WHO strains. The table displays actual and predicted resistance
phenotypes (S = susceptible, R = non-susceptible) for individual experiments, as well as information on
match of the predicted MLST sequence type.

Supplementary	Table	1.	Predicted	phenotypes	of	N.	gonorrhoeae	for	the	WHO	strains

Sample Region
Lineage

confidently
detected

Matched	k-
mers

Antibiogram	
AZM

Antibiogram	
CFM

Antibiogram	
CIP

Antibiogram	
CRO MLST

match
Actual Best

match Actual Best
match Actual Best

match Actual Best
match

WHO	F	(2008) Canada no 17% S S! S S S S S S OoD
WHO	G	(2008) Thailand no 14% S S S S S R S S OoD
WHO	K	(2008) Japan yes 20% S S R R R R S S yes
WHO	L	(2008) Asia yes 20% S S S R R S R R OoD
WHO	M	(2008) Philippines yes 21% S R S S R S S S yes
WHO	N	(2008) Australia no 19% S S S S R R S S OoD
WHO	O	(2008) Canada yes 20% S S S S S S S S yes
WHO	P	(2008) USA yes 19% R R S S S S S S OoD
WHO	U	(2016) Sweden yes 20% R R S S S S S S yes
WHO	V	(2016) Sweden yes 19% R S S S R R S S yes

WHO	W
(2016) Hong	Kong yes 20% S S R R R R S S yes

WHO	X	(2016) Japan yes 21% S S R R R R R S yes
WHO	Y	(2016) France no 18% S S R S R R R S yes
WHO	Z	(2016) Australia yes 19% S S R R R R R S yes

	

Legend

Correct	prediction
Incorrect	prediction
Cannot	be	evaluated

S Susceptible
R Non-susceptible
! Low-confidence	call
OoDOut-of-database

Supplementary Table 2. Additional MIC measurements for selected strains of S. pneumoniae.
The table displays results from strain retesting. Each record contains date when the retesting was done, the
antibiotic, the measured MIC, and the corresponding resistance category.

Supplementary Table 3. Overview of performed resistance tests for a) S. pneumoniae and b)
N. gonorrhoeae. For all sequencing experiments, the table displays the best matching strains, their MICs,
and all measurements of database MICs (the original reported values or categories inferred using ancestral
state reconstruction when not available, retested values, and the resulting resistance categories).

Supplementary Table 4. Metadata for all strains included in the a) S. pneumoniae and b)
N. gonorrhoeae RASE database. Each record contains the strain’s taxid, lineage, serotype (for S.
pneumoniae only), MLST sequence type, order in the phylogenetic tree, and three fields related to resistance
for every antibiotics: the ‘_mic’, ‘_int’, ‘_cat’ fields contain the original published MIC information (possibly
corrected after retesting), the extracted MIC interval, and the resulting category after ancestral state
reconstruction (S = susceptible, R = non-susceptible, s = unknown but reconstructed susceptible, r =
unknown but reconstructed non-susceptible), respectively.
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Supplementary Table 5. Prevalence of resistance phenotypes across lineages in the a) S.
pneumoniae and b) N. gonorrhoeae RASE database. Statistics on prevalence of resistance phenotypes
across lineages before and after the ancestral state reconstruction step.

Supplementary Table 6. Sensitivity and specificity of resistance and susceptibility inference in
all the datasets. The table shows the number of true positive (TP), true negative (TN), false negative (FN),
and false positive (FP) calls for resistance/susceptibility in individual datasets and the resulting sensitivity
and specificity.

Supplementary Table 7. Comparison of ProPhyle- and Kraken-powered genomic neighbor
typing. The table shows the final resistance and susceptibility inference calls for the ProPhyle (k=18) and
Kraken (k=18 and k=31) classifiers plugged into RASE.

3 Quantification of the association of bacterial clones with antibi-
otic resistance

3.1 Introduction

In this document, we show how to quantify the association of bacterial clones with antibiotic resistance. For
a given bacterial species and all antibiotics of interest, we construct optimal predictors of resistance from
lineages and calculate the associated Receiver Operating Characteristics (ROC) curve and its Areas under the
Curve (AUC). Comparing the resulting curves and areas among antibiotics helps to understand the different
levels of associations.

We use this framework to show that for the pathogens Streptococcus pneumoniae and Neisseria gonorrhoeae
antibiotic resistance is highly associated with the population structure. This provides evidence of the
suitability of genomic neighbor typing as a diagnostic method for these pathogens.

3.2 Optimal lineage-to-resistance classifiers

3.2.1 Model

Let us consider a bacterial species and assume that it has g lineages. For the purpose of this document,
lineages are arbitrary classes of equivalence; they can be defined based on sequence typing (e.g., MLST
(Maiden 2006)) or clustering (e.g., using BAPS (Cheng et al. 2013) or PopPUNK (Lees et al. 2019)). Assume
that lineages are equally probable; i.e., a randomly drawn isolate x comes from every lineage i with the
probability 1

g . Assume that for every isolate x, we can always correctly determine its lineage `(x). In a
clinical setting, this could mean that we can always determine isolate’s MLST sequence type.

Let us consider an antibiotic and assume that every isolate is either resistant or susceptible to this antibiotic.
Assume that resistance within a lineage i is iid with the Bernoulli distribution and let ri denote the probability
of resistance. The constants ri can be determined based on epidemiological data or as proportions of resistance
isolates in individual lineages from population-level studies.

3.2.2 Lineage-to-resistance classifiers

For a given species, an antibiotic and fixed probabilities of resistance within lineages r1, . . . , rg, we construct
memoryless probabilistic resistance classifiers C of the form

C(`(x))→ {’S’, ’R’}.

In other words, for every isolate we identify its lineage and the classifier predicts resistance based on the
knowledge of the lineage.
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SI Fig. 1: An illustration of the ROC diagram for a species with 4 lineages with resistance probabilities
(ri)4

i=1 = (0.1, 0.4, 0.8, 0.9). The grey area corresponds to all the possible lineage-to-resistance classifiers
C(R1,R2,R3,R4) while the red points are the “vertex” classifiers with integer parameters; i.e., Ri ∈ {0, 1}
for every i ∈ {1, . . . , g}. RL denotes the number of lineages for which resistance is reported by an integer
classifier, i.e.,

∑
i Ri. The optimal classifiers that maximize the AUC lie on the piece-wise linear red curve,

which we term the optimal ROC curve.

All such classifiers can be parametrized as C(R1,...,Rg), where Ri ∈ [0, 1] is the probability of reporting
resistance given the sample has been identified as belong to the lineage i. For instance, the classifier C(0,...,0)
always assigns ‘S’, C( 1

2 ,..., 1
2 ) assigns ‘R’ and ‘S’ like a fair coin, C(1,...,1) always assigns ‘R’, and C(1,0,...,0)

always assigns ‘R’ for the first lineage and ‘S’ for the other ones.

With the knowledge of the probabilities of resistance (r1, . . . , rg) within individual lineages 1, . . . , g, we can
express false positive rate (FPR) and true positive rate (TPR) as a function of the classifier parameters
(R1, . . . , Rg).

Let us use the standard notation:

FPR = FP
FP + TN and TPR = TP

TP + FN

where

TP = #true positives; i.e., resistant isolates predicted as resistant
FP = #false positives; i.e., susceptible isolates predicted as resistant
FN = #false negatives; i.e., resistant isolates predicted as susceptible
TN = #true negatives; i.e., susceptible isolates predicted as susceptible

Given our assumptions, we can estimate the performance of a classifier CR1,...,Rg as

TP ≈ N
g

∑g
i=1 riRi FP ≈ N

g

∑g
i=1(1− ri)Ri

FN ≈ N
g

∑g
i=1 ri(1−Ri) TN ≈ N

g

∑g
i=1(1− ri)(1−Ri)

where N is the number of samples tested. We then obtain the following estimates:

FPR ≈
∑g

i=1(1− ri)Ri∑g
i=1(1− ri)

and TPR ≈
∑g

i=1 riRi∑g
i=1 ri
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SI Fig. 2: S. pneumoniae ROC curves and the corresponding AUCs for ceftriaxone (cro), erythromycin
(ery), penicillin (pen), trimethoprim (sxt), and tetracycline (tet).

Using these formulae, we can map every classifier C(R1,...,Rg) to the ROC space by

f(R1, . . . , Rg)→
(∑g

i=1(1− ri)Ri∑g
i=1(1− ri)

,

∑g
i=1 riRi∑g

i=1 ri

)

It is easy to see that the map f is linear. Since the set of all possible classifiers is the cube [0, 1]g in the
parameter space, it is convex and its image in the ROC space must be convex too; an example is provided
in SI Fig.~1. Moreover, the image of the cube is equal to the convex hull of the images of individual cube
vertices (red points in SI Fig.~1).

3.2.3 Optimal ROC curves

Our aim now is to find the optimal ROC curve maximizing the AUC (the red curve in SI Fig.~1). Even
though the curve corresponds to infinitely many classifiers, it is a piece-wise linear function which is fully
defined by the g + 1 “vertex’ ’ classifiers C(0), . . . , C(g) lying on the line intersections. Enumerating this
classifier sequence corresponds to putting lineages to the order in which they are switched from susceptible
to resistant (i.e., Ri = 0→ Ri = 1) along the red line. The first classifier C(0), (0, 0) in the ROC diagram,
corresponds to all lineages being marked as susceptible, while the last classifier, C(g), (1, 1) in the diagram to
all lineages being predicted marked as resistant.

The optimal ROC curve can be computed in multiple different ways. For instance, we can enumerate all cube
vertices in the parameter space, map them to the ROC space, compute the convex hull, and extract its upper
part. More efficiently, we can construct the classifier sequence directly in the ROC diagram by the following
iterative process. We start at (0, 0); i.e., with all lineages marked as susceptible, and at every step we switch
one susceptible lineage to resistant so that the corresponding step in the ROC graph has maximal possible
slope, and we continue until all lineages are marked as resistant. If lineages are equally probable, it is easy to
see that this order corresponds to sorting lineages by ri.

3.3 Results

We applied the method to 616 pneumococcal genomes from a carriage study in Massachusetts children
(Nicholas J Croucher et al. 2013; Croucher et al. 2015) and 1102 clinical gonococcal isolates collected from
2000 to 2013 by the Centers for Disease Control and Prevention’s Gonococcal Isolate Surveillance Project
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SI Fig. 3: N. gonorrhoeae ROC curves and the corresponding AUCs for azithromycin (azm), cefixime (cfm),
ciprofloxacine (cip), and ceftriaxone (cro).

(GISP) (Grad et al. 2016). For all isolates, we inferred the resistance categories as described in the main
manuscript, including the ancestral state responstruction step. As lineages we used the sequenced clusters
computed using Bayesian Analysis of Population Structure (BAPS) (Cheng et al. 2013).

Lineages of S. pneumoniae are predictive for benzylpenicillin, ceftriaxone, trimethoprim-sulfamethoxazole,
erythromycin, and tetracycline resistance with AUC ranging from 0.90 to 0.97 (SI Fig. 2). In N. gonor-
rhoeae ciprofloxacin, ceftriaxone, and cefixime attained comparably large AUCs (from 0.93 to 0.98) whereas
azithromycin demonstrated lower association (AUC 0.80) (SI Fig. 3).
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