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Supplementary Figure 1. Chirality of the Raman laser. A, Dependence of the Raman chirality

on the ratio of powers in the two pump modes and the asymmetric gain factor. Parameters:

g0/2π = 7 MHz, κ/2π = 2.6 MHz, KR/2π = 1.5 MHz, GR/2π = 0.02 MHz, ωP/2π = 1550 nm,

ωR/2π = 1650 nm, Pin,total = 2.5 mW. B, Dependence of the Raman chirality on the initial

condition of the two Raman modes. The parameters are the same as that in A but with the

identical input power from the two directions.
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Supplementary Figure 2. A, Dependence of the pump chirality on the ratio of the two pump

powers and their phase difference. Parameters: gP/2π = 5 MHz, KP/2π = 1.5 MHz, δ = 0.002,

Pin,total = 2 mW. B, Dependence of the Raman chirality on the ratio of pump powers with phase

difference averaged.
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Supplementary Note 1: Nonlinear coupled-mode equation

We start from the Maxwell equation for the pump (Raman) electric field EP (ER) in a

nonlinear resonator,

∇× (∇× EF)− n2
F

c2
∂2EF

∂t2
= − 1

ε0c2
∂2PNL,F

∂t2
(1)

where F = P,R corresponds to pump and Raman fields (similarly hereinafter), nF is the

refractive index of the material, ε0 denotes the vacuum dielectric constant, and c stands for

the speed of light in vacuum. Now we focus on the Raman-related third-order nonlinear

polarization PNL,R, which consists of both pump and Raman contributions [1],

PNL,R = 6ε0χ
(3)
PR(EP · E∗P)ER + 3ε0χ

(3)
RR(ER · E∗R)ER, (2)

where χ
(3)
PR (χ

(3)
RR) is the third-order nonlinear susceptibility for the process ωR = ωR+ωP−ωP

(ωR = ωR+ωR−ωR), and ωP (ωR) is the angular frequency of the pump (Raman) field. Both

χ(3) terms contain Kerr effects, and the χ
(3)
PR term also contains Raman gain for the Raman

field, which can be expressed using the Kerr nonlinear index n(2) and the bulk Raman gain

coefficient gR:

PNL,R = nPnRε
2
0c(4n

(2)
PR − i

c

2ωR

gR)(EP · E∗P)ER + 4n2
Rε

2
0cn

(2)
RR(ER · E∗R)ER, (3a)

n
(2)
PR =

3

2nPnRε0c
Reχ

(3)
PR, (3b)

n
(2)
RR =

3

4n2
Rε0c

Reχ
(3)
RR, (3c)

gR = − 12ωR

ε0nPnRc2
Imχ

(3)
PR. (3d)

Coupling between the counter-propagating waves will lift the degeneracy and results in

two standing-wave modes for both pump and Raman fields. Now we assume the electric

fields of these modes are

EF,µ(r, t) = aF,µAF,µ(r)e−iωFt, (4)

where µ = 1, 2 stands for the low- and high-frequency standing-wave modes. The AF,µ(r) is

the spatial part of the modes and aF,µ(t) is the field amplitude, both properly normalized

separately for pump and Raman fields, with

δµν =
1

2

∫
εF(r)(AF,µ(r) ·A∗F,ν(r))d3r, (5a)

|aF,µ|2 =
1

2

∫
εF(r)(EF,µ(r, t) · E∗F,µ(r, t))d3r, (5b)
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where |aF,µ|2 corresponds to the total energy of the mode and εF(r) the distribution of the

dielectric constant.

Using the slowly-varying envelope approximation |∂2a/∂t2| � ω|∂a/∂t|, we expand the

Raman part of Supplementary Equation 1 with these two Raman modes and two pump

modes to get

daµ
dt

AR,µ = (−1)µ+1ig0aµAR,µ

+
nP

nR

ε0c(2iωRn
(2)
PR +

c

4
gR)[(aP,σAP,σ) · (aP,ρAP,ρ)

∗](aνAR,ν)

+ 2iωRε0cn
(2)
RR[(aσAR,σ) · (aρAR,ρ)

∗](aνAR,ν),

(6)

where repeated Latin indices are summed over, and all subscripts “R” in the field ampli-

tudes are omitted from here on. The coupling strength g0 between the Raman propagating

waves by the backscattering leads to a splitting of 2g0 and manifests itself as the detun-

ing term. Now we take advantage of the orthogonality of modes and left-multiply with

1
2

∫
εR(r)A∗R,µd

3r to find the equation of motion,

daµ
dt

= (−1)µ+1ig0aµ

+
1

nPnR

(4iωRcn
(2)
PR +

c2

2
gR)

fPR,µνρσ
VPR

aνa
∗
P,ρaP,σ

+
1

n2
R

4iωcn
(2)
RR

fRR,µνρσ

VRR

aνa
∗
ρaσ,

(7)

where the second-order mode volume and the intermodal coupling factor are given as

VFR =

[∫
(
ε0n

2
F

2
A∗F,cw ·AF,cw)(

ε0n
2
R

2
A∗R,cw ·AR,cw)d3r

]−1
, (8a)

fFR,µνρσ = VFR ×
∫

(
ε0n

2
F

2
A∗F,ρ ·AF,σ)(

ε0n
2
R

2
A∗R,µ ·AR,ν)d

3r. (8b)

Here we have used the spatial parts of a propagating wave AF,cw ≡ (AF,1 − iAF,2)/
√

2 in

the mode volumes for later convenience. Similar derivations of the nonlinear coupled-mode

equation can also be found in Refs. [2–4].

For a circular cavity, we have AF,1 ∝ cosmFφ and AF,2 ∝ sinmFφ, where mF is the

angular momentum number, φ is the azimuthal coordinate of the cavity, and the same

polarization is assumed for clockwise (CW) and counter-clockwise (CCW) waves. Therefore,

by integrating in the φ direction, the intermodal coupling factor can be calculated explicitly
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as

fPR,µνρσ = δµνδρσ, (9a)

fRR,µνρσ =
1

2
(δµνδρσ + δµσδνρ + δµρδνσ). (9b)

Changing into the CW-CCW basis with

aF,cw =
1√
2

(aF,1 + iaF,2), (10a)

aF,ccw =
1√
2

(aF,1 − iaF,2), (10b)

the coupled-mode equations now read

dam
dt

= ig0am′ + (GR + iKP)|aP|2am + iKR(|am|2 + 2|am′|2)am, (11)

where |aP|2 = |aP,1|2 + |aP,2|2 is the total pump intensity, m and m′ (m 6= m′) stands for

CW and CCW, and we have defined the coefficients as

GR =
c2

2nPnRVPR
gR, (12a)

KP =
4ωRc

nPnRVPR
n
(2)
PR, (12b)

KR =
4ωRc

n2
RVRR

n
(2)
RR. (12c)

For an actual system where dissipation is considered and a waveguide is used to couple

out the Raman modes, the coupled-mode equations acquire additional loss and detuning

terms,

dam
dt

= (i∆ + iKP|aP|2 −
κ

2
)am + ig0am′ +GR|aP|2am + iKR(|am|2 + 2|am′ |2)am, (13)

where ∆ is the detuning with respect to the reference frequency of original Raman mode,

and κm is the decay rate. Switching to the resonance rotating frame in which the Raman

field has zero total detuning, the coupled-mode equations read

dam
dt

= ig0am′ − κ

2
am +GR|aP|2am + iKR(|am|2 + 2|am′ |2)am. (14)

Supplementary Note 2: Asymmetric gain effect

In this section, we provide an explanation for the pump direction-dependent Raman chirality.

As shown in Supplementary Equation 14, the pump state (i.e. CW and CCW components
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of pump) does not appear in the equation because the Raman process is incoherent and

does not distinguish between different momenta of pump photons. This property has been

well recognized in nonlinear optics as the strengths of the forward and backward stimulated

Raman scattering are equal in an ideal medium [1]. Nevertheless, previous studies also

reported on forward-dominating stimulated Raman scattering, which is attributed to effects,

like a difference in the cross section, self-focusing effect, etc. [5]. Taking such an asymmetric

scattering strength into account, we rewrite Supplementary Equation 14 in the general form,

daR,m
dt

= −κ
2
aR,m+(GR,m|aP,m|2+GR,m′ |aP,m′|2)aR,m+ig0aR,m′ +iKR(|aR,m|2+2|aR,m′ |2)aR,m,

(15)

incorporating the evolution of pump modes,

daP,m
dt

=− κ0 + κin
2

aP,m −
ωP
ωR

(GR,m|aR,m|2 +GR,m′|aR,m′ |2)aP,m + i∆aP,m + igPaP,m′+

iKP(|aP,m|2 + 2|aP,m′ |2)aP,m +
√
κinain,

(16)

where GR,m(m′) denotes the Raman gain coefficient from the m (m′)-direction pump, and

GR,m = (1 + δ)GR,m′ with the asymmetric factor δ; κ0 (κin) is the intrinsic (coupling) loss of

the pump mode, and ∆ is the detuning between the input and the cavity resonant frequency;

ain is the input intensity with the power of |ain|2. Note that here the linear coupling (with

the strength gP) and the optical Kerr effect (with the coefficient KP) of the pump counter-

propagating modes are also involved as a general model of the interaction.

When the high-frequency pump mode (out of phase) is excited and the input is beyond the

chirality threshold, the pump intracavity field exhibits a chiral propagation with unbalanced

CW and CCW intensities of the pump mode, as revealed in Ref. [4]. As the input power

keeps increasing and reaches the laser threshold, a Raman laser is excited with balanced bi-

directional emission initially. When the laser intensity exceeds the chirality threshold, the

unidirectionality of the Raman laser emerges. Even though the Raman gain coefficients from

two directions are only slightly different, distinct chirality behavior appears, as shown by the

theoretical results in Supplementary Figure 1. For example, for a positive asymmetric factor

δ of 0.001 (for which the forward SRS is slightly stronger than the backward SRS), when the

CW and CCW pump intensities are strictly identical, the chirality direction of the Raman

laser is completely random without any preferred direction, as shown in Supplementary

Figure 1B. However, once the pump intensities are not equal, the chirality direction becomes
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dependent on the dominant direction of the pump. For a negative value of δ, the inverse

phenomenon is obtained. In short, the nature of the pump direction-dependent Raman

chirality is that the linear coupling is canceled out but the Kerr effect of the Raman laser,

and the asymmetric gain is utilized by the unbalanced pump field. Here the chirality of the

pump field could also be obtained directly by the unbalanced input in absence of the linear

coupling of the pump mode.

Furthermore, we now consider the phase fluctuation of the input light as present in our

experiment. Under bi-directional input, the laser is divided into two paths, i.e., ain,1 =

A1e
iωint+φ1(t) and ain,2 = A2e

iωint+φ2(t), where Ai and ωin are the amplitude and frequency

of the input light, respectively. φi(t) is the additional phase induced by mechanical per-

turbations or thermal fluctuations in each path from the tunable diode laser to the cavity.

Therefore, the bidirectional inputs are subject to a drift of the phase difference extending

over time from 0 to 2π. With these different phases of the input, the chirality of the pump

cavity field is obtained through the theoretical calculations as shown in Supplementary Fig-

ure 2A. We further analyze the dependence of the averaged chirality on the input ratio, as

plotted in Supplementary Figure 2B, which is similar to figure 4 in the main text. It is

found that when the inputs are balanced, the emergence of the CW and CCW chiral pump

field is equiprobable with an averaged chirality being very close to zero. Once the ratio

in input intensities becomes unbalanced but their differences remain small, the directions

of the chiral pump field exhibit a preference but are still indeterministic. When the CW-

CCW (CCW-CW) input intensities ratio further increases, the unidirectional pump field is

deterministic in CW- (CCW-) direction. Incorporating the relation between the chirality of

the pump and the Raman laser as mentioned above, the behavior of Supplementary Figure

2B can give rise to the phenomenon shown in figure 4 of the main text. The preference in

direction of the laser chirality is thus positively correlated with the dominance of the input

direction.
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