Supplementary Information

Lung Spheroid Cell-Secreted Factors Promotes Alveolar Repair and Attenuates Pulmonary Fibrosis

Dinh et al.

Supplementary Figure 1. Preliminary proof of concept for inhalation treatment of bleomycin pulmonary **fibrosis model.** (a) CD1 mice body weight measures throughout the study. (b) Methylene blue nebulization experiment in CD1 mice. Left: explanted mice lung and heart. Right: Unstained cryosectioned lung tissue. Scale bar= 50 µm.

а

Supplementary Figure 2. LSC-secretome study immunostained analysis of apoptotic cells.

Representative Caspase 3 immunostaining of apoptotic cells co-stained with epithelial cell adhesion molecule (EpCAM), prosurfactant protein C (Pro-SPC/Sftpc), uteroglobin (Utgb/Scgb1a1), CD105, vime ntin, and alpha smooth muscle actin (α SMA) in lung tissues of mice post-bleomycin lung injury. Scale bars= 100µm

SUBCELLUAR LOCALIZATION OF LYSED PROTEIN

b

Lysed Cytoplasmic Protein 448 56 166 CM Cytoplasmic Protein

С

Supplementary Figure 3. Proteomic analysis of lysed LSCs. (a) SDS-PAGE gel of LSC lysate. 001= donor 1, 002= donor 2, 003= donor 3. (b) Quantification of subcellular localization of lysed LSC proteins. (c) Comparison of cytoplasmic proteins identified in LSC-Sec versus LSC lysate.

b

Supplementary Figure 4. Proteomic analysis of LSC-Exosomes and MSC-Exosomes. (a) Gene ontology pie chart of biological process associated with LSC-Exo. (b) Gene ontology pie chart of cellular process associated with LSC-Exo. (c) Gene ontology pie chart of biological process associated with MSC-Exo. (d) Gene ontology pie chart of cellular process associated with MSC-Exo. (d) Gene ontology pie chart of cellular process associated with MSC-Exo.

а

5.078

Magnitude of log2(Fold Change)

ò

-5.078

Layout	01	02	03	04	05	06	07	08	09	10	11	12
A	hsa- miR- 142- 5p 1.23 C	hsa- miR- 9-5p 1.23 C	hsa-miR- 150-5p 1.23 C	hsa-miR- 27b-3p 1.23 C	hsa-miR- 101-3p 1.23 C	hsa-let- 7d-5p 1.23 C	hsa-miR- 103a-3p 1.23 C	hsa- miR- 16-5p 1.23 C	hsa- miR- 26a- 5p - 3.20 B	hsa- miR- 32-5p 1.23 C	hsa- miR- 26b- 5p -4.08 B	hsa- let-7g 5p -1.06 B
в	hsa- miR- 30c- 5p 1.23 C	hsa- miR- 96- 5p 1.23 C	hsa-miR- 185-5p 1.23 C	hsa-miR- 142-3p 1.23 C	hsa-miR- 24-3p -1.14 B	hsa-miR- 155-5p 1.23 C	hsa-miR- 146a-5p 1.23 C	hsa- miR- 425- 5p 1.23 C	hsa- miR- 181b- 5p 1.23 C	hsa- miR- 302b- 3p 1.23 C	hsa- miR- 30b- 5p 1.23 C	hsa- miR- 21-5p 1.23 C
с	hsa- miR- 30e- 5p 1.23 C	hsa- miR- 200c- 3p 1.23 C	hsa-miR- 15b-5p 1.23 C	hsa-miR- 223-3p 1.23 C	hsa-miR- 194-5p 1.23 C	hsa-miR- 210-3p -1.09 B	hsa-miR- 15a-5p 1.23 C	hsa- miR- 181a- 5p 1.23 C	hsa- miR- 125b- 5p 1.23 C	hsa- miR- 99a- 5p 1.23 C	hsa- miR- 28- 5p 1.23 C	hsa- miR- 320a -3.70 B
D	hsa- miR- 125a- 5p 1.23 C	hsa- miR- 29b- 3p 1.23 C	hsa-miR- 29a-3p -1.07 B	hsa-miR- 141-3p 1.23 C	hsa-miR- 19a-3p 1.23 C	hsa-miR- 18a-5p 1.23 C	hsa-miR- 374a-5p 1.23 C	hsa- miR- 423- 5p 1.23 C	hsa- let-7a- 5p -30.65 A	hsa- miR- 124- 3p -1.03 B	hsa- miR- 92a- 3p -2.41 B	hsa- miR- 23a- 3p - 33.77 A
E	hsa- miR- 25-3p 1.23 C	hsa- let- 7e- 5p -3.34 B	hsa-miR- 376c-3p 1.23 C	hsa-miR- 126-3p 1.23 C	hsa-miR- 144-3p 1.23 C	hsa-miR- 424-5p 1.23 C	hsa-miR- 30a-5p 1.23 C	hsa- miR- 23b- 3p -1.67 B	hsa- miR- 151a- 5p 1.23 C	hsa- miR- 195- 5p 1.23 C	hsa- miR- 143- 3p 1.23 C	hsa- miR- 30d- 5p 1.11 B
F	hsa- miR- 191- 5p -1.06 B	hsa- let-7i- 5p 1.23 C	hsa-miR- 302a-3p 1.23 C	hsa-miR- 222-3p 1.23 C	hsa-let- 7b-5p -7.66 B	hsa-miR- 19b-3p 1.23 C	hsa-miR- 17-5p 1.23 C	hsa- miR- 93-5p 1.23 C	hsa- miR- 186- 5p 1.23 C	hsa- miR- 196b- 5p 1.23 C	hsa- miR- 27a- 3p 1.23 C	hsa- miR- 22-3p 1.23 C
G	hsa- miR- 130a- 3p 1.23 C	hsa- let- 7c-5p -1.68 B	hsa-miR- 29c-3p 1.23 C	hsa-miR- 140-3p 1.23 C	hsa-miR- 128-3p 1.23 C	hsa-let-7f- 5p -8.27 B	hsa-miR- 122-5p 1.23 C	hsa- miR- 20a- 5p 1.23 C	hsa- miR- 106b- 5p 1.23 C	hsa- miR-7- 5p 1.23 C	hsa- miR- 100- 5p 1.23 C	hsa- miR- 302c- 3p 1.23 C
н	cel- miR- 39-3p 1.23 C	cel- miR- 39- 3p 1.23 C	SNORD61 1.23 C	SNORD68 1.23 C	SNORD72 1.23 C	SNORD95 1.23 C	SNORD96A 1.23 C	RNU6- 6P 1.23 C	miRTC 1.23 C	miRTC 1.23 C	PPC 1.76	PPC 1.63

Supplementary Figure 5. LSC-Exosome analysis for cryostability and cellular uptake. (a) Heatmap of miRNA microarray analysis of fresh verse frozen LSC-Exo with corresponding plate layout. (b) Live cell uptake of DiO labeled LSC-Exo at 1hr and 24hr. (c) DiO labeled LSC-Exo with DAPI stained cell nuclei. 4X scale bar= 500µm; 20X scale bar= 100µm; 60X scale bar= 50µm.

Supplementary Figure 6. LSC-Exo study immunostained analysis of apoptotic cells. (a) Representative Tunel (top), caspase 3 (middle), and cleaved PARP (bottom) immunostained analysis of apoptotic cells for each treatment group (b-d) and quantification of percent of Tunel positive cells (b), percent pixel intensity of Caspase 3 (c), and percent pixel intensity of cleaved PARP (d); Scale bar= 100µm; each dot represents data from one animal; n=6 biological independent animals. Throughout, data are mean ± s.d. P-value as indicated by non-parametric one-way ANOVA. Scale bars= 100µm

Bleomycin

Bleomycin

Supplementary Figure 7. Blood biochemistry analysis. (a-c) liver enzymes alanine transaminase (ALT) (a), aspartate transaminase (AST) (b), ratio of ALT: AST (c) and (d-f) kidney metabolite blood urea nitrogen (BUN) (d), creatinine (e) and the ratio of BUN: creatinine (f); each data point represents data from one animal; n=11 biological independent animals. Throughout, data are mean \pm s.d. P-value as indicated by non-parametric one-way ANOVA.

**P≤0.01.

Supplementary Figure 8. Representative H&E staining of heart, kidney, liver and spleen in secretome and exosome treated animals in both the A/J mice silica study and SD rats bleomycin study showing no tumors.

Supplementary Figure 9. RNA sequencing analysis of LSC-Exo and MSC-Exo samples. (a) Global RNA profile of LSC-Exo from the three donor cell lines and MSC-Exo from two different cell lines. (b) Top 10 miRNAs in each of the exosome samples.

Global RNA Profile

Cell Line	Sex	Age	Race	Smoker	Lung Disease	Cause of Death
Whole Lung Donor 1	Female	50	Hispanic	No	No	Anoxia; 2 nd Cardiovascular
Whole Lung Donor 2	Female	52	Black	No	No	Cerebrovascular Accident
Whole Lung Donor 3	Male	18	Hispanic	No	No	Head Trauma; 2 nd Self-Inflicted Gunshot Wound

Supplementary Table 1: Cell Line Donor Information