Chemical functionality of Multidomain Peptide Hydrogels governs early host immune response

Tania L. Lopez-Silva^a, David G. Leach^a, Alon Azares^c, I-Che Li^a, Darren G. Woodside^c, Jeffrey D. Hartgerink^{a,b,*}

^a Department of Chemistry, Rice University, Houston, Texas 77005, USA

^b Department of Bioengineering, Rice University, Houston, Texas 77005, USA

^c Department of Molecular Cardiology, Texas Heart Institute, Houston, Texas, 77030, USA

Corresponding Author

*Email: jdh@rice.edu

Supporting Information

Table of contents

Table S1. Self-assembling Multidomain Peptides: peptide sequences and properties.	3
Figure S1. MALDI TOF MS spectra of the diverse multidomain peptides: K2, R2, E2, D2.	4
Figure S2. Viscoelastic properties of K2, R2, E2, D2	5
Table S2. Peptide sequence and viscoelastic properties of Multidomain Peptides	6
Figure S3. Subcutaneous injection model	6
Table S3. Immunophenotyping antibodies used for the flow cytometry panels.	7
Table S4. Flow cytometry parameters and configuration for all studied panels.	8
Figure S4. Gating strategy and t-SNE clustering method for flow cytometry data analysis	9
Figure S5. H&E staining of the implant edge of K_2 . R_2 , E_2 , D_2 at day 3, 7 and 10 post-injection	10
Figure S6. H&E staining of the implant core of K_2 . R_2 , E_2 , D_2 at day 3, 7 and 10 post-injection.	10
Figure S7. H&E staining of the whole implant of K_2 . R_2 , E_2 , D_2 at day 3 post-injection.	11
Figure S8. H&E staining of the whole implant of K_2 . R_2 , E_2 , D_2 at day 10 post-injection.	12
Figure S9. Cell density present in the MDP implants at different time points.	13
Figure S10. Collagen deposition and tissue remodeling of MDP hydrogel implants.	13
Figure S11. Masson's Trichrome staining of K_2 . R_2 , E_2 , D_2 at day 3 post-injection.	14
Figure S12. Masson's Trichrome staining of K2. R2, E2, D2 at day 7 post-injection.	15
Figure S13. Masson's Trichrome staining of K ₂ . R ₂ , E ₂ , D ₂ at day 10 post-injection.	16
Figure S14. Immunostaining of alpha-smooth-muscle actin	17
Figure S15. Immunostaining of alpha-smooth-muscle actin K_2 . R_2 , R_2 , D_2 at day 3 post-injection.	18
Figure S16. Immunostaining of alpha-smooth-muscle actin of K ₂ . R ₂ , E ₂ , D ₂ at day 7 post-injection	19
Figure S17. Immunostaining of alpha-smooth-muscle actin of K ₂ . R ₂ , E ₂ , D ₂ at day 10 post-	20
Figure S18. Gating strategy for the immunophenotyping of myeloid cells in the MDP hydrogels.	21
Figure S19. Gating strategy for the immunophenotyping of lymphoid cells in the MDP hydrogels.	22
Figure S20. Immunophenotyping of infiltrating cells in E_2 implants at day 3.	23
Figure S21. Percentage of different lymphoid cell phenotypes from CD45 ⁺ cells present in K_2 implants at day 1, 3, 7 and 10 post-injection.	24
Figure S22. Quantification of IL-4 and INF- γ from the implant lysate.	24
Figure S23. Gating strategy for the immunophenotyping of stem cells in the MDP hydrogels.	25

Name	Sequence	Monoisotopic mass (Da)	Molecular weight (Da)	Molar concentration of
				1wt. % solution
K ₂	Ac-KKSLSLSLSLSLSLKK-CONH ₂	1772.103	1773.171	5.6 mM
E2	Ac-EESLSLSLSLSLSLSLEE-CONH ₂	1775.893	1776.937	5.6 mM
R ₂	Ac-RRSLSLSLSLSLSLSLRR-CONH ₂	1885.225	1884.127	5.3 mM
D ₂	Ac-DDSLSLSLSLSLSLDD-CONH ₂	1720.829	1719.83	5.8 mM

 Table S1. Self-assembling Multidomain Peptides: peptide sequences and properties.

Figure S2. Viscoelastic properties of K_2 , R_2 , E_2 , D_2 at 1% by weight in 149 mM sucrose 0.5X HBSS (amplitude sweep, frequency sweep and strain recovery). b) Storage and loss moduli of MDPs at 1% oscillatory strain. Peptide materials were analyzed in triplicate, all experimental results are shown in each plot.

Table S2. Peptide sequence and viscoelastic properties of Multidomain Peptides with different ionic domains. All peptides at 1% by weight in buffer form hydrogels that recover their viscoelastic properties after a shearing process.

				She	ear
Peptide	Sequence	G' (Pa)	G" (Pa)	Recovery (%)	
			-	1 min	20 min
K ₂	Ac-KKSLSLSLSLSLSLKK-CONH2	819 ± 131	57 ± 9	82 ± 4	100 ± 9
R ₂	Ac-RRSLSLSLSLSLSLRR-	269 ± 37	28 ± 2	71 + 9	87 + 4
	CONH ₂			71±9	07 1 4
E ₂	Ac-EESLSLSLSLSLSLEE-CONH ₂	579 ± 70	49 ± 22	77 ± 16	82 ± 15
D ₂	Ac-DDSLSLSLSLSLSLDD- CONH ₂	1271 ± 365	76 ± 27	81 ± 13	88 ± 12

Figure S3. Subcutaneous injection model to evaluate the early host immune response to MDP hydrogels. Four injections of MDP hydrogel were distributed along the dorsal subcutaneous space.

Antibody	Clone	Isotype	Conjugate	Company	Catalog #	
Myeloid Panel						
CD45	30-F11	Rat IgG _{2b} , к	APC-Cy7	BD Biosciences	561037	
Gr-1	RB6-8C5	Rat IgG _{2b} , к	APC	BD Biosciences	561083	
Ly-6C	AL-21	Rat IgM, к	PE-Cy7	BD Biosciences	560593	
CD11b	M1/70	Rat IgG _{2b} , к	FITC	BD Biosciences	561688	
F4/80	T45-2342	Rat IgG _{2a} , к	BV421	BD Biosciences	565411	
		Lymphoid	Panel			
CD45	30-F11	Rat IgG _{2b} , к	APC-Cy7	BD Biosciences	561037	
NK-1.1	PK136	Mouse IgG _{2a} , к	PE	BD Biosciences	561046	
CD11b	M1/70	Rat IgG _{2b} , к	FITC	BD Biosciences	561688	
CD3e	145-2C11	Armenian Hamster IgG1, κ	BV510	BD Biosciences	563024	
CD8a	53-6.7	Rat IgG _{2a} , к	BV711	BD Biosciences	563046	
CD4	GK1.5	Rat IgG _{2b} , к	BUV395	BD Biosciences	563790	
CD19	1D3	Rat IgG2a, к	BUV737	BD Biosciences	BUV737	
		Stem Cell	Panel			
CD45	30-F11	Rat IgG _{2b} , к	APC-Cy7	BD Biosciences	561037	
CD105	MJ7/18	Rat IgG _{2a} , к	Alexa Fluor 647	BD Biosciences	562761	
Ly6A-E (Sca-1)	E13-161.7	Ray IgG _{2a} , к	PE	BD Biosciences	553336	
CD38	90/CD38	Rat IgG2a, к	PerCP-Cy5.5	BD Biosciences	562770	
CD11b	M1/70	Rat IgG _{2b} , к	FITC	BD Biosciences	561688	
CD29	Ha2/5	Hamster IgM, к	BV421	BD Biosciences	564131	
CD117	2B8	Rat IgG _{2b} , к	BUV395	BD Biosciences	564011	
Isotype Controls and other						
Rat IgG _{2b} , к	A95-1		FITC	BD Biosciences	553988	
Rat IgM, к	R4-22		PE-Cy7	BD Biosciences	560572	
Rat IgG _{2a} , к	R35-95		BV421	BD Biosciences	562602	
Mouse IgG _{2a} , к	G155-178		PE	BD Biosciences	553457	
Rat IgG _{2a} , к	R35-95		BUV737	BD Biosciences	564294	
Rat IgG _{2b} , к	A95-1		APC-Cy7	BD Biosciences	552773	
Rat IgG _{2b} , к	A95-1		APC	BD Biosciences	553991	
Hamster IgG ₁ , к	A19-3		BV510	BD Biosciences	563197	
Rat IgG _{2a} , к	R35-95		BV711	BD Biosciences	563047	
Rat IgG _{2b} , к	R35-38		BUV395	BD Biosciences	563560	
Blue live/dead				Invitrogen	L38961	

 Table S3. Immunophenotyping antibodies used for the flow cytometry panels.

Table S4. Flow cytometry parameters and configuration for all studied panels.

Myeloid Panel

Laser	Marker	Fluorophore	Filter
Red (622 pm)	CD45	APC-Cy7	780/60
Red (633 nm)	Gr-1 (Ly6C & Ly6G)	APC	660/20
Y&G (561 nm)	Ly-6C	PE-Cy7	780/60
Blue (488 nm)	CD11b	FITC	530/30
Violet (407 nm)	F4/80	BV421	450/50
UV (355 nm)	Live/dead Blue		450/50

Lymphoid Panel

Laser	Marker	Fluorophore	Filter
Red (633 nm)	CD45	APC-Cy7	780/60
Y&G (561 nm)	NK-1.1	PE	585/15
Blue (488 nm)	CD11b	FITC	530/30
Violet (407 nm)	CD3e	BV510	525/50
	CD8a	BV711	710/50
UV (355 nm)	CD4	BUV395	379/28
	CD19	BUV737	740/35
	Live/dead Blue		450/50

Stem Cell Panel

Laser	Marker	Fluorophore	Filter	
Red (633 nm)	CD45	APC-Cy7	780/60	
	CD105	Alexa Fluor 647	660/20	
Y&G (561 nm)	Ly6A-E	PE	585/15	
	CD38	PerCP-Cy5.5	695/40	
Blue (488 nm)	CD11b	FITC	530/30	
Violet (407 nm)	CD29	BV421	450/50	
UV (355 nm)	CD117	BUV395	379/28	
	Live/dead		450/50	

t-SNE clustering strategy

Figure S4. Gating strategy and t-SNE clustering method for flow cytometry data analysis. Singles cells were gated from FSC-H vs FSC-A, followed by viable cells discrimination. Then live/dead gating was used to take live cells only and from them CD45+ immune cells were gated. All samples from each peptide or timepoint were downsampled to 5000 CD45 positive events and concatenated in a single FCS file. Dimensionality reduction by the t-SNE algorithm was performed using FlowJo v10 with the following parameters: 1000 iteration, perplexity value 30, eta value 200 and theta of 0.5. Clusters were gated according to the peptide or timepoint as well as phenotype using the myeloid strategy shown in Figure S18.

Figure S5. H&E staining of the implant edge of K₂. R₂, E₂, D₂ at day 3, 7 and 10 postinjection. Scale bar: 100 μ m.

Figure S6. H&E staining of the implant core of K₂. R₂, E₂, D₂ at day 3, 7 and 10 postinjection. Scale bar: 100 μ m.

Figure S7. H&E staining of the whole implant of K_2 . R_2 , E_2 , D_2 at day 3 post-injection. the purple box represents the area of the implant edge. The yellow box represents the area of the implant center. Dash lines represent the hydrogel in the subcutaneous space. Scale bar: 1 mm.

Figure S8. H&E staining of the whole implant of K_2 . R_2 , E_2 , D_2 at day 10 post-injection. The purple box represents the area of the implant edge. The yellow box represents the area of the implant center. Dash lines represent the hydrogel in the subcutaneous space. Scale bar: 1 mm.

Figure S9. Cell density present in the MDP implants at different time points.

Figure S10. Collagen deposition and tissue remodeling of MDP hydrogel implants. Masson's Trichrome staining of implant cross-sections at day 3, 7 and 10 post-injection to observe collagen deposition in color blue. Images represent the interface between hydrogel and native tissue. By Day 10, K₂ and in particular R₂ show larger collagen deposition, whereas the negatively-charged MDPs have been degraded and remodeled into native tissue.

Figure S11. Masson's Trichrome staining of the whole implant of K_2 . R_2 , E_2 , D_2 at day 3 post-injection. Scale bar: 1 mm.

Figure S12. Masson's Trichrome staining of the whole implant of K_2 . R_2 , E_2 , D_2 at day 7 post-injection. Scale bar: 1 mm.

Figure S13. Masson's Trichrome staining of the whole implant of K_2 . R_2 , E_2 , D_2 at day 10 post-injection. Scale bar: 1 mm.

Figure S14. Immunostaining of alpha-smooth-muscle actin at the edge of the implants at day 3, 7 and 10 post-injection. Positive α -sma expression is shown in red and cell nuclei in blue (DAPI staining). Scale bar 150 μ m.

Figure S15. Immunostaining of alpha-smooth-muscle actin (red) and cell nuclei (blue) of the whole implant of K_2 . R_2 , E_2 , D_2 at day 3 post-injection. Scale bar: 1 mm.

Figure S16. Immunostaining of alpha-smooth-muscle actin (red) and cell nuclei (blue) of the whole implant of K_2 . R_2 , E_2 , D_2 at day 7 post-injection. Scale bar: 1 mm.

Figure S17. Immunostaining of alpha-smooth-muscle actin (red) and cell nuclei (blue) of the whole implant of K_2 . R_2 , E_2 , D_2 at day 10 post-injection. Scale bar: 1 mm.

Figure S18. Gating strategy for the immunophenotyping of myeloid cells in the MDP hydrogels. M1 single cells after doubles discrimination (FSC-A vs FSC-H). M2 viable cells from M1. M3 Live cells after live/dead discrimination followed by immune CD45+ cell gating. Immune cells of myeloid origin (M5) were classified according to Gr-1, Ly6C and F4/80 expression (M6-M11).

Figure S19. Gating strategy for the immunophenotyping of lymphoid cells in the MDP hydrogels.

Figure S20. Immunophenotyping of infiltrating cells in E₂ implants at day 3.

Figure S21. Percentage of different lymphoid cell phenotypes from CD45⁺ cells present in K₂ implants at day 1, 3, 7 and 10 post-injection.

Figure S22. Quantification of IL-4 and INF- γ from the implant lysate.

Figure S23. Gating strategy for the immunophenotyping of stem cells in the MDP hydrogels.