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1. Numerical Model

To get a better understanding of the propagation of transition waves in our linkages, we develop a numerical
model. In our numerical simulations we model the links as rigid bodies of mass m (note that m includes
the mass of the link as well as the pins, screws and bolts used at the joints), length L, and moments of
inertia I. We assume that the structure deforms in the (x, y) plane and use (xi, yi) and αi to denote the
position of the center of mass and of the i-th link and the angle between the i-th link and the horizontal
direction, respectively (Fig. S1a). We then connect the i-th link to its i± q neighbor via a linear spring
with stiffness k(q), rest length l(q) and current length li,i±q given by

li,i±q =
√

(xi + d sinαi − xi±q − d sinαi±q)2 + (yi − d cosαi − yi±q + d cosαi±q)2. [S1]

where d is the vertical off-set between the line connecting the center of joints and the line connecting the
springs. Further, to ensure that subsequent links stay connected and that 0 ≤ θi ≤ Θ (where θi = αi+1−αi
is the i-th joint angle), we introduce three elastic springs at each joint: (i) a linear spring with stiffness
kx = 50k(q); (ii) a linear spring with stiffness ky = 50k(q) and (iii) a non-linear rotational spring with
stiffness kθ defined as

kθ =
{

50k(q)L θi < 0 or θi > Θ
0 0 ≤ θi ≤ Θ

[S2]

Under these assumptions, the Lagrangian of a linkage chain comprising n units can be written as

Fig. S1. (a) Schematic of the linkage mechanism where each link is considered as a bar with total mass m and moment of inertia I. The inset figure shows that the joints
are replaced with two stiff horizontal/vertical springs with stiffness kx,ky and a nonlinear torsional spring kθ . (b) The nonlinear torsional spring potential function Uθ versus
joint angle θi. The potential Uθ is zero when θi ∈ [0,Θ] and quadratic in theta otherwise.

L = T − U =
n∑
i=1

Ti −
n−q∑
i=1

U
(q)
i − Uconst. [S3]

where Ti is the kinetic energy of i-th link,

Ti = 1
2m(ẋi2 + ẏi

2) + 1
2Iα̇i

2, [S4]

U
(q)
i is the potential energy stored in the spring connecting the i-th and (i+ q)-th links

U
(q)
i = 1

2k
(q)
(
li,i+q − l(q)0

)2
, [S5]

[S6]
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and Uconst. is the energy associated to the constraints introduced at the joints to ensure that subsequent
links stay connected and that 0 ≤ θi ≤ Θ

Uconst. =
n∑
i=2

1
2kx(xi −

L

2 cosαi − xi−1 −
L

2 cosαi−1)2

+
n∑
i=2

1
2ky(yi −

L

2 sinαi − yi−1 −
L

2 sinαi−1)2 +
n−1∑
i=1

Uθ(θi) [S7]

with

Uθ(θi) =


1
2kθ(θi −Θ)2 θi > Θ
0 0 ≤ θi ≤ Θ
1
2kθθ

2
i θi ≤ 0

[S8]

The discrete equations of motion for the i-th link are then obtained via the Euler–Lagrange equations as

mẍi = −kx(xi −
L

2 cosαi − xi−1 −
L

2 cosαi−1)− kx(xi + L

2 cosαi − xi+1 + L

2 cosαi+1)

− k(q)xi − xi+q + d (sinαi − sinαi+q)
li,i+q

(
li,i+q − l(q)0

)
− k(q)xi − xi−q + d (sinαi − sinαi−q)

li,i−q

(
li,i−q − l(q)0

)
mÿi = −ky(yi −

L

2 sinαi − yi−1 −
L

2 sinαi−1)− ky(yi + L

2 sinαi − yi+1 + L

2 sinαi+1)

− k(q) yi − yi+q − d (cosαi − cosαi+q)
li,i+q

(
li,i+q − l(q)0

)
− k(q) yi − yi−q − d (cosαi − cosαi−q)

li,i−q

(
li,i−q − l(q)0

)
Iα̈i = −kx

L

2 sinαi(xi −
L

2 cosαi − xi−1 −
L

2 cosαi−1) + kx
L

2 sinαi(xi + L

2 cosαi − xi+1 + L

2 cosαi+1)

+ ky
L

2 cosαi(yi −
L

2 sinαi − yi−1 −
L

2 sinαi−1)− ky
L

2 cosαi(yi + L

2 sinαi − yi+1 + L

2 sinαi+1)

− k(q)d cosαi [xi − xi+q + d(sinαi − sinαi+q)]
li,i+q

(
li,i+q − l(q)0

)
− k(q)d cosαi [xi − xi−q + d(sinαi − sinαi−q)]

li,i−q

(
li,i−q − l(q)0

)
− k(q)d sinαi [yi − yi+q + d(cosαi − cosαi+q)]

li,i+q

(
li,i+q − l(q)0

)
− k(q)d sinαi [yi − yi−q + d(cosαi − cosαi−q)]

li,i−q

(
li,i−q − l(q)0

)
− U ′θ(αi − αi−1) + U ′θ(αi+1 − αi) [S9]

Next, to account for the energy dissipation due to the sliding of the structure on the surface, we add to
Coulomb friction terms of type −µmgẋi/(ẋ2

i + ẏ2
i ) and −µmgẏi/(ẋ2

i + ẏ2
i ) (µ = 0.2 being the experimentally

measured coefficient of friction between the structure and the surface). Further, subsequent links do not
oscillate back and forth when their angle reaches 0 or Θ, we also include a dissipation term in the form of
cθ̇ (with c/L

√
mk(q) = 4) that is only activated when θi < 0/ θi > Θ. Finally, since in all experiments the

linkages are placed on a flat surface in the x− y plane with a wall located at y = 0 and aligned along the
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x-direction that limits motion in y-direction, we introduce a wall-type potential Uy defined as

Uy(y) =
{

0 y ≥ 0,
1
250k(q)y2 y < 0.

[S10]

We numerically solve Eqs. (S9) using Runge–Kutta fourth order method with time-steps δt = 0.01 sec. As
in the experiments, in all simulations we clamp the first link by setting x1 = y1 = 0, and α1 = 0. The pulse
is then initiated by imposing

α̇1(t = 0) =
√

2Uper
I1

, [S11]

where Uper is the energy of the applied perturbation , which can be estimated from the experimentally
measured initial (i.e. at t = 0) linear (v1

∣∣
t=0) and angular velocities of the first link as

Uper ≡ T1(t = 0) = m

2
(
ẋ2

1 + ẏ2
1

) ∣∣∣
t=0

+ I

2 α̇
2
∣∣∣
t=0

. [S12]

Additional numerical results

Fig. S2. While in the main text we show numerical results for linkages with spatially constant properties, here we report numerical predictions for linkages with next-nearest
neighbors springs of spatially increasing and decreasing stiffness. Specifically, we consider a linkage for which the stiffness of the i-th spring is k(2)

i
= k(2) +4(i−1)k(2)/7

and one for which k(2)
i

= k(2)− (i−1)k(2)/28. (A)-(B) The normalized angle of the individual bistable joints (θ for each of the joints in the linkage) during the propagation

of the transition wave in a linkage with d/L = 0.02, l(2)
0 /L = 1.64, Uper/U

(2)
0 = 0.5 and spring with spatially (A) increasing and (B) decreasing stiffness. In both plots

the dashed black line indicates the wavefront predicted by the numerical simulations for a linkage realized with spring of identical stiffness. (C)-(D) Theoretically predicted
evolution of the time it takes for the transition wave to reach the last joint, ∆T , as a function of the geometrical parameters d/L and l(2)

0 /L for linkages with with spatially
(C) increasing and (D) decreasing stiffness. All these numerical results indicate that the velocity profile of the supported transition waves can be manipulated by varying the
stiffness of the connecting springs along the structure.

2. Experiments

A. Fabrication.To realize linkages with bistable joints, we start by designing rigid bars of length L that
allow each joint to rotate between 0 and Θ. This is achieved using the design shown in Fig. S3(a). Note
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that the triangular feature at the top of the links prevent rotations larger that Θ, while the small step at
their bottom stops the rotation at θ = 0 (see Fig. S4). Moreover, three circular holes are embedded in each
link: the two closed to the ends are used to connect to the neighboring elements via pins, whereas the one
in the middle (which is at a distance d from the line connecting the center of the other two holes) is used to
connect the springs to the bar using screws and bolts. Each bar is fabricated out of four layers of plexi-glass
with thickness of 3 mm. The laser-cut layers are glued together as shown in Fig. S3(b) to form a link.

Fig. S3. (a) Schematic of a single layer of our bar. (b) A bar is constructed by gluing four layers together.

Fig. S4. Schematic of the structure. Inset figures highlight the contact points when a joint’s angle is at 0 or Θ.

The total mass of each link is m = 16.3 g for nearest neighbor connections and m = 18.8 g for next-
nearest-neighbor connections and accounts for the mass of the plexi-glass layers (mpg=8.6 g), pins (mp=1.1
g), springs (m(1)

s =2×2.2 g for nearest-neighbor and m(2)
s =6.9 g for next-nearest-neighbor connections) and

screw and bolts (msb=2.2 g). The moment of inertia for each link is calculated by considering the link
as a rigid rod of length L and mass mpg +ms (note that we neglect the complex shape of the link) and
considering the pins, screws, and bolts as point masses. It follows that the moment of inertia of each unit
with respect to its center of mass is

I = mpg +ms

12 L2 +mp

(
L

2

)2
. [S13]

The springs used in our linkage with nearest neighbor connections have stiffness k(1) = 2× 507.86 N/m
and rest length l(1)

0 = 38.09 mm (McMaster-Carr product id: 9044K125), whereas those used to construct
the linkage with the next-nearest neighbor have stiffness k(2) = 753.53 N/m and rest length l(2)

0 = 82.55 mm
(McMaster-Carr product id: 9044k168), as reported by the manufacturer (https://www.mcmaster.com/9044k125
and https://www.mcmaster.com/9044k168). All the springs are stretched when the linkage is in its initial,
straight configuration, resulting in an initial force of 12.10 N and 13.14 N for the nearest-neighbor and
next-nearest-neighbor connections, respectively.
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B. Testing. In all our tests, we place the linkages in the straight configuration on a flat surface in the x− y
plane (note that gravity acts in the z direction), clamp their right end and apply a pulse in the y-direction
to left most link. We monitor the propagation of the excited transition waves with a high-speed camera
(SONY RX100) recording at 480 fps. To extract the required information from the recorded movies, we
use the open source Python image processing library OpenCV (1) and track the position of green markers
attached to the center of each bar. More specifically, we first use Morphological transformation of erosion
followed by dilation (i.e., morphologyEx) with a kernel size of 7 pixels to remove the noise in the image.
Then, we transform the image to gray color space, convolve the image with a normalized box filter of size 3,
and use thresholding to isolate the green pixels.
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Movie S1. Propagation of a transition wave in a bistable linkage with nearest neighbor
connections. the wave is initiated by applying a perturbation to the first bar characterized
by Uper/U

(1)
0 = 0.5.

Movie S2. Propagation of a transition wave in a bistable linkage with nearest neighbor
connections. the wave is initiated by applying a perturbation to the first bar characterized
by Uper/U

(1)
0 = 2.67.

Movie S3. Propagation of a transition wave in a bistable linkage with next-nearest neighbor
connections. the wave is initiated by applying a perturbation to the first bar characterized
by Uper/U

(2)
0 = 0.47.

Movie S4. Propagation of a transition wave in a structure created by coupling two linkages
with next-to-nearest neighbor connections. The pulse transforms the initially flat structure
into a profile with changing concavity.

Movie S5. Propagation of a transition wave in a structure comprising four linkages charac-
terized by d/L = 0.02 and Θ = π/10. The springs enable the transfer of the waves from one
linkage to the other and, ultimately, the deployment of the 3D dome-like structure.
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