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Supplementary Methods 
 
Data reduction and processing 
NanoPeakCell (NPC) (1) was modified to include a mode that allows for processing of SSRS 
data. In this mode, hit detection is only performed on the first frame after the shutter has fully 
opened. New parameters can be set in the input file. To turn on this mode, a ShootNTrap 
parameter has to be set to True, and the number of frames collected per sample position, as 
well as the number of frames to be considered as being empty because of shutter opening both 
need to be specified (e.g. nperposition=100 and nempty=5, respectively). These modifications 
have been added to the version available on Github (github.com/coquellen/NanoPeakCell). 
Hit-finding parameters were adjusted upon visual inspection to determine background levels 
and a frame was considered to be a hit if at least five pixels were above threshold values of 5 
and 10 counts for the low- and high-dose-rate series, respectively.  
Selected hits were indexed and integrated with CrystFEL 0.6.2 (2). Indexing relied on 
MOSFLM (3), XDS (4) and Dirax (5). Datasets in the RT high- and low-dose rate series 
consisted of 19,818 and 20,182 indexed frames respectively, while the high-dose rate dataset 
collected at 100 K consisted of 9,051 indexed frames. Intensities were merged using Monte 
Carlo integration. Statistics of the first dataset of each series (RT-LDR, RT-HDR and CR1) are 
available in table S1, as well as the evolution of the principal serial-crystallography statistics 
(I/ s(I), Rsplit, CC*, multiplicity) as a function of dose for each series (Fig. S4). 
In order to monitor the decrease in diffraction power as a function of dose, the intensities of all 
predicted reflections in each indexed diffraction pattern (In) of dataset n were summed. Briefly, 
integrated intensities with an I/ s(I) > 0 were extracted from the CrystFEL stream and 
normalized to the lowest-dose datasets, i.e. IRT-LDR1, IRT-HDR1, and ICR1 for the RT-LDR, RT-
HDR and the cryo-series, respectively. Intensities from all predicted reflections on the detector 
were thus used, i.e. including those that extended beyond the resolution limit of the highest-
dose data set in each series (2.04 and 1.9 Å for both RT series and the cryo series, respectively).  
Owing to the presence of ice rings in some of the diffraction patterns collected at 100 K, 
statistics in the resolution bins corresponding to ice rings were of mediocre initial quality. A 
custom-made python script was used to reject outliers based on abnormal background values 
of the integrated intensities. Briefly, all background values of the integrated intensities were 
extracted from the CrystFEL stream and split into 100 resolution bins (50 - 1.5 Å). The mean 
and standard deviation of background values (<bkg> and s(bkg), respectively) were then 
computed for each resolution bin. A resolution bin was considered suspect when the standard 
deviation s(bkg) was larger than the mean value <bkg>. Once flagged, the threshold used for 
the detection of outlier intensities within an abnormal resolution shell was set to 2 * s(bkg) + 
<bkg>, using average and standard deviation values from the closest regular resolution bin. 
For example, in the cryo1 CrystFEL stream, a total of 158,369 reflections were removed, 
corresponding to 7.42 % of the reflections within the flagged bins, or 1.96 % of all reflections 
in the dataset. The new CrystFEL stream was subsequently processed as described above. Upon 
rejection of these few reflections, the quality statistics considerably improved.  
 
Refinement 
PDB entry 2YBH was used as a starting model. Datasets corresponding to the lowest dose of 
the RT low-dose-rate series and the cryo series were first refined using rigid body refinement, 
then underwent simulated annealing to reduce model bias, after which the structures were 
refined by iterative cycles of real space refinement in Coot (6) and reciprocal space refinement 
in Phenix (7). Water molecules and solutes were added using Phenix and the final model was 
refined until statistical evaluators converged. 
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Supplementary Introduction 
We evaluated two different models for reproducing the observed global (In/I1 in Fig. 2 

and 3a) and specific (integrated density in Fig. 4d) radiation damage under the highly non-
uniform illumination used in this micro-beam study. We expect these models will be extensible 
to future studies with similarly small beams that may or may not have significant tails. The 
goal here is to deconvolute the effects of non-uniform illumination and extract the fundamental 
decay parameters that would have been observed with a perfectly uniform top-hat shaped beam. 
These parameters are the half-doses of global (D1/2,g) and disulphide bond specific (D1/2,s) 
damage. Using these parameters and perhaps a measured beam profile, the decay curves of this 
and future experiments may be predicted. 

Non-uniform illumination, especially with significant tails such as employed here, 
present interesting challenges to dose calculation. Formally, dose (D) has units of absorbed 
energy per unit mass (J/kg), so that dose can be computed as the energy deposited into the 
sample by the X-ray beam divided by the mass of the sample. The problem arises when one 
considers that the tails of the beam may be regarded as having non-trivial intensity all the way 
out to infinity, irradiating a very large mass and therefore driving the formal dose to zero. This 
type of calculation is not very useful because the tails of the beam do not contribute as much 
to the data as the brighter core, and therefore the electron density observed as a result of the 
tails is that of a molecule that has endured far more than a zero dose.   

This fact has led to more sophisticated ways of estimating the dose that is relevant to 
the image seen in the final electron density map. Many named weighted doses have now 
appeared in the literature (8), so for clarity we will delineate the definitions of “dose” used 
here. A convenient and popular metric computed by RADDOSE-3D (9) is the average dose to 
the region of the sample that has absorbed 95% of the total absorbed energy (AD95). That is, a 
threshold is computed to define a volume containing 95% of the energy, and the ratio of Joules 
and kg within that volume are taken as a dose (AD95). For Gaussian beams this is a well-
behaved metric, and we shall define here ADG95 as the average dose computed for a Gaussian 
beam of specified widths. In the main manuscript, we refer to ADG95 simply as “average dose”, 
calculated for example, with a Gaussian beam with full width at half maximum (FWHM) of 
3.0 µm (horizontal, h) ´ 1.5 µm (vertical, v), yielding an average dose rate of 40.3 MGy/s. 

However, the observed beam profile in our experiment was not strictly Gaussian: it had 
significant tails. Incorporating these tails in an AD95 calculation proved to be numerically 
unstable. For example, adding only 4% contribution of Lorentzian character to the tails reduced 
AD95 by a factor of ten. Adjusting the 95% criterion to be 96% changed AD95 by a factor of 
two. The reason for this is due to the problem of beam tails described above. The tails can 
change the mass of the 95% threshold significantly. Because a pure AD95 proved so sensitive 
to very small changes in the exact beam shape, its value as a metric is limited in this context. 
We therefore elected to use ADG95 instead. Using ADG95 instead of AD95 is essentially 
equivalent to neglecting the tails. That is, we define the volume of interest as that volume that 
would absorb 95% of the energy from a Gaussian beam, avoiding the explosion of the 
thresholded region inherent for Lorentzian beam tails. The energy deposited into this central 
region is almost identical for both beam shapes, so the ADG95 metric gives us a dose under the 
hottest and initially most influential part of the beam. This practice is recommended for future 
work. 

The observed beam profile was explained well by a linear combination of Gaussian and 
Lorentzian beam shapes (eq. S12). This linear combination is often referred to as a pseudo-
Voigt function. The Voigt function is defined as the convolution of a Gaussian and Lorentzian 
function (10), but the pseudo-Voigt is a convenient approximation to it. This approximation is 
accurate to within 5% near the peak and may deviate by as much as 20% in the tails, but here 
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it is not clear whether the observed beam shape was due to a convolution effect or an additive 
one. Both functions could be made to fit the observed beam shape reasonably well.  

We define the fundamental dose Dvoxel as the dose given to a very small volume under 
an arbitrary beam: a voxel. That is, a very small amount of energy is deposited in a similarly 
small mass, and that ratio is Dvoxel. We expect the diffractive strength and chemical state of a 
voxel after Dvoxel to be identical to that of a much larger region of crystal illuminated by a 
uniform, top-hat beam that delivered the same dose. 

 
Both models presented below assume that the intensity decay is exponential with dose 

(D): 
 

𝑖 = 	 𝑖$	2
&	
'()*+,
'-//,1  

      (eq. S1) 
where D1/2,g is the dose at which the total Bragg-scattered intensity (i) from a uniformly-
illuminated volume of crystal drops to half of its zero-dose value (i0).  Note that the more 
compact form of the exponential 2x = exp(ln(2)*x) is convenient when using half-dose decay 
parameters. We further assume that the specific damage reaction involving the breaking of a 
disulphide bond also progresses exponentially, with the fraction of bonds still intact (fleft) in a 
uniformly-illuminated volume given by: 

𝑓3456 = 	2
&	
'()*+,
'-//,7  

       (eq. S2) 
where D1/2,s is the dose at which half of the disulphide bonds are broken, and f0 = 1.  

A fundamental assumption of both models below is that the principle of linear 
superposition applies. For example, we assume that the total Bragg-scattered intensity from an 
unevenly-illuminated crystal is simply the sum of all its parts after breaking the crystal down 
into small enough volumes (c) so that each volume may be individually regarded as uniformly 
illuminated. This is a fundamental principle within RADDOSE-3D. Specifically: 

 
𝐼9 = :𝑖;,9

;

 

       (eq. S3) 
Where In is the total number of Bragg-scattered photons on image n, such as the observations 
shown in Fig. 3a, and ic,n is an instance of i in eq. S1: the Bragg intensity scattered from an 
evenly-illuminated volume (c) during the acquisition of image n.   

We expect that linear superposition is a good approximation for total diffracted 
intensity, but it may or may not be so for specific damage.  For completeness we shall explore 
this concern here.  Consider the evolution of electron density as a disulphide bond breaks. If 
we collect one complete data set with negligibly small dose (fleft  ≈ 1) and another complete 
diffraction data set after all the disulphide bonds in the crystal are broken (fleft = 0) we will end 
up with two electron density maps: one is a 3D image of the molecule with an intact disulphide 
and the other fully broken. If we average these two maps we get an image that is a 50:50 
superposition of the intact and broken molecules. This may be modelled with two alternate 
conformers at 50% occupancy each. If instead we average the diffraction data we also get an 
image that is very nearly that of a 50:50 mixture of intact and broken disulphides. Strictly 
speaking, averaging intensities (~|F|2) is not equivalent to averaging phased structure factors 
(F), as there are cross-terms arising from averaging the square. However, in practice the 
resulting maps are visually quite similar. We therefore do not consider these intensity-average 
cross-terms to be a significant violation of the principle of linear superposition. What is a 
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concern is the possibility of intermediate states. Specifically: is the image of a 50:50 average 
of broken and unbroken states the same as the image of a half-broken molecule?  

Consider for a moment the scenario where the bond breaks not by sudden rupture and 
popping instantaneously into a new position but rather that one sulphur atom moves slowly and 
linearly with dose (𝐷=>?43) from its starting position in the intact bond to a final position in the 
fully broken state. In this case a dataset collected with all images at the half-dose (D = D1/2,s) 
would reveal an electron density map containing the half-broken state: a sulphur atom located 
halfway between its starting and ending positions.  This is not the same as a 50:50 average of 
the end points. This example is a simple case of an intermediate. However, if the bond rupture 
is indeed two-state we expect a dataset collected at 𝐷=>?43 = D1/2,s to yield the same electron 
density map as a 50:50 mixture of data taken at 𝐷=>?43=0 and at 𝐷=>?43 >> D1/2,s. Put another 
way, a 50:50 average of data with fleft = 1 and fleft = 0 yields data with fleft = 0.5 for a two-state 
reaction. This linear superposition is a fundamental assumption of the present work. It is 
therefore important to point out that disulphide bond breakage does have an intermediate state 
(11, 12), but we shall regard the electron density changes observed here to be due to a two-
state reaction. Indeed, because any experiment with dose contrast intrinsically averages data 
from regions of the sample that have experienced different doses, dose contrast can be regarded 
as an effective suppressor of information about intermediate states.  

Another important example of linear superposition is the assignment of an experiment 
time (t) of 1 ms to image n=1, t=3 ms to image n=2, t=5 ms to image n=3, etc.  This is because 
the photons on image n=1 arrived continuously between t=0 ms and t=2 ms. No doubt the 
distribution of arrival times was not flat, but as long as it may be regarded as linear the principle 
of superposition again applies. So, provided the consequences of radiation damage such as spot 
fading and bond breakage can be regarded as evolving linearly over the exposure time of a 
single image, the average result will faithfully represent the result at the average time. The 
average time for image 1 is t=1 ms. That is, we assume that the average of all diffraction 
patterns that would have been collected between 0 and 2 ms is the same as a diffraction pattern 
of the state of the crystal at t=1 ms.  

The assumption of linear superposition allows us to calculate the apparent progression 
of the specific damage reaction observed in the electron density map (fmap) as expressed by a 
weighted sum of the reaction progression (fleft) in all the uniformly-illuminated volumes of the 
crystal: 

𝑓@AB =:𝑤;𝑓3456,;
;

 

(eq. S4) 
where wc is the normalized weight assigned to volume c and fleft,c is the true reaction progression 
within volume c. These weights arise from the intensity of illumination, the decay of 
diffraction, and other considerations outlined below, but in all cases the sum of all wc is unity. 
Without the assumption of linear superposition there is no straightforward way to relate true 
damage progression fleft to the apparent progression fmap. 

The extent of specific damage in this work was measured by integrating electron 
density. Integrated density is expected to have an arbitrary offset due to the unknown value of 
F000 and an arbitrary scale due to the unknown density overlap between the unreacted and 
damaged states. We therefore must modify fmap to put it on the same scale as the measurement, 
which was achieved here with simple linear regression: 
  

𝑊𝑆𝐷 = 𝑎	𝑓@AB + 𝑏       (eq. S5) 
 
where a is an arbitrary scale, b is an arbitrary offset, and WSD we define as the Weighted 
Specific Damage: the extent of damage progression that was observed. 
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We now describe our two models for defining and determining these weights.  The first 
model “three-beam” was parametric: the crystal was divided into three independent regions, 
each with its own illuminating flux and dose rate.  There were six fitted parameters overall: 
D1/2,g from eq. S1, D1/2,s from eq. S2, two per-volume beam weights (whot, wcold) as in eq. S4, 
and the arbitrary scale (a) and offset (b) from eq. S5.  

The second model “per-voxel” was more fine-grained: each voxel from a RADDOSE-
3D run was treated as an independently decaying crystal in its own uniform beam and the 
resulting contributions summed.  There were also six adjustable parameters: the weight of the 
beam tails (hLorentz), the crystal size (Lxtal), and then D1/2,g, D1/2,s, a and b as for the three-beam 
model. Overall fits to the data were comparable, with the “per-voxel” model being the most 
physically comprehensive but with much longer computational run times, and the “three-beam” 
model being the simplest and fastest to implement. 
 
 
Supplementary Text S1 – Analysis of global (I/I1) and specific (Cys127 – Cys6) radiation 
damage generated by a non-uniform beam represented by a three-beam model. 
  

The decrease in diffraction power as a function of increasing dose (Fig. 2) cannot be 
fitted by a single exponential function. Thorne and co-workers have shown that the non-
exponential decay of diffraction intensities at room temperature is a consequence of differential 
diffraction intensity decay due to the non-uniform irradiation provided by a Gaussian profile 
microbeam (13). In a Gedankenexperiment, Holton approximated non-uniform illumination 
using a two-beam model, in which the sample is irradiated by two beams differing by a factor 
of 10 in flux density. The apparent decay in diffraction power could be explained by two 
exponential functions with a tenfold difference between their rate constants (14). Here, we 
augment this concept to a three-beam model, to assess if our observed evolution of the specific 
damage could be explained by differential diffraction intensity decay due to the non-uniform 
irradiation.  

We suppose exponential intensity decay (eq. S1) for two of the three beams, with 
contributions to the image proportional to their respective photon flux in photons/s. We 
constrain these two beams to have uniform illumination, as well as identical and disjoint 
footprint areas, making the dose rate under each beam proportional to flux. These two beams 
may be thought of as concentric areas: the core of the beam (hot beam; photon flux φhot) and a 
doughnut-shaped area around that core (cold beam; photon flux φcold). This allows the use of a 
single exponential decay parameter D1/2,g. The dose rate under the cold beam is simply a 
modification of that under the hot beam, it is reduced by the ratio of the fluxes (φcold /φhot). The 
contribution of the third beam was proportional to its flux (φconst), but otherwise invariant over 
the dose-range of this study. The overall intensity decay is described by the following equation: 
 

𝐼9
𝐼I
=
𝜑K>6	2

&		L'MNO	'-//,1 + 𝜑;>3P	2
&Q	

L'MNO	
'-//,1

	
RS),T
RU)V

W
+ 𝜑;>9X6

𝜑K>6 + 𝜑;>3P 	+ 𝜑;>9X6
 

        (eq. S6) 
 
where 𝐴𝐷Z[\ is the average dose delivered by a Gaussian beam over the region of the crystal 
where 95% of the energy is deposited, as calculated RADDOSE-3D (9). This average dose was 
found to be much more numerically stable than the dose absorbed by the true (Voight-like) 
beam shape (see introduction above and eq. S12 below), and is simpler to calculate with 
RADDOSE-3D. In eq. S6, the third beam does not generate observable damage. This is 
consistent with a very broad and weak beam illuminating a very large area, such as a faint halo 

weik
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of long tails. This third beam accounts for the plateau of residual intensity that remains even at 
very high values of average dose. Although there are three fluxes in S6, only two are free 
parameters because the denominator normalizes them. 
 For simplicity, let us now decompose eq. S6 and extract the Bragg intensity contribution 
arising from each beam: 

𝑖K>6 = 𝐼I
𝜑K>6
𝜑6>6A3

	2
&	L'MNO	'-//,1  

                 

𝑖;>3P = 𝐼I
𝜑;>3P
𝜑6>6A3

	2
&Q	

L'MNO
'-//,1

	
RS),T
RU)V

W
 

     (eqs. S7) 
𝑖;>9X6 = 𝐼I

𝜑;>9X6
𝜑6>6A3

	 

           
Where I1 is the total Bragg intensity observed on the first image and φtotal is the sum of all three 
fluxes (total flux). The diffraction decay weighted dose (DDWD), which takes into account the 
differential diffraction intensity decay (13), can then be computed as follows: 
 

𝐷𝐷𝑊𝐷 = 𝐴𝐷Z[\	(𝑖K>6 + 𝑖;>3P + 𝑖;>9X6)/𝐼I 
  (eq. S8) 

 
To model the specific damage data, we have to consider that the overall intensity decay will be 
corrected by scaling during data processing, so that the sum of the different beam contributions 
will always be normalized to unity. The electron density difference map will therefore be a 
weighted sum of distinct structures illuminated by the two individual beams that contribute to 
the intensity decay.  We can estimate the relative contribution, whot and wcold of each beam as a 
function of the average dose 𝐴𝐷Z[\: 
 

𝑤K>6 =
𝑖K>6

𝑖K>6 + 𝑖;>3P
																			 

(eq. S9) 
 

and 
 

𝑤;>3P =
𝑖;>3P

𝑖K>6 + 𝑖;>3P
																					 

(eq. S10) 
iconst is not taken into the normalization as it does not contribute to the decay of diffracted 
intensities and thus does not affect difference maps. To a first-order approximation, we 
consider that the specific-damage decay is exponential in each beam, with an exponential decay 
parameter D1/2,s (eq. S2) and that they can be linearly superimposed (eq. S4) to give a weighted 
specific damage metric, WSD.  

𝑊𝑆𝐷 = 𝑎 Q𝑤K>6	2
&L'MNO		'-//,7 + 	𝑤;>3P	2

&	L'MNO		'-//,7
	
RS),T
RU)V W + b 

           (eq. S11) 
 
Two extra parameters were added to scale, a, and offset, b, this WSD function to the 
experimental data (eq. S5).  
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Estimation of parameters 
The relative contributions of the hot and the cold beams are embodied in their ratio φhot/φcold, 
which was estimated by minimizing the difference between WSD and the specific damage 
experimental data. 
For the RT series at 40.3 MGy/s, a final flux ratio of 25 between the hot and the cold beams 
was estimated, which corresponds to a contribution of 0.962 and 0.038 for the hot and cold 
beams, respectively. With this ratio, the exponential decay parameters are D1/2,g = 0.38 MGy 
(eq. S1) for global damage and D1/2,s = 0.08 MGy (eq. S2) for specific damage. 
 
 
Supplementary Text S2 – Per-voxel simulation of global (In/I1) and specific (Cys127 – 
Cys6) radiation damage 
 

RADDOSE-3D (9) was used to calculate the dose rate at each point in the crystal and 
this distribution was subsequently used to compute the expected fading of each voxel with 
dose, as well as the apparent progression of specific radiation damage after accounting for this 
fading. 

We postulated an X-ray beam with partial Lorentzian character which was represented 
by the sum of a Gaussian and a Lorentzian profile (pseudo-Voigt approximation): 

𝑑𝜑(𝑥, 𝑦) = ℎZAdXX2
&eQf *

ghij*
k
/
lm n

ghijn
o
/
W
+

ℎp>q496r

1 + 4Qf ?
uvwx*

k
y
+ m z

uvwxn
o
y
W

 

    (eq. S12) 
 
where dφ denotes the flux density at a given position and hGauss and hLorentz are the relative 
contributions of the Gaussian and Lorentzian components of the beam. Both profiles were 
constrained to have the same horizontal (x) and vertical (y) full-width-at-half-maximum 
(FWHM) values of 3.0 µm (x )  ´ 1.5 µm (y), but the Lorentzian component was weighted to 
account for 14% of the total flux. This X-ray intensity distribution was used to generate a 16-
bit greyscale image of the beam profile in Portable Greymap (PGM) format which was 
provided to RADDOSE-3D. Each pixel represented a  0.2 ´ 0.2 µm2 square patch of the beam 
profile and the entire PGM image ranged over a 200 ´ 200 µm2 square. 

The RADDOSE-3D run was conducted with 13.45 keV photons at a flux of 2.67 ´ 1012 
photons/s and the crystal divided into 0.2 µm voxels. Tetragonal lysozyme from PDB ID 2ybh 
with 1.75 M Cl ions was specified with both photoelectron and fluorescent photon escape 
turned on. The rotation range was set to 0.01° to capture the beam divergence and the exposure 
time was set to 1 s so that the reported dose (Gy) was also a dose-rate (Gy/s). 

The resulting per-voxel dose-rate and fluence (photons/area) values were averaged 
along the beam direction to yield a 2D map of dose (Dvoxel) and relative illumination (willum) 
over the x-y plane. Voxels were then further weighted with a conical distribution: 
 

𝑤K{6(𝑟) = }
𝐿?6A3 − 𝑟

𝑟 , 𝑟 < 𝐿?6A3
0, 𝑟 ≥ 𝐿?6A3

 

    (eq. S13) 
 
This distribution was equal to unity at the centre of the beam, but fell off proportional to 
distance (r) from the beam centre out to the expected average edge dimension of the crystals 
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(Lxtal). whit was then made to be zero outside this radius. The purpose of this extra weight (whit) 
was to account for the random positioning of the beam on each crystal face. Over the serial 
data collection process some crystals might be hit at their exact centre, and others might be hit 
at their extreme corner. This has no impact on the contribution of voxels near the core of the 
beam, but parts of the crystal lattice far from the beam impact point will contribute less often 
to the total diffraction pattern. For example, when the main beam hits the centre of a square 
crystal with edge length Lxtal=15 µm all of the voxels at r=7 µm contribute to the data, but if 
the beam hits a corner of a square crystal there are only 1/4 as many voxels of diffracting 
material at this radius. The component of the beam with Lorentzian character means that these 
outlying parts of the crystal still experience a non-trivial number of photons, and indeed the 
residual long-exposure intensity observed in the diffraction data of the RT series at 40.3 MGy/s 
(triangles in Fig. 2) could not be reproduced with a Gaussian beam shape. Numerical 
integration revealed that the proper relative weighting of distant voxels was a conical 
distribution with base radius equal to the edge length of the cuboid crystal (eq. S13). The 
crystals used in the experiment were roughly 20 ´ 20 µm, but the effective average dimension 
Lxtal was made to be adjustable in the simulation. To expedite computation RADDOSE-3D was 
run once for a much larger cuboid crystal 60 ´ 60 µm and 20 µm thick, and then subsets of 
voxels were effectively selected via (eq. S13). The final best-fit simulation had Lxtal=15 µm. 
After multiplying this "hit-rate weight" whit by the illumination level of each voxel (willum) from 
the RADDOSE-3D simulation, the fading due to radiation damage was applied. This fading 
factor (wfade) was made to be exponential with voxel dose (Dvoxel ), reaching 0.5 at the half-dose 
for global radiation damage (D1/2,g = 0.4 MGy).  
 

𝑤5AP4(𝐷=>?43) = 2
&	
'()*+,
'-//,1  
    (eq. S14) 

 
Note this Dvoxel is a property of a single voxel, not an average property as in the three-beam 
model. The dose for each voxel (Dvoxel ) was computed by multiplying the dose rate obtained 
from RADDOSE-3D by the average exposure time of each image, which was 1 ms for the first 
image, 3 ms for the 2nd image, etc. The product of these three factors: illumination (willum), hit-
rate (whit) and fading (wfade) represented the relative contribution of each voxel to a given image. 
The sum of this combined weight over all voxels (wnorm) was taken to be proportional to the 
total Bragg intensity scattered into a given image: 
 

𝑤9>q@ = : 𝑤{33d@𝑤K{6𝑤5AP4
=>?43X

 

    (eq. S15) 
 
The ratio of wnorm obtained for each image to the value of wnorm for the first image is the per-
voxel simulation-predicted In/I1 shown in Fig. 3a.  

Specific damage was also constrained to progress exponentially. The progression along 
this chemical reaction coordinate was represented by the fraction of un-reacted species (fleft), 
reaching 50% at the half-dose for specific damage (D1/2,s = 0.080 MGy) : 
 

𝑓3456(𝐷=>?43) = 	2
&	
'()*+,
'-//,7  

       (eq. S16) 
 This extent of the specific damage progression (fleft) was computed separately for each voxel 
using the same per-voxel dose (Dvoxel) described above. The apparent progression of the 
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specific damage reaction in the electron density map (fmap) at each time point was taken to be 
the weighted sum of all fleft values: 
 

𝑓@AB = :
𝑤{33d@𝑤K{6𝑤5AP4𝑓3456

𝑤9>q@=>?43X

 

    (eq. S17) 
 
 
where wnorm is defined in eq. S14. This value of fmap was then scaled and offset (eq. S5) to align 
it with the observed integrated electron density values in Fig. 4d, just as it was with the three-
beam model. These values were: a = 2.176, and b = -0.568 for the disulphide bridge Cys126-
Cys7. 
 
Estimation of parameters 
 RADDOSE-3D simulations were conducted on a grid of D1/2,g spaced every 0.1 MGy 
and hLorentz spaced every 0.01. Numerical simulations of eq. S14 and eq. S15 were conducted 
on a grid of Lxtal spaced every 5 microns and D1/2,s spaced in 0.01 MGy. The optimal match to 
the observed general (I/I1) and specific (integrated electron density) data was found at D1/2,g = 
0.4 MGy, D1/2,s = 0.08 MGy, Lxtal = 15 µm and hLorentz = 0.14. 
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Table S1. Data collection statistics for the lowest dose data sets in each series and refinement 
statistics for the first dataset in the RT low-dose rate and the cryo high-dose rate series. Values 
in brackets refer to the highest resolution shell. Doses are average value for 95% of the beam 
profile. 
 

Data collection statistics 

Dataset RT low-dose rate 1  
RT-LDR1 

RT high-dose rate 1 
RT-HDR1 

cryo high-dose rate 1 
CR1 

Temperature (K) 295 295 100 

Dose rate (MGy/s) 2.4 40.3 40.3 

Space group P43212 P43212 P43212 

Unit cell parameters 

a (Å) 

b (Å) 

c (Å) 

 

79.3 

79.3 

38.3 

 

79.3 

79.3 

38.3 

 

77.2 

77.2 

37.9 

Indexed frames 20182 19818 9051 

Observations 13066 (802) 17272 (870) 13066 (802) 

Resolution (Å) 20.0–1.74 (1.77–1.74) 20.0–1.58 (1.60–1.58) 20.0–1.74 (1.77–1.74) 

Rsplit (%) 13.54 (48.16) 9.71 (38.36) 6.82 (29.88) 

CC* (%) 99.23 (92.43) 99.60 (93.80) 99.78 (94.5) 

I/sI 6.50 (2.02) 8.44 (2.39) 11.45 (2.40) 

Completeness (%) 100 100 100 

 
Multiplicity  

 
195.8 (106.9) 

 
295.76 (123.8) 

 
688.9 (266.2) 
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Refinement statistics 

PDB ID 6Q88  6Q8T 

Resolution (Å) 20.00–1.74 (1.80–1.74) 20. 00–1.74 (1.80–1.74) 

Number of reflections 13010 (1264)   12242 (1200) 

Rwork (%) 18.16 (30.70) 19.81 (26.73) 

Rfree (%) 20.38 (31.63) 24.59 (33.03) 

Number of non-H atoms 

    Protein 

    Waters 

    Ligands 

1128 

1031 

89 

8 

1149 

1018 

114 

17 

Number of residues  129 129 

Average B-factor (Å2)  

    Protein  

    Solvent 

    Ligands 

27.55 

26.54 

37.10 

51.71 

23.07 

22.24 

28.73 

34.61 

r.m.s.d. bond lengths  (Å) 0.005 0.010 

r.m.s.d. angles (°) 0.77 1.11 

Ramachandran favored 
(%) 

98.43 99.21 

Ramachandran allowed 
(%) 

1.57 0.79 

Ramachandran outliers 
(%) 

- - 

Clash score 0.98 4.63 
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Table S2. D1/2 values determined in this study under the different experimental conditions. D1/2 
values are obtained directly from the experimental In/I1 curves (Fig. 2). D1/2,g corresponds to 
the half doses for global damage obtained by fitting the In/I1 curves (Fig. 2) either according to 
the three-beam model (see Supplementary text S1 for details) or the per-voxel simulation (see 
Supplementary text S2 for details). D1/2,s corresponds to the half dose of specific damage to 
disulphide bonds obtained from the specific damage curves (Fig. 4) using the 3-beam model or 
the per-voxel simulation. N.A: not applicable. 
 
  RT-LDR RT-HDR CR 

D1/2 (MGy)  0.36 0.57 15.3 

D1/2,g (MGy) 3-beam model 0.34 0.38 17.8 
per-voxel N.A 0.4 N.A 

D1/2,s (MGy) 3-beam model N.A 0.08 N.A 
Per-voxel N.A 0.08 N.A 

 
 
 
 
 
 
 
  

weik
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Figure S1: Decrease in diffraction power and diffraction decay weighted dose as a 
function of absorbed dose for the RT series at 40.3 MGy/s. (a) The sum of the intensities of 
all reflections up to the detector edges in all indexed diffraction patterns of a dataset, 
normalized to the sum of the first (i.e. lowest dose) data set (triangles, same data as in Fig. 2) 
is fitted (dashed line) according to Supplementary equation S6. Error bars correspond to the 
standard deviation of all sample positions in dataset n. (b) The diffraction decay weighted dose 
(DDWD) as a function of the average dose, computed according to Supplementary equation 
S8. 

  

weik
a

weik
b 
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Figure S2: Decrease in diffraction power and diffraction decay weighted dose as a 
function of absorbed dose for the RT series at 2.4 MGy/s. (a) The sum of the intensities of 
all reflections up to the detector edges in all indexed diffraction patterns of a dataset, 
normalized to the sum of the first (i.e. lowest dose) data set (circles, same data as in Fig. 2) is 
fitted (dashed line) according to Supplementary equation S6. Error bars correspond to the 
standard deviation of all sample positions in dataset n. (b) The diffraction decay weighted dose 
(DDWD) as a function of the average dose, computed according to Supplementary equation 
S8. 

  

weik
a

weik
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Figure S3: Decrease in diffraction power and diffraction decay weighted dose as a 
function of absorbed dose for the cryo series at 40.3 MGy/s. (a) The sum of the intensities 
of all reflections up to the detector edges in all indexed diffraction patterns of a dataset, 
normalized to the sum of the first (i.e. lowest dose) data set (squares, same data as in Fig. 2) is 
fitted (dashed line) according to Supplementary equation S6. Error bars correspond to the 
standard deviation of all sample positions in dataset n. (b) The diffraction decay weighted dose 
(DDWD) as a function of the average dose, computed according to Supplementary equation 
S8. 
 

weik
a

weik
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Figure S4: Glu7 at the protein surface is well ordered. 2Fo-Fc (blue, 1 s) and Fo-Fc (green, 
3.5 s; red, - 3.5 s) maps of the lowest-dose dataset of the RT 2.4 MGy/s series (RT-LDR1; 
corresponding to an average dose (ADG95) of 5 kGy). The model of RT-LDR1 (pdb code 6Q88) 
is superimposed.   
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Figure S5: Evolution of the main statistical parameters (a) Rsplit, (b) CC*, (c) I/ sI and (d) 
multiplicity with increasing average dose (ADG95) for the three different data series, RT low-
dose series (red), RT high-dose series (purple) and 100 K high-dose series (cyan). For both RT 
series, the high-resolution shell is 2.10-2.04 Å, while for the 100 K series it corresponds to 
1.97-1.92 Å. 
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Figure S6: Radiation-induced changes at a proline residue as a function of increasing 
average dose. (a) Sequential difference Fourier map at Pro70 between the 64th (0.31 MGy) 
and the 1st data set in the RT 2.4 MGy/s series are shown at ±0.060 e-/Å3 (negative and positive 
peaks are in red and green, respectively). The model of the RT 2.4 MGy/s series dataset 1 (pdb 
code 6Q88) is superimposed on the difference Fourier map. Parts of two symmetry-related 
molecules are shown in grey and cyan. (b) Sum of integrated electron density in Fourier 
difference maps around each atom of Pro70 as a function of dose for the cryo and the two RT 
series. Note, only every 5th data point is shown at doses above 0.24 MGy for the RT 2.4 MGy/s 
series. 
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