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Supplementary Introduction 

Our empathic embarrassment setup is based on previous studies that have suggested that empathy may 

involve affective (bottom-up) and cognitive (top-down) processes (1-3); such that the perceiver would 

(a) resonate an emotion in the social target via a more dominant affective route (self–other matching) or 

(b) recognize her own emotion that differs from an emotion in the social target via a more dominant 

cognitive route (self–other distinction) (2, 4). Accordingly, when an individual encounters a person 

whose behavior is embarrassing, this individual may empathically acknowledge the situation in two 

ways, both by sharing the emotion with the person who is embarrassed of herself and aware of her 

feeling, and by not sharing the emotion with the person whose behavior is embarrassing but this person 

is unaware of her embarrassment (3). 

On this basis, we hypothesized that the EMBAR singers would embarrass the viewer dominantly via 

affEMP (so that the viewer would share embarrassment with the EMBAR singer) and the PRIDE singers 

dominantly via cogEMP (so that the viewer would acknowledge the embarrassment of the PRIDE 

singer). We also predicted that PRIDE singers would trigger stronger cogEMP than affEMP because 

understanding the embarrassment in a situational context demands dissociating from the PRIDE singer’s 

proud feeling. 

 

 

Supplementary Methods 

 

Behavioral data 

Empathic disposition was assessed using the 28-item Interpersonal Reactivity Index (IRI), 

which is one of the most widely used self-report measures of dispositional empathy (5). The 

subscales of personal distress (PD: self-oriented feelings of anxiety and discomfort) and 

empathic concern (EC: feelings of compassion and concern for others) scores assessed the 

affective components of empathy, whereas, perspective taking (PT: adopting others’ 

psychological point of view) assessed the cognitive component of empathy (1). Based on 

previous studies, the fantasy subscale was excluded (6). We assessed subjects’ alexithymia level 

using the 20-item Toronto Alexithymia Scale (TAS-20) (7). Alexithymia represents lack of self-

awareness (7), which is a proposed precursor for empathic abnormalities (6, 8). This measure 

yields three subscales: difficulty in identifying feelings, difficulty in describing feelings, and 

externally-oriented thinking. In addition, intelligence quotient (IQ) scores were estimated using 

a Japanese version of the National Adult Reading Test (JART; mean = 104.6 ± 8.35), based on 

findings from a previous study that demonstrated that JART scores successfully predicted full-

scale IQ scores on the Wechsler Adult Intelligence Scale-Revised (9). 

We used the Wisconsin Card Sorting Test (WCST), a well-established measure of 

cognitive flexibility and attentional set-shifting (10), to assess subjects’ abilities to switch 

attention and perspectives. These abilities are crucial for cognitive perspective taking that 

requires individuals to compare and contrast their own perspectives with those of other people 

(11, 12). We adopted a computerized version of the WCST (13) where four stimulus cards were 

displayed on the computer screen. The cards varied according to three perceptual categories: 

number, color, and shape. Subjects were instructed to select one of the four cards that fit a given 

perceptual category but they were not told which perceptual category to use. After each card 

selection, subjects received feedback (‘Correct’ or ‘Incorrect’). The perceptual category used to 

organize the cards shifted among these three categories during the test until subjects had 
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selected all 48 cards. We focused on the number of categories achieved (CAs). One CA 

represented one rule attainment, involving six consecutive correct card selections after a rule 

change. Therefore, larger CA numbers represented a greater ability to switch attention and 

decision rules (perspectives) (11). One subject’s WCST data were omitted because of a 

technical error. 
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fMRI task, data acquisition, and analyses 

 

Subjects watched video clips of female and male singers who were singing badly in front 

of an audience during a singing competition (Fig. 1). Singers acted embarrassed or proud of 

their singing [authentic embarrassment (EMBAR) and hubristic pride (PRIDE), respectively]. 

These performances were designed to embarrass the viewers either via emotion sharing [i.e. 

affective empathy (affEMP) with EMBAR singers] or via perspective taking [i.e. cognitive 

empathy (cogEMP) for PRIDE singers]. The setup also included no-singing video clips (singers 

neither sang nor expressed emotions and listened to instrumental background music) as well as 

authentic pride video clips (talented singers sang well and expressed proud of their 

performance). These conditions, comprising six blocks each, similar to EMBAR and PRIDE 

conditions, will be analyzed using a theoretically and methodologically distinct approach and 

reported in a separate study. 

At single-subject level, we used a GLM in SPM and conducted two t-tests for the 

contrasts EMBAR > PRIDE and EMBAR < PRIDE. The design matrix included task conditions 

and six movement parameters (three displacements and three rotations). At group level, we 

conducted ROI-based random-effects analyses to investigate activity specifically recruited 

within empathy-related brain regions. We selected a priori regions that are crucially involved in 

affective and emotional processing, including e.g. vicarious pain (2). These ROIs included the 

amygdala, ACC, insula, and vmPFC/OFC. These ROI masks were generated using the 

Automatic Anatomical Labeling atlas as implemented in the WFU pickatlas toolbox (14). We 

limited our analysis to the right hemisphere, given that right-hemisphere-dominant brain 

activity within these hypothesized regions is commonly reported in studies of social cognition 

(15). Activity within ROI masks was considered statistically significant if it survived FWE 

correction for multiple comparisons at a cluster-level of p < 0.01 (primary threshold at voxel-

level uncorrected, p < 0.001). Parameter estimates were extracted as first eigenvariates from 

statistically significant clusters within these a priori regions. We also included an ROI in the 

right pSTS/TPJ likely supporting in cogEMP (16-18). We examined these regions as a 

single/unified region, in accordance with previous studies (16, 19, 20). Per our previous 

approach (6), pSTS/TPJ parameter estimates were extracted from a cluster obtained from a 

whole-brain analysis. Additionally, we reported activity outside these ROIs thresholded at 

voxel-level p < 0.01 with a minimum cluster extent of 50 contiguous voxels after whole-brain 

FWE correction for multiple comparisons. To locate and interpret the anatomical location of 

these clusters, we consulted MRIcron (http://people.cas.sc.edu/rorden/mricron/index.html), the 

Talairach Daemon database (http://www.talairach.org), and neuroanatomy atlases. Finally, 

parameter estimates from the affEMP and cogEMP contrasts were correlated with behavioral 

scores using Pearson’s r correlation analyses in SPSS 22.0 (Chicago, IL, USA), after controlling 

for age and gender. Statistical significance was set at p < 0.05 (two-tailed).  

http://people.cas.sc.edu/rorden/mricron/index.html
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FuSeISC (ISC-based functional segmentation) and connectivity analysis 

 

Overview 

In addition to the GLM-based analyses, we conducted data-driven analyses based on ISCs 

(21). While GLM parameter estimates indicate the strength of brain activity, ISC quantifies the 

strength of the similarity of brain activity time-series across subjects [i.e., similar 

synchronization of fMRI time courses to the stimulus timing in all subject pairs; note that we 

call this effect synchronization although the signals were measured from different individuals 

sequentially (22, 23)]. Recently, the conventional voxel-wise ISC method has been extended to 

locate stimulus-induced inter-regional correlations between brains exposed to the same stimuli 

(24), as well as to identify functional segments and networks of brain areas involved in 

processing the stimuli (21, 25). FuSeISC segments the whole-brain directly in group-level 

analysis without utilizing spatial information (e.g., locations, shapes, and sizes defined in the 

anatomical masks), dividing the brain into multiple segments associated with different ISC 

patterns across multiple conditions. After computing the whole-brain segmentation, we 

performed two analyses based on it. First, we inspected segments showing statistically 

significant differences in the strength of ISC during EMBAR and PRIDE conditions. Second, 

we constructed overall (whole-brain) functional networks for each subject using the mixed 

neighborhood selection method and studied the association between the strength of overall 

connectivity and TKS scores. Figure 4 shows the pipeline of the FuSeISC analysis from fMRI 

data to the statistics of correlation between TKS scores and strengths of connectivity via whole-

brain segmentation. 

Consideration of inter-subject variability was important in the present study because 

previous research has shown that social anxiety is highly heterogeneous in its manifestations 

(26, 27). Thus using both the mean and the variability of ISC across subjects (28, 29) might be 

useful in the study of the brain bases of social anxiety. FuSeISC can complement standard 

averaging approaches in group analyses and may enrich the conclusions (28). Both the FuSeISC 

and mixed neighborhood selection connectivity methods accounted for the inter-subject 

variability while examining empathy-related brain activity. In FuSeISC analysis, 

synchronization across subjects in a specific voxel was measured in terms of both the mean and 

variability of subject-pairwise ISC (21). In the connectivity analysis, the mixed neighborhood 

selection incorporated a random-effect component into the model, thereby allowing the model 

to learn both group-level and subject-specific connectivities for each node in the network. The 

purpose of using mixed neighborhood selection was to accurately recover subject-specific 

functional connectivity networks while sharing information across subjects in a judicious 

manner.  
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Construction of whole-brain FuSeISC maps 

 

First, to construct a whole-brain functional segmentation (21), a correlation between fMRI 

time-series of each subject pair (N = 23 subjects) was computed for each voxel and task 

condition. Next, two ISC features (mean and variability) were extracted from the correlation 

matrices of each task condition. Finally, in the segmentation step, these voxels were clustered 

across the brain as described in (21) using the Gaussian mixture model and mutual nearest-

neighbor graph-based initialization of the cluster centroids. Figure S1 shows the constructed 

FuSeISC map. 

 

 

Construction of FuSeISC condition-contrast maps 

 

The final number of clusters (segments) in the FuSeISC map depends on the selected 

neighborhood parameter k of the initialization algorithm. A previous study (21) showed that the 

total number of segments stabilized for two different task-based fMRI datasets when k ranged 

from 230 to 250. Thus, in the contrast analysis, we analyzed FuSeISC map with k = 250 

(leading to 25 segments). Following the previous study (21), we removed as a post-processing 

step segments located predominantly in the white matter, ventricles, and the brain stem. This 

post-processing was important to allow better comparison with the GLM-based analysis.  

Subsequently, we examined differences between EMBAR and PRIDE conditions within 

each segment. We first computed mean time-series within each functional segment for each 

subject (both for EMBAR and PRIDE conditions). Then, to find ISC differences between 

conditions for each segment, we used a similar procedure as described in our previous study 

(30) for voxel-level analysis. We first computed subject-pairwise modified Pearson-Filon 

statistics based on Fisher’s z-transformation (ZPF), which is a recommended measure for 

evaluating if two non-overlapping but dependent correlation coefficients differ (31). Then, we 

computed a group-level statistic by taking a sum across the subject-pairwise ZPF values and 

conducting a permutation test on this sum ZPF statistic. We performed the test under the null 

hypothesis that each subject-pairwise ZPF value is drawn from a distribution with a zero mean, 

which would occur when there is no ISC difference between conditions. We approximated a 

permutation distribution by randomly flipping the sign of ZPF values before calculating the sum 

ZPF statistic, using a subsample of size 100’000 of all possible random labeling. We corrected 

the obtained p-values using a false discovery rate (FDR) based on the Benjamini-Hochberg 

procedure (32). Statistical significance was set at q < 0.05, FDR-corrected. 

 

Functional connectivity analysis 

 

We estimated brain connectivity networks from the segments obtained in FuSeISC 

analysis. Subsequently, we examined a linear association between subjects’ TKS scores and the 

strength of functional connectivity in the whole brain. We employed mixed neighborhood 

selection to estimate functional connectivity networks (33). This method is preferred to 

traditional functional connectivity algorithms as it explicitly accounts for inter-subject 

variability, which is of primary interest in this work and has been widely reported (28, 29, 34, 

35). Mixed neighborhood selection shares information across subjects via the use of a novel 

covariance model (36). Specifically, mixed neighborhood selection introduces a random effect 
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component in the neighborhood selection model, thereby learning both group-level and subject-

specific connectivities for each node in the network. Such an introduction thereby allows mixed 

neighborhood selection to learn a richer model of functional connectivity, where the edge 

between any pair of regions can be seen as the sum of a population edge together with a 

subject-specific edge. Furthermore, mixed neighborhood selection introduces L1 sparsity 

constraints in order to learn parsimonious and interpretable models of functional connectivity. 

Parameter inference proceeds by maximizing the penalized complete-data log-likelihood of the 

form: 

 

𝐿𝑐
𝜆1,𝜆2(𝜙𝑣) = 𝐿𝑐 (𝜙

𝑣) + 𝜆1‖𝛽
𝑣‖1 + 𝜆2‖𝜎

𝑣‖1, 
 

where Lc(ϕ
v
) is the negative log-likelihood, and ϕ

v
 = (β

v
, σ

v
) are model parameters for node v to 

be estimated. 

An objective of this form is to separately optimize each node in the network. 

Regularization parameters λ1 and λ2 are user parameters selected before estimating the model: λ1 

enforces sparsity for edges of the graph at the population level, and λ2 shrinks standard 

deviation terms σ
v
 of the random effects component. Large values of λ1 will lead to sparse 

networks at the population level, and large values of λ2 will penalize the variance of the random 

effects, leading to sparse subject-specific contributions. In the context of high-dimensional data, 

regularization is fundamental, as it reduces the total number of free parameters, thereby making 

estimation feasible from an optimization perspective. We note that without regularization, the 

parameters are not identifiable, i.e., there are an infinite number of possible solutions. For the 

estimation of the models, we used the expectation-maximization algorithm (33) implemented in 

the statistical software R (37) (https://www.r-project.org). 

To define nodes of the functional network, we used brain-wide segments obtained by 

FuSeISC as volumes of interest (VOIs). First, to specify each spatially isolated segment as one 

independent VOI, we re-labeled all the original FuSeISC-revealed segments. This procedure 

was done because these segments contained spatially separated subsegments that were initially 

labeled as the same segment (i.e., identically colored segment in the FuSeISC maps). With this 

re-labeling, these subsegments were treated as different (independent) VOIs. Second, to 

estimate the functional networks by mixed neighborhood selection method (33), these VOIs 

were thresholded at a minimum cluster extent of 500 contiguous voxels (38). Then, mean fMRI 

time-series were extracted from each VOI for each subject and used in the network estimation 

stage. Two connectivity graphs per each subject were separately built based on the time-series 

of two conditions (EMBAR and PRIDE). From the estimated weighted connectivity graphs, we 

computed the whole-brain (overall) connectivity strength for each subject. Following the 

procedure used in a prior study (39), the whole-brain connectivity strength was obtained by 

calculating the median of the positive, pairwise correlation values between the nodes for each 

subject. Subsequently, a correlation coefficient was computed between the whole-brain 

connectivity strength and TKS scores across subjects (39) during the affEMP and cogEMP 

conditions. The correlation coefficient depends on selected parameters (40); thus, to alleviate 

any biases, we assessed the statistical significance of the average correlation coefficient, based 

on multiple brain networks that were constructed with different hyper-parameter combinations 

(see Fig. 4). In the context of the regularization parameters, λ1 and λ2, this can be interpreted as 

performing Bayesian model averaging (41). In the current study, the following parameters were 

used: λ1 = [0.05, 0.1, 0.2], λ2 = [0.01, 0.02] and k = [150, 200, 250, 300], leading to 3*2*4 = 24 

https://www.r-project.org/
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brain networks per subject with a different numbers of nodes (61, 51, 43, 41, depending on k) 

and sparsity levels (depending on λ1, λ2). Thus, we computed 24 (dependent) correlation 

coefficient values, one per each network, and averaged them. To assess the statistical 

significance of this average correlation coefficient, we estimated p-values by conducting an 

approximate randomization test, where the null distribution was formed by computing the 

corresponding mean correlation coefficient after randomly shuffling the TKS-score vector 

10’000 times.  
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Supplementary Results and Discussion 

 
Behavioral data  

 

As intended by our study design, subjects’ post-scan embarrassment ratings of the singing 

video clips were not statistically significantly different between the EMBAR and PRIDE 

conditions (21.8 ± 10.6 versus 20.2 ± 11.1; n.s.), which suggested that subjects experienced 

fairly similar level of empathic embarrassment in EMBAR and PRIDE. TKS scores correlated 

positively with personal-distress subscale of IRI (r = 0.45, p = 0.048), but not with perspective 

taking and empathic concern (r = −0.23, p = 0.331, and r = −0.29, p = 0.230, respectively). As 

an additional analysis, we examined the relationship between subjects’ level of TKS and 

alexithymia (measured by TAS questionnaire). The results showed that TKS scores correlated 

positively with the difficulty of identifying feelings (r = 0.49, p = 0.029) but not with the 

difficulty of describing feelings (r = 0.30, p = 0.205) or with externally-oriented thinking (r = 

−0.09, p = 0.716).  

 

 

 

Neuroimaging data 
 

In the whole-brain GLM analysis, affEMP contrast revealed statistically significant 

activity within the left occipital cortex [MNI: −22, −82, 6; cluster = 195; Z= 6.40] and right 

occipital cortex [MNI: 30, −70, 4; cluster = 245; Z= 5.90], thresholded at p < 0.01 with a 

minimum cluster extent of 50 contiguous voxels after whole-brain correction for multiple 

comparisons. The cogEMP contrast did not reveal any statistically significant activity. 

Furthermore, in the ROI analysis, insula and inferior frontal gyrus (IFG) activity in the affEMP 

contrast, as well as MPFC activity in the cogEMP contrast did not survive our statistical 

threshold. The TKS level did not correlate with ACC or MPFC obtained from the affEMP 

contrast (r = 0.23, p = 0.33 and r = 0.32, p = 0.16, respectively). Whether ACC, insula, IFG and 

MPFC are essentially involved in the feature of TKS remains the topic of future studies. 
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Fig. S1 whole-brain FuSeISC map 

FuSeISC map during the empathic embarrassment task (q < 0.05, FDR-corrected). 

Montreal Neurological Institute (MNI) z-coordinates (in mm) are shown for each axial slice. 

Each colored segment corresponds to a unique pattern of ISC across subjects. This map was 

used as the template for contrast and connectivity analyses. 
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Table S1 MNI coordinates for the FuSeISC segments 

The affEMP contrast revealed five segments and the cogEMP contrast nine. Each segment 

contained multiple “subsegments” that were spatially separated from each other. For example, 

in affEMP contrast, the first segment (#1) contained three subsegments. 

 

affEMP contrast 

Segment 

(size in 

voxels) 

Brain Regions 

 

 MNI      Sum 

     ZPF statistic 

1 (824)  visual cortex L −4 −88 8 172.14 

 fusiform gyrus R 36 −78 −12  

 visual cortex R 22 −96 10  

     

2 (2692) visual cortex L −38 −76 6 158.02 

 visual cortex R 48 −74 2  

 precentral gyrus L −48 2 50  

 superior temporal gyrus L −54 −16 −8  

     

3 (6817)  lingual gyrus L −6 −86 −6 100.27 

 middle temporal gyrus L −54 2 −16  

 fusiform gyrus R 40 −48 −22  

     

4 (3483)  visual cortex L −8 −76 6 68.10 

 premotor cortex R 50 −2 46  

 premotor cortex L −52 2 44  

 cerebellum R 24 −64 −54  

 inferior frontal gyrus/anterior insula L −54 34 6  

 superior temporal gyrus R 46 −36 22  

 somatosensory cortex R 56 −10 10  

 superior temporal gyrus R 46 −24 −4  

 cerebellum R 26 −60 −26  

     

5 (3150)  superior temporal gyrus L −52 −2 −8 36.94 

 cerebellum R 20 −78 −34  

 frontal eye field L −46 18 38  

 superior temporal sulcus R 58 −12 −12  

 premotor cortex L −8 18 62  

 premotor cortex L −38 0 44  

 associative visual cortex R 56 −62 14  
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cogEMP contrast 

Segment 
(size in 

voxels) 

Brain Regions 

 

 MNI     Sum 

     ZPF statistic 

1 (259)  superior temporal gyrus R 52 −18 2 277.62 

 superior temporal gyrus L −62 −8 0  

     

2 (679) superior temporal gyrus R 46 −24 8 199.20 

 superior temporal gyrus L −44 −20 6  

     

3 (4807) superior temporal gyrus L −58 −14 2 75.91 

 superior temporal gyrus R 56 −18 2  

 visual cortex L −30 −94 −8  

     

4 (5093) lingual gyrus R 4 −72 6 61.31 

 superior temporal sulcus L −46 −2 −8  

 inferior parietal lobule L −34 −56 48  

     

5 (13764) ventromedial prefrontal cortex R 10 44 14 58.11 

 precentral gyrus L −24 −8 40  

 temporoparietal junction  R 44 −64 32  

 posterior cingulate cortex R 6 −52 22  

 postcentral gyrus R 52 −8 34  

 planum temporale R 36 −36 12  

 cerebellum L −48 −58 −46  

 motor cortex R 54 −4 10  

 lateral occipital cortex L −30 −74 10  

 fusiform gyrus L −56 −50 −12  

 temporoparietal junction   R 64 −32 30  

 inferior temporal gyrus R 56 −30 −22  

 putamen L −24 4 −4  

 cerebellum R 14 −50 −18  

 superior frontal gyrus L −22 54 −6  

 cerebellum L −36 −84 −36  
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cogEMP contrast, continued 

Segment 
(size in 

voxels) 

Brain Regions 

 

 MNI     Sum 

     ZPF statistic 

6 (7747)  precuneus L/R 0 −56 14 56.42 

 middle frontal gyrus R 26 30 46  

 visual cortex R 32 −82 14  

 cerebellum R 14 −44 −48  

     

7 (7372)  motor cortex R 38 −26 54 55.90 

 motor cortex  R 2 8 48  

 temporoparietal junction L −38 −60 48  

 precuneus L/R 0 −70 48  

 middle frontal gyrus L −36 8 56  

 inferior frontal gyrus R 50 20 30  

 posterior cingulate gyrus L −2 −34 28  

 middle temporal gyrus L −30 −42 12  

 cerebellum R 38 −60 −34  

 cerebellum L −34 −62 −34  

 cerebellum L −28 −48 −28  

 precuneus L −14 −44 52  

     

8 (1234) cuneal cortex L/R 0 −86 26 52.65 

 occipital cortex L −38 −80 −20  

 frontal eye field R 6 14 48  

 occipitotemporal area R 44 −48 −28  

     

9 (4867)  lingual gyrus L −2 −64 8 46.67 

 
To locate and identify the anatomical locations of these clusters, we consulted the Talairach Daemon 

database (http://www.talairach.org), MRIcron (http://people.cas.sc.edu/rorden/mricron/index.html), and 

neuroanatomy atlases. 

 

 

 
 

   

http://people.cas.sc.edu/rorden/mricron/index.html
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