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Text S1. Extended Methods 16 

 17 

Text S1.1. Selection of studies 18 

We used studies summarized by Wiens (1), which was based 27 studies testing for climate-19 

related range shifts, which were found based on a systematic review. That study focused on 20 

studies that included surveys of the “warm edge” of the species ranges on each transect (lowest 21 

elevations or latitudes). However, the species included in that study (1) were not necessarily 22 

biased to show extinctions related to climate change, since they focused on range shifts, which 23 

need not include local extinctions at all (i.e. range shifts might involve only expansion at higher 24 

elevations without extinctions at lower elevations). We specifically focused on those papers 25 

looking at elevational distributions over time in terrestrial environments, given that fewer studies 26 

focused on latitudinal gradients or aquatic species. These papers surveyed local sites over at least 27 

two time periods (at least 10 years apart) and documented whether each species persisted at each 28 

locality over time. We excluded studies that did not provide data on the occurrence of individual 29 

species at individual localities at specific time points (see below). 30 

We included data from 10 studies that focused on elevational distributions of terrestrial 31 

plants and animals. From the remaining 17 studies included by Wiens (1), six focused on 32 

freshwater or marine organisms, and the remaining 11 did not provide sufficiently detailed 33 

information on the location of sampling sites and/or species occurrences at those sites.  34 

 35 

Text S1.2. Locality data 36 

We were able to obtain all the necessary information directly from three studies (2–4). In other 37 

cases, the authors provided detailed locality data but did not provide georeferenced coordinates 38 
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(and declined to make these available when asked). For example, many studies only presented a 39 

map of localities along an elevational transect, and provided the elevation of each locality but not 40 

GPS coordinates. In these cases, we used Google Earth to estimate the coordinates of localities 41 

corresponding to these elevations. We acknowledge that these estimates might not match exactly 42 

the locations of the surveyed sites. However, the main driver of climate among nearby localities 43 

along an elevational transect should be elevation (e.g. general linear models fit between elevation 44 

vs. annual mean temperatures within each of the 10 transects yield r2=0.988–0.989, all P<0.001). 45 

Therefore, the broad-scale climatic data obtained here should generally correspond to those of 46 

the actual sites, especially at such fine geographic scales. Additionally, we ensured that these 47 

locations were on the same slope (i.e. north facing vs. south facing) as in the original study, since 48 

slope could also impact local climate.  49 

Below, we give a detailed description of how we obtained georeferenced locality data for 50 

studies that did not provide site coordinates. Brusca et al. (5): because surveys were conducted 51 

along a single road (Catalina Highway, Tucson, Arizona, USA) we used Google Earth to 52 

geocode each sampled based on their elevation. Chen et al. (6): We used Figure 1 of that paper 53 

and the elevational data provided therein to estimate coordinates at each sampling site using 54 

Google Earth. Felde et al. (7): in their paper, their SI Appendix, Table A1 provides details on 55 

both the lowest and highest elevational occurrences of each species. Because surveys were 56 

conducted in a U-shaped valley, the same elevation can be estimated for different localities. We 57 

therefore randomly sampled a single locality among all the possible sites at a given elevational 58 

band. We used the 1’ altitude raster for Norway (see 59 

http://www.viewfinderpanoramas.org/dem3.html) cropped to the study area (longitude=8.85–60 

9.13ºE; latitude=61.45–61.52ºN). Forero-Medina et al. (8): we georeferenced the five sampling 61 

http://www.viewfinderpanoramas.org/dem3.html
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sites in their study based on their Figure 1 and using Google Earth. Freeman and Freeman (9): 62 

for both transects (Mt. Karimu, Karkar Island), we randomly selected a single site among all 63 

locations at the same elevational band detailed in their supplement. Menendez et al. (10): 64 

sampling sites and species ranges were obtained directly from the paper. For several species at 65 

Sierra Nevada, some minimum and maximum elevations did not match those of the surveyed 66 

sites. We therefore used the closest surveyed location to correct the position for these records. 67 

Ploquin et al. (11): these authors kindly provided us with their dataset of georeferenced localities. 68 

Coordinates were transformed from UTM coordinates (29N and 30N zones) to WGS84.  69 

 70 

Text S1.3. Climatic data 71 

We obtained climatic data from georeferenced localities using the CRU TS 3.22 dataset (12). We 72 

analyzed CRU NetCDF files for daily mean temperature (CRU code: tmp), monthly average 73 

daily minimum temperature (CRU code: tmn), monthly average daily maximum temperature 74 

(CRU code: tmx), and precipitation (CRU code: pre). Climatic variables were downscaled to 1 75 

km at each surveyed site using the R package Tusk based on WorldClim raster files (13–18). The 76 

resulting dataset provided data on climatic variables for each year between 1901 and 2013 (CRU 77 

dataset) at a high resolution (~1 km at the equator). The historical survey date for one study (7) 78 

falls outside of the available climatic coverage in our dataset (SI Appendix, Table S1), but by 79 

only one year. In this case, we assumed analyzed climatic data for the closest date in the dataset 80 

(i.e. 1901 instead of 1900; SI Appendix, Table S1). This should have no impact, given the one-81 

year difference and given that this time period is well before the major global warming caused by 82 

anthropogenic activities. Other potentially relevant datasets either lacked climatic data for exact 83 

dates (e.g. WorldClim), or had such a coarse resolution that it was difficult to distinguish 84 



4 

4 

climatic conditions at different sites within the same transect [e.g. 2.5º resolution for 85 

NCEP/NCAR reanalysis (19)].  86 

For each site, we fit the Empirical Mode Decomposition (EMD) model using the R 87 

package EMD (20) based on the entire CRU temporal window [i.e. oldest and modern survey 88 

dates (22)]. We used default parameters in the function emd, which are optimized for detrending 89 

noise from climatic time series [see below (20,21)]. When sampling was conducted over multiple 90 

years for either the historical survey or modern resurveys, we selected the oldest year for the 91 

historical survey, and the most recent date for the resurvey (see below for justification).  92 

EMD reduces the effect of year-to-year stochasticity on the estimated value of each 93 

climatic variable for each year (21). Many other methods are currently available to extract long-94 

term trends from climatic data [e.g. regression (22,23), moving mean (24,25), Fourier-based 95 

filtering (26)]. However, EMD has shown to be especially accurate for extracting signal from 96 

nonlinear and nonstationary datasets, such as climate (21,27,28). EMD does not use a fixed set of 97 

“windows” to extract climatic trends. Instead, the number (frequency) and duration (amplitude) 98 

of temporal windows depend on the analyzed dataset (21,28). EMD has been shown to be a 99 

reliable method for removing stochastic noise from climatic data (21,27–31). Moreover, this 100 

approach has been widely used for climatic data. For example, the first paper using the EMD 101 

approach for climate-change research (21) has been cited 650 times already, as of November 102 

2019.  103 

Nevertheless, we performed additional analyses based on datasets that summarize mean 104 

climatic values for each variable during a 5-year window preceding each survey, and a 10-year 105 

window. Results based on these analyses are summarized and compared to those from EMD in 106 
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SI Appendix, Text S3.3. These results were generally similar to those based on EMD, especially 107 

those using the 10-year window 108 

After use of EMD, we then followed the variable definitions in O’Donnell and Ignizio 109 

(32) to calculate 19 climatic layers (Bioclim variables Bio1–Bio19; see SI Appendix, Table S2). 110 

Thus, we focused on climatic variables that have been previously hypothesized to represent 111 

important drivers of species geographic distributions (33).  112 

 113 

Text S1.4. Data analysis 114 

We generated four datasets to describe the climate at each locality over time, for each of the 19 115 

Bioclim variables (SI Appendix, Table S2): (i) historic (for the year of the initial survey of the 116 

site); (ii) modern (the year of the resurvey); (iii) absolute change over time (difference between 117 

the historic and modern values); and (iv) rate of change (absolute change between surveys 118 

divided by the time interval between surveys, which is the date of the resurvey minus the date of 119 

the original survey).  120 

In four of the 10 analyzed studies, the initial surveys for each site were conducted over 121 

the course of two years (SI Appendix, Table S1). For these studies, we selected the earlier date 122 

for analyses (e.g. 1981 for surveys conducted over 1981–1982; SI Appendix, Table S1). One 123 

study (10) had initial surveys conducted over two decades (1980s, 1990s), but each site was 124 

sampled in a specific two-year period, and so we used the appropriate set of dates for each site. 125 

One resurvey spanned two consecutive years (10), and here we selected the later date (i.e. 2007 126 

for 2006–2007). Overall, this strategy spanned the maximum range of dates. However, our 127 

choice of years should have very little impact on the results, given the relatively long time 128 
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periods between surveys, and that we used EMD to reduce the stochastic effects of year-to-year 129 

climate on long-term trends. 130 

We used two approaches to estimate the potential importance of each climatic variable 131 

for local extinctions. For the first approach, we focused on whether there was any local 132 

extinction among any of the species surveyed at a local site, and which climatic variables 133 

predicted which sites experienced these local extinctions. For the second approach, we tested for 134 

relationships between climatic variables and the frequency of local extinction among all the 135 

species surveyed at each site. Although this second approach might initially seem more 136 

appropriate, local extinctions were entirely absent at the majority of sites (75%). Therefore, our 137 

analyses in the main text focused on predicting which sites had any local extinctions at all, rather 138 

than on the frequency of local extinction among sites.  139 

 140 

Text S1.4.1. Occurrence of local extinction  141 

We used a binary coding to analyze which climatic variables were associated with local 142 

extinctions among sites. Specifically, sites were coded based on whether or not at least one 143 

species experienced local extinction at that locality. We then used Discriminant Analysis of 144 

Principal Components (DAPC) to determine the variables that best differentiated between sites 145 

with and without local extinction. DAPC finds the linear combination of variables that 146 

maximizes the difference between groups and minimizes within-group variances. The two 147 

groups here are sites with and without local extinctions. DAPC were fit independently for three 148 

climatic datasets (i.e. historical, absolute change, and rate of change) using the R package 149 

adegenet (34), after scaling each variable, and retaining the number of principal components 150 

associated with the optimal alpha score [using the optim.a.score function in the same package; 151 
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(35)]. The estimated importance of each climatic variable in differentiating between sites with 152 

and without local extinction within each dataset is summarized as a DAPC loading (SI Appendix, 153 

Table S3). Variables with larger DAPC loadings are better at discriminating between sites with 154 

and without local extinction. We focused primarily on the variables with loadings in the top 95th 155 

percentile in each dataset. The top predictors of local extinction were generally similar across the 156 

three datasets (SI Appendix, Figure S1).  157 

No P-values are associated with DAPC analyses. Therefore, we used univariate logistic 158 

regression models to test for significant effects of each climatic variable on the occurrence of 159 

local extinction across sites. We fit univariate generalized lineal models in R version 3.4.2 (15). 160 

We summarized the estimated odds ratio for every climatic variable. In this case, odds ratios 161 

smaller than one indicated an inverse association between the predictor variables and local 162 

extinction across sites. Conversely, odds ratios larger than one indicated that increases in the 163 

predictor values are associated with a higher likelihood of local extinction. 164 

 165 

Text S1.4.2. Frequency of local extinctions  166 

For our second approach, we summarized the frequency of local extinctions at each site and then 167 

tested which climatic variables were most strongly related to these extinction frequencies. To 168 

estimate the frequency of local extinction at each site, we divided the total number of species that 169 

were locally extinct at that site (based on the resurvey) by the total number of species that were 170 

historically present (based on the original survey). We then used two methods to infer 171 

relationships between extinction frequencies and climatic variables among sites.  172 

First, we used a multivariate approach to estimate the relative importance of each climatic 173 

variable. This approach accounted for the correlated structure of the predictors in our dataset (i.e. 174 
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the 19 climatic variables). Specifically, we assessed variable importance using the Lindeman, 175 

Merenda, and Gold (LMG) index, estimated from alternative multiple linear regression models 176 

(36–39). The LMG index is calculated as the difference in r2 from adding the analyzed predictor 177 

to a model containing a subset of the other variables. Next, the LMG is computed for the 178 

analyzed predictor by computing the average difference in r2 over all possible model subsets 179 

(36–39). Better predictors have larger values for the LMG index. The LMG index was calculated 180 

using the calc.relimp function in the R package relaimpo (36–39). LMG estimates for each 181 

variable are summarized in Dataset S4.  182 

Second, we fit univariate linear regression models for the relationship between the 183 

frequency of local extinction at each site and each of the climatic variables (independently for 184 

each climatic variable). Univariate regression models were fit using the lm function in R version 185 

3.4.2 (15). These models were not used to estimate the relative importance of each climatic 186 

variable in predicting extinction frequencies (given potential correlations among variables). 187 

Instead they were used to test relationships between climate and extinction for variables 188 

identified from the LMG analysis. For those variables found to be most important using LMG 189 

(top 95th LMG index within each climatic dataset; Dataset S4), we also report the univariate 190 

regression results (i.e. slope, r2, P). 191 

Overall, results based on extinction frequencies were similar to those based on the 192 

presence/absence of local extinction among sites. Based on the variables with the highest LMG, 193 

sites with higher frequencies of local extinction were warmer during the initial historical survey 194 

of each site, relative to sites with lower extinction frequencies (historical mean annual 195 

temperature, Bio1: LMG=8.15%, slope=0.015, r2=0.169, P<0.001; historical maximum annual 196 
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temperature, Bio5: LMG=6.37%, slope=0.019, r2=0.134, P<0.001; historical minimum annual 197 

temperature, Bio6: LMG=11.66%, slope=0.013, r2=0.190, P<0.001; Dataset S4).  198 

When analyzing changes in climate between surveys (both the absolute change and rate 199 

of change), we found that the change in annual temperature range (Bio7) was the best predictor 200 

of extinction frequencies across sites (absolute change in Bio7, LMG=17.39%, slope=0.142, 201 

r2=0.194, P<0.001; rate of change in Bio7, LMG=20.82%, slope=3.577, r2=0.129, P<0.001). 202 

However, because this variable is defined as the difference between annual maximum (Bio5) and 203 

minimum temperatures (Bio6; SI Appendix, Table S2), we examined whether increases in Bio7 204 

were primarily driven by increases in Bio5 (maximum temperature) or decreases in Bio6 205 

(minimum temperature). We found that the increase in maximum annual temperature (Bio5) was 206 

the main driver of the change in Bio7 (Dataset S4). For the absolute change in climate, we found 207 

that the second best predictor of the frequency of local extinctions was maximum temperature 208 

(LMG for absolute change in Bio5=9.14%, for absolute change in Bio6=4.81%). Linear 209 

regression models fit between extinction frequency and climatic variables also indicated that 210 

sites with higher extinction frequencies had smaller changes in minimum temperatures between 211 

surveys (absolute change in Bio6, slope=-0.720, r2=0.091, P<0.001) but larger changes in 212 

maximum temperatures (absolute change in Bio5, slope=0.359, r2=0.114, P<0.001).  213 

We also found similar results based on the rate of change in climate, which also indicated 214 

that Bio5 was the main driver of change in Bio7. First, the rate of change in Bio5 is a better 215 

predictor of local extinctions relative to rate of change in Bio6 (LMG for rate of change in 216 

Bio5=17.21%, Bio6=5.26%). Second, sites with higher frequencies of local extinction 217 

experienced slower changes in Bio6 (rate of change in Bio6: slope=-3.934, r2=0.053, P<0.001), 218 

but faster changes in Bio5 (rate of change in Bio5: slope=6.385, r2=0.111, P<0.001). 219 
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Finally, although mean annual temperature (Bio1) was not a top variable picked by the 220 

LMG index, we found that sites with higher extinction frequencies had significantly less change 221 

in mean annual temperature between surveys (absolute change in Bio1 slope=-0.198, r2=0.176, 222 

P<0.001; Dataset S4). This result is congruent with those based on the occurrence of local 223 

extinction across sites (see main text; Fig. 1; SI Appendix, Fig. S1). 224 

 225 

Text S1.5. Projected climate change and extinction 226 

We explored the potential effects of projected climate change on overall extinction within 227 

transects for the year 2070, based on patterns of extinction and dispersal in the recent past. 228 

Climatic conditions for 2070 were estimated by averaging projected maximum temperatures 229 

between 2061 and 2080. Note that here and throughout this section, when we refer to species 230 

distribution and extinction, we are specifically referring to their distribution and extinction 231 

within the elevational transect in which they were studied.  232 

Predicted climatic conditions at each sampled site for 2070 were obtained using the 233 

WorldClim raster files at a 0.5’ resolution [~1 km at the equator (13)]. We analyzed projected 234 

climate change scenarios (14) based on the combination of up to 19 General Circulation Models 235 

(GCMs) and four different Representative Concentration Pathways (RCPs). Results presented in 236 

the main text are based on an intermediate scenario of predicted climate change (RCP4.5), and a 237 

second scenario that assumes minimal or no mitigation of climate change during the next few 238 

decades, and thus much more extensive climate warming (RCP8.5). For each of these scenarios, 239 

we followed standard practice (40,41) and estimated extinction for each RCP based on the mean 240 

of estimates derived from all available GCMs (SI Appendix, Tables S4, S7–S9). The RCP4.5 241 

scenario of predicted climate change has been widely used for predicting the impacts of future 242 
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climate change on species distributions (42–44). This scenario is congruent with the currently 243 

implemented policies related to greenhouse emissions (45). The RCP8.5 scenario assumes an 244 

overall increase in greenhouse gas emissions during the next several decades. Unfortunately, this 245 

scenario has recently been indicated as being highly likely given trends in greenhouse gas 246 

emissions over the past two decades (46,47).  247 

We generated results for all four available RCPs, but we did not focus our main results on 248 

RCP2.6 or RCP6.0. The RCP2.6 scenario assumes a significant decrease in carbon emissions and 249 

is therefore currently considered to be unrealistic (46–48). Achieving the goals that are assumed 250 

by the RCP2.6 scenario would require participation of all countries in global policies directed 251 

toward mitigating climate change effects, a reduction in greenhouse gas emissions by 70% 252 

(relative to the early 2000s), and major changes in energy use (49). Additionally, 21% of GCMs 253 

(4 of 19 GCMs) are not available under this scenario (RCP2.6). Results for the RCP6.0 scenario 254 

are represented in the range provided by RCP4.5 and RCP8.5. Furthermore, 37% of GCMs (7 of 255 

19) are lacking for RCP6.0 (37,49). In contrast, at least 90% of GCMs are available for both 256 

RCP4.5 (19 of 19 GCMs) and RCP8.5 (17 of 19 GCMs). 257 

Based on the different future climate projections (12–19 GCMs and four RCPs), we 258 

analyzed four different aspects of species responses to projected climate change. First, we 259 

estimated the minimum change in maximum annual temperatures that species will likely 260 

experience in a given time period (given our result that maximum annual temperature is 261 

generally the most important predictor of local extinctions; see main text). For this, we estimated 262 

the difference between the predicted and current maximum annual temperatures across the 263 

species’ current geographical range (see details below). Second, we analyzed the role of 264 

dispersal in potentially allowing species to avoid extinction within transects by moving upwards 265 
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in elevation and tracking their current climatic niche. Third, we examined the change in 266 

maximum annual temperatures that local populations have tolerated in the past without going 267 

extinct (niche shifts). Fourth, we examined the combined effects of dispersal and niche shifts in 268 

reducing the likelihood that a species will go extinct within their transect.  269 

 270 

Text S1.5.1. Minimum increase in maximum annual temperatures 271 

For each species, we evaluated whether the maximum annual temperatures that are present 272 

across their current elevational range (at the time of the resurvey) will still be present within their 273 

current elevational range in the future. Here and throughout, “current” refers to the time of the 274 

relevant resurvey for each species and site. For each species, we first estimated the current 275 

maximum annual temperatures at each site across their current distribution. Next, we used the 276 

predicted maximum annual temperatures for 2070 to estimate future annual maximum 277 

temperatures at each site across their current distribution. If no overlap was found between the 278 

future and current maximum annual temperatures across the species current distribution, we 279 

considered the species to be exposed to unsuitable conditions across their current range (within 280 

the transect). 281 

Next, for those species predicted to be exposed to unsuitable maximum annual 282 

temperatures throughout their current distribution on the transect, we estimated the minimum 283 

difference between current and future maximum annual temperatures across their current 284 

distribution. Specifically, the minimum difference was estimated by subtracting the current value 285 

of the maximum annual temperature at the species’ current warmest site in their geographic 286 

range on the transect (i.e. based on the time of the resurvey) from the projected maximum annual 287 

temperature (for 2070) at the coldest site in their current range.  288 
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We assumed that species are potentially able to survive the minimum shift in maximum 289 

annual temperatures in their current range by either dispersing to higher elevations, tolerating 290 

higher temperatures (niche shift), or by doing both simultaneously. The analyses described below 291 

explore each of these three possibilities.  292 

 293 

Text S1.5.2. Dispersal 294 

We assessed whether species are likely to be able to disperse fast enough to avoid extinction 295 

within their transects by 2070. First, we estimated the absolute change in the upper limit of the 296 

elevational range for each species that expanded its upper elevational range between surveys. To 297 

do this, we subtracted the historical maximum elevation of the species’ distribution on the 298 

transect (i.e. from the time of the initial survey) from the current maximum record (i.e. from the 299 

time of the resurvey). Then, the rate of upward dispersal was estimated by dividing the absolute 300 

change in maximum elevation between surveys by the time between surveys. Again, when 301 

surveys were conducted over multiple dates (SI Appendix, Table S1), the time between surveys 302 

was calculated based on the earliest date of the historical survey, and the latest date of the 303 

modern resurvey (see Data Analysis section above for details). 304 

Next, we estimated the amount of cooling that can potentially be gained through upward 305 

dispersal in the future (2070) using the following equation (units are indicated in parentheses; 306 

time is in years): 307 

 308 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 (spi, t) = 𝑢𝑝𝑟𝑎spi(
m year⁄ ) * 'Bio5transect(spi) (ºC/m) * (t − modi) 309 

 310 
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Specifically, for each species (spi) that was recorded as dispersing upward in the past 311 

(between surveys), we multiplied the upward dispersal rate (uprai) by the mean change in 312 

maximum annual temperatures (Bio5) with elevation across the species’ elevational transect 313 

('Bio5transect(spi); see regressions for each transect in SI Appendix, Table S6), and by the number 314 

of years between the year of the modern survey (modi) and the future date (t=2070). The final 315 

units for potential dispersal-related cooling are in ºC.  316 

For each of the upward-dispersing species, we evaluated whether this potential cooling 317 

gained through upward dispersal could be as large as the change in maximum annual 318 

temperatures over time. We focused on two alternative scenarios. First, an unconstrained 319 

scenario in which species disperse upwards with no spatial constraints. Second, a scenario where 320 

the height of each mountain range (on which the elevational survey was performed) constrained 321 

the amount of cooling that can be gained through upward dispersal. The latter scenario is clearly 322 

more realistic (50).  323 

Unconstrained scenario: For each upward-dispersing species, we evaluated whether the 324 

cooling gained through recent dispersal (between surveys) was larger than the predicted 325 

minimum change in maximum annual temperatures for 2070. If the cooling gained through 326 

upward dispersal was larger than the predicted minimum change, we considered dispersal to 327 

potentially be fast enough for the species to remain within their current niche for maximum 328 

annual temperatures.  329 

Constrained scenario: We evaluated if the mountaintop-constrained cooling gained 330 

through upward dispersal was larger than the minimum change in maximum annual temperatures 331 

predicted by 2070. For each species, the maximum cooling gained through dispersal was 332 

constrained to be equal to the difference between the current maximum annual temperature at the 333 
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upper limit of their current range and the predicted maximum annual temperature at the 334 

mountaintop by 2070. To obtain the maximum annual temperatures at the mountaintop by 2070, 335 

we used Google Earth to estimate the latitude and longitude for this site (see Dataset S1 and SI 336 

Appendix, Table S6), and then obtained climatic data for this site using the WorldClim 337 

projections for maximum annual temperature for 2070. Again, we assumed that if the niche-338 

cooling gained through dispersal was larger than the predicted minimum shift in maximum 339 

annual temperatures over time, then species could remain within their current niche for 340 

maximum annual temperature in 2070.  341 

Finally, we analyzed the potential effects of dispersal in allowing species to persist within 342 

their current climatic niches based on all species in the dataset (n=538; SI Appendix, Table S8), 343 

and not only upward-dispersing species. We analyzed three scenarios to address species that did 344 

not disperse upwards between surveys. First, we assumed that species that did not previously 345 

disperse upwards (at their upper elevational range limits) between surveys would not disperse 346 

upwards in the future. Second, we assumed that these previously non-dispersing species would 347 

instead move upwards at the mean upward rate across all species that dispersed (including 348 

downward dispersal as negative values when calculating the mean). Specifically, for downward-349 

dispersing species, we calculated the change between surveys in their maximum elevation, just 350 

as we did for upward dispersing species, but these downward changes yield negative values. 351 

Note that “downward dispersal” most likely occurred through range contractions at the upper 352 

elevational range edge, but this pattern is clearly inconsistent with upward dispersal. Third, we 353 

assumed that these previously non-dispersing species would instead move upwards at the mean 354 

upward rate across all species (counting non-dispersing species as zero when calculating the 355 

mean, counting species that dispersed downwards at the cool edge as negative, and counting 356 
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species that dispersed upwards as positive). We performed the same set of analyses described 357 

above for each of these three scenarios, evaluating whether the niche-cooling gained through 358 

dispersal was larger than the predicted minimum shift in maximum annual temperatures by 2070, 359 

thus allowing species to remain in their current climatic niche for maximum temperatures. 360 

Extinction frequencies under each of these scenarios were also calculated under a constrained 361 

and unconstrained scenarios based on species current distances to the top of the mountain range 362 

on which the surveys were performed. 363 

We acknowledge that a species might not be able to survive very long as a single 364 

population on a small mountaintop, and so projecting long-term species survival based on this 365 

scenario might seem unrealistic. However, our results suggest that most species are not likely to 366 

avoid extinction under the constrained dispersal scenario anyways, especially after including the 367 

many species that did not disperse upwards between surveys. Furthermore, most species that are 368 

projected to be limited in their upward dispersal by mountaintop height are projected to go 369 

extinct (see SI Appendix, Text S2 below). Therefore, the question of whether long-term species 370 

survival on a small mountaintop is realistic or not may be largely moot. 371 

 372 

Text S1.5.3. Niche shift 373 

We estimated how much change in maximum annual temperature (Bio5) has typically caused 374 

local extinction at the warmest edges of species ranges, and then we used this value to evaluate 375 

whether populations will be exposed to similar levels of warming throughout their ranges by 376 

2070. Note that a change in temperature that a species experiences without going extinct can be 377 

considered a niche shift. In other words, the set of macroclimatic conditions that the species can 378 

tolerate has expanded to encompass these new conditions, either through evolutionary or plastic 379 
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change (the latter might occur if the new conditions are actually within the species’ fundamental 380 

climatic niche, even if those conditions were not within the current realized niche).  381 

For each species, we first estimated the absolute change between surveys in maximum 382 

annual temperature at the warmest site in their range where they occurred in the initial survey. 383 

Note that for species in which local extinctions occurred, these extinctions generally occurred at 384 

the warmest site in the species range (191 of 239), with extinctions at additional sites (usually 385 

adjacent ones) in some cases. We then fit a logistic regression model between the occurrence of 386 

local extinction and the absolute change in maximum annual temperature at the warmest site in 387 

the species historical range (i.e. at the time of the initial survey). This model (odds=3.517; 388 

P<0.001) was then used to estimate the temperature associated with a given probability of local 389 

extinction occurrence, by calibrating a binomial assay in the dose.p function from the R package 390 

MASS (51). Our main analyses were based on the temperature change associated with a 391 

probability of local extinction of 0.95. We assumed that species would not be able tolerate 392 

changes exceeding this value. However, it is possible that there could be more widespread 393 

extinctions associated with a smaller temperature change. Therefore, we also estimated the 394 

change in maximum annual temperature associated with a 0.5 probability of local extinction (but 395 

assuming only 50% of species would go extinct with this level of change). Results for both 396 

thresholds are presented in the supplemental files (SI Appendix, Tables S7, S9; Datasets S7–397 

S10). All analyses included all 538 species, regardless of whether or not they experienced local 398 

extinction at their warmest site.  399 

Finally, for each species we evaluated whether they are likely to be able to tolerate the 400 

minimum change in maximum annual temperatures across their range by 2070. We assumed that 401 

species will be able to tolerate shifts in maximum annual temperatures (Bio5) across their range 402 
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that are below the estimated threshold that generally caused local extinctions (0.95; see above). 403 

Specifically, we compared this threshold to the minimum change in maximum annual 404 

temperatures each species is projected to experience in their range on the transect. We 405 

considered species to be likely to persist in their transect if the minimum change in maximum 406 

temperatures was below the estimated threshold generally leading to local extinction. We also 407 

performed analyses using a threshold associated with a 0.50 probability of local extinction. For 408 

these analyses, we assumed that only 50% of the species would go extinct in their transect based 409 

on this level of temperature change. Therefore, we divided the initial estimated frequency of 410 

extinction under each scenario (Datasets S8–S10) by two. The corrected frequencies of 411 

extinction are summarized in SI Appendix, Table S10 for each climatic scenario. Note that we do 412 

not present estimates of extinction for each species separately using the 50% threshold. Instead, 413 

we present overall frequencies across all the species that are projected to be unable to disperse 414 

quickly enough to remain within their current niche for maximum annual temperature.  415 

 416 

Text S1.5.4. Simultaneous effects of dispersal and niche shifts 417 

We analyzed the extent to which the combined effects of dispersal and niche shifts can 418 

potentially reduce species extinctions within transects. Above, we estimated the minimum shift 419 

in maximum annual temperatures that each species will likely experience, the potential decrease 420 

in maximum temperature caused by upward dispersal (based on their past rates of upward 421 

dispersal), and the change in maximum annual temperatures at local sites that is likely to cause 422 

local extinction (using two different probability thresholds for local extinction, 0.50 and 0.95). 423 

For the final set of analyses, we evaluated whether the minimum change in maximum 424 
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temperatures that species will experience will be below the threshold for local extinction, after 425 

incorporating the potential cooling caused by upward dispersal.  426 

We performed three sets of analyses, corresponding to different ways of dealing with the 427 

large number of species (n=252) that failed to disperse between surveys in the past (see above). 428 

In the first set, we assumed that species that did not disperse upwards previously will not 429 

disperse upwards in the future. Second, we assumed that these non-dispersing species will 430 

instead move upwards at the mean upward rate across all species that dispersed between surveys 431 

in the past (including downward dispersal at the cool edge as negative values when calculating 432 

the mean). Third, we assumed that these previously non-dispersing species would move upwards 433 

at the mean upward rate estimated across all species (counting non-dispersing species as zero 434 

when calculating the mean, counting species that dispersed downwards at the cool edge as 435 

negative, and counting species that dispersed upwards as positive).   436 

Finally, for each of these three scenarios, we considered dispersal to be constrained by 437 

the maximum height of the mountains on which surveys were performed. For this constrained 438 

scenario, we assumed that maximum cooling for upward-dispersing species is restricted by the 439 

predicted temperatures at the maximum elevation on the mountain range by 2070.  440 
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Text S2. General Methodological Issues 441 

Below, we discuss several methodological issues that are potential sources of bias in our study. 442 

First, our dataset may include false extinction events. These would occur if a species was not 443 

found during the resurvey at a given site, even though it was actually present. We suggest that 444 

these false extinctions did not dominate our results. Most local extinctions were inferred based 445 

on the absence of a species at the warmest edge (i.e. lowest elevation) of its original elevational 446 

range on the transect. This is where extinctions are expected under global warming, given that 447 

these sites may have (or be close to) the hottest climates that each species can tolerate, prior to 448 

major climate change. We found that 84.5% of the species that were inferred to have one or more 449 

local extinctions between surveys had local extinctions at the warmest site in their original range 450 

on the transect (202 of 239 species; Datasets S1–S2). In contrast, false extinctions due to failure 451 

to detect a species at a given site could occur anywhere on the transect, and are not expected to 452 

be concentrated at the warm edge of the species range. Furthermore, if false extinctions 453 

dominated our data, then one would not expect particular climatic variables to be significantly 454 

associated with local extinctions. Instead, we found significant associations between increases in 455 

certain temperature variables and local extinctions.  456 

In a similar vein, we assume that these local extinction events are actually caused by 457 

changes in climate. It is possible that some local extinction events were related to habitat 458 

modification or other factors. However, this possibility was generally addressed in the 10 459 

original studies that our analyses are based on. In short, these authors concluded that range shifts 460 

were related to climate and not other factors, and these authors surveyed these locations 461 

themselves. Moreover, these surveys were generally conducted in reserves and other protected 462 

and/or undeveloped areas. Two studies conducted in Europe included sites with human impacts 463 
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such as grazing and selective logging (7,11). However, in the study by Felde et al. (7), the 464 

authors specifically addressed the idea that changes in grazing at some sites might have impacted 465 

their results, and they provided evidence against this idea. Furthermore, in that study, only a tiny 466 

fraction of the sites had any local extinctions at all (2.8%) and few species experienced local 467 

extinctions (8.6%). Thus, the overall pattern in that study was of species’ robustness to climate 468 

change, rather than widespread local extinctions that were possibly caused by human impacts. In 469 

the study by Ploquin et al. (11), many species did experience local extinction, but the authors 470 

specifically addressed whether these were caused by major changes in habitat over the relatively 471 

brief time between surveys (~20 years), and they suggested that habitat loss and/or fragmentation 472 

did not explain their results. Overall, the idea that habitat modification in these two studies 473 

explains our main conclusions seems very unlikely. Nevertheless, in a dedicated section below 474 

(SI Appendix, Text S4), we specifically tested the impact of excluding the sites with local 475 

extinction from these two studies (SI Appendix, Text S4). The results show that the exclusion of 476 

these sites has little impact on our overall conclusions. Finally, as described above, if non-477 

climatic factors generally explained these local extinctions, it is unclear why these extinctions 478 

would be concentrated at the warm edge of species ranges and would be significantly related to 479 

climatic variables.  480 

We also acknowledge that our study does not address the specific mechanisms by which 481 

changes in climate caused local extinctions, even though we identified the climatic variables that 482 

seem to best predict these extinctions. Climate may lead to local extinction through a variety of 483 

proximate causes (52), including temperatures that exceed the physiological tolerances of 484 

individuals and climate-related changes in species interactions (e.g. disease, reductions in prey or 485 

host species). We also note that there may be different demographic causes of local extinction, 486 
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including the death of adult individuals, failure to successfully reproduce, or failure to 487 

successfully recruit the next generation. Importantly, we acknowledge that behavioral habitat 488 

selection is a potential explanation for local extinction for some organisms (like birds), but not 489 

for others (like plants). That is, a given animal species may no longer occur at a site simply 490 

because individuals choose to occur elsewhere, not because they are unable to tolerate climatic 491 

conditions there. Nevertheless, it is unclear why species would abandon sites where they can still 492 

survive and maintain viable populations. Furthermore, habitat selection to avoid warming 493 

habitats could presumably lead to massive reductions in the species range and population size, 494 

even if species could actually tolerate many of the sites that they chose to avoid. Overall, it 495 

clearly would be beneficial to know the detailed causes and mechanisms of local extinctions for 496 

the hundreds of species included here. Yet, we think it is still possible to make inferences about 497 

which climatic factors are most strongly related to local extinction (and how future climates may 498 

impact species survival) without these details.   499 

We also note that we have focused on identifying which climatic variables seem to be the 500 

most generally important in predicting local extinctions. However, we acknowledge that a 501 

combination of climatic factors might be important in driving extinction in many cases.  502 

There could also be substantial variation in the climatic drivers of local extinction among 503 

species and among sites. An alternative approach to analyzing the data would therefore be to 504 

conduct analyses only within a given study (i.e. one transect, one group of organisms). This 505 

approach would have some advantages, but it would be difficult to incorporate studies with 506 

fewer sites (SI Appendix, Table S1), given limited statistical power (see also below). 507 

Furthermore, synthesizing results across the different sites would not be straightforward.  508 
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We acknowledge that our results could be influenced by different climatic drivers in 509 

different regions or among taxonomic groups. Specifically, our dataset was dominated by 510 

tropical species but temperate sites. Species on transects in tropical/subtropical locations (<35º 511 

absolute latitude) with local extinction represented 82% of the species with local extinction in 512 

our dataset (198 of 240 species with local extinction), whereas temperate sites (>35º absolute 513 

latitude) comprised 75% of the sites with local extinction (111 of 148 sites with local extinction). 514 

Similarly, animals represented 75% of the sampled species (406 animal species of 538 total 515 

species), and 90% of species with local extinctions (216 of 240 species with local extinction). 516 

Plants were sampled at 323 sites whereas animals were sampled at 258. Preliminary analyses 517 

showed broadly similar patterns in terms of climatic drivers of extinctions in animals versus 518 

plants and tropical versus temperate sites. However, formal statistical analyses of each climatic 519 

region and group separately would currently be somewhat problematic given the limited numbers 520 

of tropical sites and of plants with local extinction. Both multivariate (e.g. DAPC) and univariate 521 

analyses (e.g. logistic regressions) generally require 4–5 more observations than variables 522 

(53,54) or at least 100 observations per category (55,56). In our case here, observations would be 523 

sites, or sites with local extinction. Nevertheless, we did confirm that changes in maximum 524 

annual temperature were significantly associated with local extinctions in both tropical and 525 

temperate regions when sites from these regions were analyzed separately, whereas increases in 526 

annual mean temperatures were not associated with local extinction in either climatic zone (see 527 

main text).  528 

An important assumption in our projections of future species survival on transects is that 529 

species will disperse upwards along elevational gradients in the future at the same rate that they 530 

dispersed in the past. Instead, it is possible that species will disperse more quickly in the future, 531 
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especially if there is natural selection favoring individuals that disperse faster. If this is true, then 532 

more species may survive on these transects than suggested by our projections. However, almost 533 

half of the species included in our study (66%; 353 of 538) failed to disperse upwards at all 534 

between surveys, even though every species experienced climate change across their elevational 535 

range in these transects. Furthermore, many species actually contracted their ranges at their 536 

upper elevational limits (19%; 101 of 538). Thus, the majority of species did not disperse 537 

upwards over time. This suggests that it would be problematic to assume that most species will 538 

necessarily undertake more rapid upward dispersal at their cool edge in response to future 539 

climate change. We also note that in many cases the ability of species to shift their upper 540 

elevational ranges to reach cooler temperatures will be constrained by the limited heights of the 541 

mountains on which they occur. Thus, no matter how quickly they can move upwards, their 542 

ability to reach cooler temperatures will ultimately depend on there being cooler habitats that 543 

they can disperse to. Indeed, our analyses suggest that the limited availability of suitable climatic 544 

conditions on elevational transects might be important in driving projected extinctions by 2070, 545 

if species dispersed faster and reached mountaintops more quickly. Specifically, we compared 546 

the number of species predicted to persist when dispersal is not constrained by mountaintop 547 

height to the number projected to face extinction if dispersal is constrained (SI Appendix, Table 548 

S4; Dataset S6). Among the 45 upward-dispersing species projected to reach the highest 549 

elevation in their mountain range by 2070, we estimated that 90–99% will likely face extinction 550 

within their transect as consequence of limited mountaintop height (range based on RCP4.5 and 551 

RCP8.5, not assuming niche shifts; see SI Appendix, Table S4).  552 

We also recognize that projected extinction of species on these elevational transects 553 

might not reflect the extinction of these species across their entire geographic range. On the one 554 
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hand, many species ranges might consist of similar elevational distributions across one or more 555 

additional mountain slopes, with similar properties to the slopes that were surveyed. In these 556 

cases, our projections might offer a reasonable proxy for the likelihood of global extinctions. On 557 

the other hand, various factors might increase the chances of species surviving in other parts of 558 

their geographic range (i.e. apart from the surveyed transect). These factors might include taller 559 

mountain ranges (allowing species to reach cooler habitats), steeper slopes (potentially allowing 560 

some species to disperse upwards more quickly), or distributions in other regions where 561 

extinction may be less likely (higher latitudes). Our estimates of extinction frequencies may still 562 

be conservative (i.e. underestimating extinction) because we do not include the potential effects 563 

of dramatically lower population sizes on long-term species survival (57). 564 

Finally, we recognize that our study includes only terrestrial species on elevational 565 

gradients. Nevertheless, far more animal species are terrestrial than aquatic (58), even when 566 

including the large estimated numbers of undescribed marine species (59). Most plant species are 567 

also terrestrial (59). Moreover, many biodiversity hotspots are in montane regions, including the 568 

most diverse ones [i.e. the Tropical Andes (60)]. Freshwater species appear to be more sensitive 569 

to climate change than terrestrial or marine species, based on patterns of local extinction (1). 570 

Dispersal on latitudinal gradients may be slower than on elevational gradients (given that the 571 

absolute distances needed to reach lower temperatures may be greater), and may be more likely 572 

to be impeded by human habitat modification at low elevations. We have also included only 573 

some groups of organisms, with most sampled species being plants, insects, and birds (SI 574 

Appendix, Table S1; Dataset S1). These groups may not represent all species. However, most 575 

species depend on plants, either directly or indirectly. Furthermore, insects and birds may have 576 
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particularly high rates of dispersal (given that many or most have the ability to fly). Thus, other 577 

groups may be even less likely to avoid extinction by dispersal.  578 

 579 
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Text S3. Alternative methods for summarizing climate at sites 580 

Text S3.1. Overview 581 

The main results of our paper are based on the downscaled and EMD-transformed climatic data 582 

from CRU. For each site, an EMD model was fitted on the entire temporal range of CRU data 583 

coverage (1901–2013). Consequently, the extraction of climatic trends at each site under EMD 584 

accounts not only for climatic variation between surveys but also outside of these two dates. We 585 

acknowledge that other methods are currently available to extract temporal trends from climatic 586 

data (22–26). However, EMD has shown to be especially accurate for this purpose (21,27,28). In 587 

the sections below, we examine if our main conclusions are still supported when a window-based 588 

approach is used to summarize climate and climate change over time.  589 

 590 

Text S3.2. Methods used to construct alternative climatic datasets 591 

For each site, we estimated mean climatic conditions during the 5-year window and 10-year 592 

window preceding the date of each historical survey and recent resurvey. Based on the mean 593 

climatic values within these windows for each variable, we then estimated the change in climate 594 

between surveys and the rate of change in climate at each site between surveys. However, we 595 

used the actual times between surveys when estimating rates of change in climate (not the dates 596 

of the 5-year or 10-year windows). We acknowledge that the choice of 5 and 10 years for 597 

window sizes is arbitrary. However, we wanted to use time windows that spanned multiple years, 598 

in order to reduce stochastic differences in climate from year to year (therefore a window of 4 599 

years or less seemed too small). Using a larger window than 10 years also seemed problematic, 600 

given that this would approach the time between the historical and modern surveys (at least in 601 

some cases; see below).  602 
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The CRU temporal coverage starts in 1901. Therefore, it would be difficult to estimate 5- 603 

and 10-year windows for historical surveys close to this date. This was not problematic for most 604 

studies, in which the initial surveys were after 1911 (SI Appendix, Table S1). However, the initial 605 

survey in Felde et al. (7) was conducted in 1901. Given the limitations of the CRU dataset, we 606 

did not estimate 5- and 10-year windows for Felde et al. (7) and instead simply used the EMD-607 

based estimates for 1901 (the oldest climatic record in our dataset).  608 

Similarly, it would be problematic to calculate a 10-year window if the historical survey 609 

and modern resurvey were 10 or fewer years apart. This was not problematic for most studies, 610 

except for Raxworthy et al. (2), in which the surveys were only 10 years apart. For Raxworthy et 611 

al. (2), we described mean climate during the resurvey using a 5-year window only.  612 

 Mean climatic values for each site based on the 5-year and 10-year windows are 613 

compiled in Datasets S11 and S12, respectively. EMD-transformed climate data are summarized 614 

in Dataset S3. We compared climatic conditions between sites with and without local extinctions 615 

based on these three datasets (5-year window, 10-year window, and EMD). Specifically, we 616 

examined whether the three datasets agreed on the four main conclusions based on the resurvey 617 

data (not the conclusions based on future projections). These four main conclusions were as 618 

follows. (i) Based on Discriminant Analysis of Principal Components (DAPC), the most 619 

important climatic variable that distinguishes sites with and without local extinction is the 620 

change in maximum annual temperatures (Bio5). (ii) On average, mean annual temperatures at 621 

sites with local extinction changed less relative to sites without local extinctions. (iii) On 622 

average, maximum annual temperatures increased more and increased faster at sites with local 623 

extinction relative to those without. (iv) On average, annual precipitation and decreased more 624 
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and decreased faster between surveys at sites with local extinction. We compare these 625 

conclusions based on EMD to those based on 5-year and 10-year windows below. 626 

 627 

Text S3.3. Comparing main conclusions from climate data from EMD and window-based 628 

data 629 

Overall, results based on the three different climatic datasets (5-year window [Dataset S13], 10-630 

year window [Dataset S14], and EMD [SI Appendix, Table S3]) generally agreed with each 631 

regarding the main conclusions. The only exception was the variable selection for the 5-year 632 

window. Variable selection based on DAPC was consistent between the EMD and 10-year 633 

window datasets. These two datasets suggested that change in maximum annual temperatures 634 

was the main driver of local extinctions between surveys (DAPC for the EMD dataset: SI 635 

Appendix, Table S3; DAPC for the 10-year dataset: Dataset S14). Using a 5-year window, sites 636 

with and without local extinction differed most strongly in the absolute change between surveys 637 

in minimum annual temperatures (Bio6; Dataset S13). Specifically, minimum temperatures at 638 

sites with local extinction increased less between surveys relative to other sites (mean absolute 639 

change in Bio6, sites with local extinction=0.378ºC vs sites without=2.264ºC; Dataset S13). 640 

However, these changes seem highly unlikely to explain local extinction at these sites (i.e. if 641 

increases in this variable were important in driving local extinctions, then changes should be 642 

larger at sites with local extinction, not those without). When analyzing rates of change, the 5-643 

year window dataset indicated that the most important variable was mean temperature during the 644 

warmest quarter (Bio10; Dataset S13). Sites with local extinctions experienced faster increases in 645 

mean warmest quarter temperatures (mean rate of change Bio10 for sites with local 646 

extinction=0.008ºC yr-1 vs without=0.002ºC yr-1; Dataset S13). This finding is more consistent 647 
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with those from EMD and the 10-year window, showing the importance of temperatures during 648 

the hottest part of the year, and is inconsistent with the selection of minimum temperatures 649 

(Bio6) for this same time 5-year time window. Overall, the differences in variable selection 650 

between the 5-year window versus the 10-year window and EMD datasets suggest that the 5-year 651 

window is more sensitive to stochastic variation in climate from year-to-year, consistent with the 652 

smaller time window considered.  653 

The three other main conclusions were all consistent between the data from EMD, the 10-654 

year window, and the 5-year window. Sites where local extinctions occurred tended to 655 

experience smaller changes in mean annual temperatures (average change in mean annual 656 

temperature, Bio1; EMD: sites with local extinction=0.413ºC vs sites without=1.174ºC, logistic 657 

regressions between the change in Bio1 between surveys and the occurrence of local extinction: 658 

P<0.001; 10-year window: sites with local extinction=0.579ºC vs sites without=0.801ºC, 659 

P=0.043; 5-year window: sites with local extinction=0.552ºC vs sites without=0.945ºC, 660 

P=0.027).  661 

Similarly, for all three datasets, sites with local extinction experienced larger increases in 662 

maximum annual temperatures between surveys (mean absolute change in maximum annual 663 

temperature, Bio5; EMD dataset: sites with local extinction=0.413ºC vs sites without=0.147ºC, 664 

P<0.001; 10-year window: sites with local extinction=0.400ºC vs sites without=-1.515ºC, 665 

P=0.043; 5-year window: local extinction=0.464ºC vs sites without=-0.840ºC, P=0.048). Sites 666 

with local extinction also experienced faster increases in maximum annual temperatures (mean 667 

rate of change in maximum annual temperature, Bio5; EMD dataset: sites with local 668 

extinction=0.018ºC yr-1 vs sites without=0.005ºC yr-1, P<0.001; 10-year window: sites with local 669 
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extinction=0.008ºC yr-1 vs sites without=-0.033ºC yr-1, P<0.001; 5-year window: sites with local 670 

extinction=0.008ºC yr-1 vs sites without=-0.018ºC yr-1, P<0.001). 671 

Based on all three datasets, sites with local extinction became drier between surveys 672 

relative to sites without (mean absolute change in annual precipitation, Bio12: EMD dataset: 673 

sites with local extinction=-29.029 mm vs sites without=80.008 mm, P<0.001; 10-year window: 674 

sites with local extinction=7.587 mm vs sites without=117.597 mm, P=0.006; 5-year window: 675 

sites with local extinction=-40.263 mm vs sites without=102.242 mm, P=0.003). Sites with local 676 

extinction also had faster rates of decrease in annual precipitation (mean rate of change in annual 677 

precipitation, Bio12: EMD dataset: sites with local extinction=-1.130 mm yr-1 vs sites 678 

without=0.614 mm yr-1, P<0.001; 10-year window: sites with local extinction=-0.242mm yr-1 vs 679 

sites without=2.437 mm yr-1, P<0.001; 5-year window: sites with local extinction=-0.973mm yr-1 680 

vs sites without=1.673 mm yr-1, P<0.001). 681 
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Text S4. Addressing the possible impacts of land-use change 682 

Changes in land use by humans over time might cause local extinctions that mimic the impacts 683 

of climate change. Some sites in the studies by Ploquin et al. (11) and Felde et al. (7) may have 684 

been impacted by land-use changes between the historical and modern surveys. However, this 685 

possibility was explicitly addressed in these papers, and therefore seems very unlikely (see Text 686 

S2). Nevertheless, we examined the impacts of excluding potentially affected sites in those two 687 

studies. We assumed that land-use change could cause sites to have local extinctions that were 688 

unrelated to climate change. Therefore, we excluded those sites with local extinctions in these 689 

two datasets. Specifically, we excluded the 9 sites with local extinction from Felde et al. (7) and 690 

76 sites with local extinction from Ploquin et al. (11). Thus, we excluded 85 sites from the full 691 

EMD dataset (sites in the original dataset=581; sites in the reduced dataset=496). Next, we 692 

compared climatic characteristics of sites with local extinction (sites with local extinction in the 693 

original dataset=148; sites with local extinction in the reduced dataset=63) and without local 694 

extinction (sites without local extinction in both the original and reduced datasets=433) in the 695 

reduced dataset (i.e. all sites except those with local extinction in Ploquin et al. [11] and Felde et 696 

al. [7]).  697 

We found that the exclusion of these 85 sites had no effect on our main conclusions 698 

(Dataset S15). In line with our main conclusions, DAPC analyses based on the reduced dataset 699 

suggested that the absolute amount of change in maximum annual temperatures (and the rate of 700 

change in maximum annual temperatures) was the main driver of local extinctions across sites 701 

(Dataset S15). We also compared the climatic characteristics of sites with and without local 702 

extinction based on the reduced dataset. There were significantly larger changes in maximum 703 

annual temperatures between surveys at sites with local extinction relative to those without 704 
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(mean absolute change in Bio5, sites with local extinction=0.421ºC vs sites without=0.146ºC, 705 

P<0.001, all based on logistic regression). The mean rate of change in maximum annual 706 

temperature was also faster at sites with local extinction (mean rate of change in Bio5, sites with 707 

local extinction=0.017ºC yr-1 vs sites without=0.004ºC yr-1, P<0.001). Sites with local extinction 708 

had smaller changes in mean annual temperature between surveys than those without local 709 

extinction (mean absolute change in mean Bio1, sites with local extinction=0.425ºC vs sites 710 

without=1.173ºC, P<0.001). Finally, annual precipitation decreased more at sites with local 711 

extinctions (mean absolute change in Bio12, sites with local extinction=-56.853 mm vs sites 712 

without 80.008 mm, P<0.001). Annual precipitation also decreased more rapidly at sites with 713 

local extinction (mean rate of change in Bio12, sites with local extinction=-1.571 mm yr-1 vs 714 

sites without=0.614 mm yr-1, P<0.001).  715 



1 

1 

REFERENCES 716 

1. Wiens JJ (2016) Climate-related local extinctions are already widespread among plant 717 

and animal species. PLoS Biol 14:e2001104. 718 

2. Raxworthy CJ, et al. (2008) Extinction vulnerability of tropical montane endemism from 719 

warming and upslope displacement: a preliminary appraisal for the highest massif in 720 

Madagascar. Glob Change Biol 14:1703–1720. 721 

3. Sheldon AL (2012) Possible climate-induced shift of stoneflies in a southern Appalachian 722 

catchment. Freshw Sci 31:765–774. 723 

4. Warren RJ, Chick L (2013) Upward ant distribution shift corresponds with minimum, not 724 

maximum, temperature tolerance. Glob Change Biol 19:2082–2088. 725 

5. Brusca RC, et al. (2013) Dramatic response to climate change in the Southwest: Robert 726 

Whittaker’s 1963 Arizona mountain plant transect revisited. Ecol Evol 3:3307–3319. 727 

6. Chen IC, et al. (2011) Asymmetric boundary shifts of tropical montane Lepidoptera over 728 

four decades of climate warming. Glob Ecol Biogeogr 20:34–45. 729 

7. Felde VA, Kapfer J, Grytnes J-A (2012) Upward shift in elevational plant species ranges 730 

in Sikkilsdalen, central Norway. Ecography 35:922–932. 731 

8. Forero-Medina G, Terborgh J, Socolar SJ, Pimm SL (2011) Elevational ranges of birds 732 

on a tropical montane gradient lag behind warming temperatures. PLoS One 6:e28535. 733 

9. Freeman BG, Freeman AMC (2014) Rapid upslope shifts in New Guinean birds illustrate 734 

strong distributional responses of tropical montane species to global warming. Proc Natl 735 

Acad Sci USA 111:4490–4494. 736 

10. Menendez R, et al. (2006) Species richness changes lag behind climate change. Proc Biol 737 

Soc 273:1465–1470. 738 



2 

2 

11. Ploquin EF, Herrera JM, Obeso JR (2013) Bumblebee community homogenization after 739 

uphill shifts in montane areas of northern Spain. Oecologia 173:1649–1660. 740 

12. Harris I, Jones P, Osborn T, Lister D (2013) Updated high-resolution grids of monthly 741 

climatic observations - the CRU TS3.10 Dataset. Int J Climatol 34:623–642. 742 

13. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution 743 

interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. 744 

14. Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces 745 

for global land areas. Int J Climatol 37:4302–4315. 746 

15. R Core Team (2016) R: A language and environment for statistical computing (R 747 

Foundation for Statistical Computing, Vienna). 748 

16. Zang C (2017) tusk: Conveniently access gridded climate data sets. R package version 749 

0.99. 750 

17. Babst F, et al. (2012) Site- and species-specific responses of forest growth to climate 751 

across the European continent. Glob Ecol Biogeogr 22:706–717. 752 

18. Canestrelli D, et al. (2017) Climate change promotes hybridisation between deeply 753 

divergent species. PeerJ 5:e3072. 754 

19. Kalnay EM, et al. (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol 755 

Soc 77:437–471. 756 

20. Kim D, Oh HS (2009) EMD: a package for empirical mode decomposition and Hilbert 757 

spectrum. R J 1:40–46. 758 

21. Wu Z, Huang NE, Long SR, Peng C-K (2007) On the trend, detrending, and variability of 759 

nonlinear and nonstationary time series. Proc Natl Acad Sci USA 104:14889–14894. 760 

22. Mudelsee M (2009) Break function regression. Eur Phys J 174:49–63. 761 



3 

3 

23. Mudelsee M (2018) Trend analysis of climate time series: A review of methods. Earth-762 

Sci Rev 190:310–322. 763 

24. Mohorji AM, Şen Z, Almazroui M (2017) Trend analyses revision and global monthly 764 

temperature innovative multi-duration analysis. Earth Sys Env1:9. 765 

25. Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in 766 

marine fishes. Science 308:1912–1915. 767 

26. Thoning KW, Tans PP, Komhyr WD (1989) Atmospheric carbon dioxide at Mauna Loa 768 

Observatory: 2. Analysis of the NOAA GMCC data, 1974–1985. J Geophys 769 

Res 94:8549–8565. 770 

27. Huang NE, et al. (1998) The empirical mode decomposition and the Hilbert spectrum for 771 

nonlinear and non-stationary time series analysis. Proc R Soc Lond A 454:903–995. 772 

28. Huang NE, Wu M-LC, Long SR, Shen SS-P, Qu W, Gloersen P, Fan KL (2003) A 773 

confidence limit for the empirical mode decomposition and Hilbert spectral analysis. 774 

Proc R Soc Lond A 459:2317–2345. 775 

29. Franzke CLE (2010) Long-range dependence and climate noise characteristics of 776 

Antarctic temperature data. J Clim 23:6074–6081. 777 

30. Franzke CLE (2012) Nonlinear trends, long-range dependence, and climate noise 778 

properties of surface temperature. J Clim 25:4172–4183. 779 

31. Franzke CLE (2014) Warming trends: nonlinear climate change. Nat Clim Change 4:423. 780 

32. O’Donnell MS, Ignizio DA (2012) Bioclimatic predictors for supporting ecological 781 

applications in the conterminous United States (U.S. Geological Survey Data Series, Fort 782 

Collins). 783 



4 

4 

33. Booth TH, Nix HA, Busby JR, Hutchinson MF (2013) Bioclim: the first species 784 

distribution modelling package, its early applications and relevance to most current 785 

MaxEnt studies. Divers Distrib 20:1–9. 786 

34. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. 787 

Bioinformatics 24:1403–1405. 788 

35. Jombart T, Collins C (2015) A tutorial for discriminant analysis of principal components 789 

(DAPC) using adegenet 2.0.0 (Imperial College London, MRC Centre for Outbreak 790 

Analysis and Modelling, London). 791 

36. Grömping U (2006) Relative importance for linear regression in R: the package relaimpo. 792 

J Stat Softw 17. 793 

37. Lindeman RH, Merenda PF, Gold RZ (1980) Introduction to bivariate and multivariate 794 

analysis (Scott, Foresman and Comp, Glenview). 795 

38. LeBreton JM (2004) History and use of relative importance indices in organizational 796 

research. Organ Res Methods 7:238–257. 797 

39. Ye T, Wang Y, Guo Z, Li Y (2017) Factor contribution to fire occurrence, size, and burn 798 

probability in a subtropical coniferous forest in East China. PLoS One 12:e0172110. 799 

40. Warren R, et al. (2013) Quantifying the benefit of early climate change mitigation in 800 

avoiding biodiversity loss. Nat Clim Change 3:678–682. 801 

41. Warren R, Price J, Graham E, Forstenhaeusler N, Vanderwal J (2018) The projected 802 

effect on insects, vertebrates, and plants of limiting global warming to 1.5°C rather than 803 

2°C. Science 360:791–795. 804 



5 

5 

42. Goberville E, Beaugrand G, Hautekèete N-C, Piquot Y, Luczak C (2015) Uncertainties in 805 

the projection of species distributions related to general circulation models. Ecol Evol 806 

5:1100–1116. 807 

43. Makino A, et al. (2014) The effect of applying alternate IPCC climate scenarios to marine 808 

reserve design for range changing species. Conserv Lett 8:320–328. 809 

44. García Molinos J, et al. (2015) Climate velocity and the future global redistribution of 810 

marine biodiversity. Nat Clim Change 6:83–88. 811 

45. IPCC (2013) Climate Change 2013: The physical science basis. (Cambridge Univ. Press, 812 

New York).  813 

46. Raftery AE, Zimmer A, Frierson DM, Startz R, Liu P (2017) Less than 2ºC warming by 814 

2100 unlikely. Nat Clim Change 7:637–641. 815 

47. Christensen P, Gillingham K, Nordhaus W (2018) Uncertainty in forecasts of long-run 816 

economic growth. Proc Natl Acad Sci USA 115:5409–5414. 817 

48. Rogelj J, et al. (2018) Scenarios towards limiting global mean temperature increase 818 

below 1.5°C. Nat Clim Change 8:325–332. 819 

49. Vuuren DPV, et al. (2011) RCP2.6: Exploring the possibility to keep global mean 820 

temperature increase below 2°C. Clim Change 109:95–116. 821 

50. Freeman BG, Scholer MN, Ruiz-Gutierrez V, Fitzpatrick JW (2018) Climate change 822 

causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc 823 

Natl Acad Sci USA:115:11982–11987. 824 

51. Venables WN, Ripley BD (2002) Modern applied statistics with S (Springer, New York) 825 

52. Cahill AE, et al. (2013) How does climate change cause extinction? Proc Biol Sci 826 

280:20121890. 827 



6 

6 

53. Hatcher L, Stepanski EJ (2011) A step-by-step approach to using the SAS system for 828 

univariate and multivariate statistics (SAS Institute, Cary). 829 

54. Hutcheson GD, Sofroniou N (2006) The multivariate social scientist: introductory 830 

statistics using generalized linear models (Sage, Thousand Oaks). 831 

55. MacCallum RC, Widaman KF, Preacher KJ, Hong S (2001) Sample size in factor 832 

analysis: the role of model error. Multivar Behav Res 36:611–637. 833 

56. Comrey AL, Lee HB (2016) A first course in factor analysis (Hillsdale, New York). 834 

57. Morris WF, Doak DF (2002) Quantitative conservation biology: theory and practice of 835 

population viability analysis (Sinauer Associates, Sunderland). 836 

58. Wiens JJ (2015) Faster diversification on land than sea helps explain global biodiversity 837 

patterns among habitats and animal phyla. Ecol Lett 18:1234–1241. 838 

59. Mora C, Tittensor DP, Adl S, Simpson AG, Worm B (2011) How many species are there 839 

on Earth and in the ocean? PLoS Biol 9:e1001127. 840 

60. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity 841 

hotspots for conservation priorities. Nature 403:853. 842 



 
 

1 
 

 

Fig. S1. Contributions of different variables to climatic differences between sites with and 

without local extinction. We present results for the (A) historical climate, and both the (B) 

absolute change, and (C) rate of change in climatic variables between surveys. DAPC loadings 

(Y axis) are shown for each Bioclim variable during the initial survey. Results for (A) address 
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how climatic variation among sites at the same time period (before major warming) predicted 

which sites showed local extinctions in the subsequent resurvey. Historically warmer sites (i.e. 

higher values of minimum annual temperatures, Bio6) were more likely to contain species that 

underwent local extinction between surveys (A). Sites in which local extinctions occurred were 

most distinct from those without in having greater increases in maximum annual temperatures 

(Bio5) between surveys (B) and a faster rate of change in this variable (C). We also show odds 

ratios and P-values for univariate logistic regressions between climatic descriptors and 

occurrence of local extinction across sites. Odds ratios larger than 1 (indicated with “+”) suggest 

that increases in predictor variables are associated with a higher likelihood of local extinction. 

Conversely, if odds rations are smaller than 1 (indicated with a vertical line “|”), the likelihood of 

local extinction is inversely related to increases in predictor variables. Definitions of Bioclim 

variables are given in SI Appendix, Table S2. 
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Supplementary Tables 

Table S1. Summary information for the analyzed datasets. Columns are labeled as follows. Study: original paper from which the data were obtained. Sites: number of specific 

locations surveyed and resurveyed on each transect. Species: total number of species found on the transect. Local extinction (species): proportion of the total sampled species that 

had local extinctions at one or more sites on the transect. Local extinction (sites): proportion of the total sampled sites where at least one species had a local extinction between 

surveys. Survey date: year when the initial survey was conducted. Resurvey date: year when the resurvey of the transect was conducted. Taxonomic group: higher taxon to which 

the sampled species belong. Continent: general location of the transect. Lists of species for each transect (and the sites at which they were found in the survey and resurvey) are 

given in Dataset S1. Geographic coordinates used for each site are given in Dataset S2. 

 

Study Sites Species Local 

extinction 

(species) 

Local extinction 

(sites) 

Survey date Resurvey date Taxonomic group Continent 

Brusca et al. (5) 8 27 0.5556 1.0000 1963 2011 Plants North America 

Chen et al. (6) 10 208 0.5577 1.0000 1965 2007 Insects Asia 

Felde et al. (7) 315 105 0.0857 0.0285 1900 2008 Plants Europe 

Forero-Medina et al. (8) 5 55 0.2909 0.8000 1969 2010 Birds South America 
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Freeman and Freeman (9) 37 54 0.7407 0.6216 1965 2012 Birds Oceania 

Menendez et al. (10) 40 39 0.5385 0.4250 1981–1982; 

1992–1993 

2006–2007 Insects Europe 

Ploquin et al. (11) 119 16 0.6875 0.6386 1988–1989 2009 Insects Europe 

Raxworthy et al. (2) 3 30 0.3667 0.3333 1993 2003 Frogs/Lizards Madagascar 

Sheldon (3) 31 2 0.0000 0.0000 1977–1978 2006 Insects North America 

Warren and Chick (4) 13 2 0.0000 0.0000 1973–1974 2012 Insects North America 
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Table S2. Definitions for Bioclim variables (32). 

 

Code Description 

Bio1  Annual mean temperature 

Bio2  Mean diurnal range (mean of monthly (max temp - min temp)) 

Bio3  Isothermality (100*Bio2/Bio7) 

Bio4  Temperature seasonality 

Bio5  Maximum temperature of warmest month 

Bio6  Minimum temperature of coldest month 

Bio7  Temperature annual range (Bio5-Bio6) 

Bio8  Mean temperature of wettest quarter 

Bio9  Mean temperature of driest quarter 

Bio10  Mean temperature of warmest quarter 

Bio11  Mean temperature of coldest quarter 

Bio12  Annual precipitation 

Bio13  Precipitation of wettest month 

Bio14  Precipitation of driest month 

Bio15  Precipitation seasonality (coefficient of variation) 

Bio16  Precipitation of wettest quarter 

Bio17  Precipitation of driest quarter 

Bio18  Precipitation of warmest quarter 

Bio19  Precipitation of coldest quarter 
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Table S3. Summary of statistical results comparing climatic variables at sites with and without local extinction. For each climatic 

variable, we present both the mean and standard deviation for sites with and without local extinction (sites are considered as having 

local extinction if any of the species surveyed had a local extinction at that site, as indicated by failure to find that species at that site 

during the resurvey). Next, we show results for univariate logistic regressions between each climatic variable and the occurrence of 

local extinction. We then summarize odds and P-values for each of the models. We also performed DAPC analyses between the 

occurrence of local extinction across sites and all climatic variables. These analyses were fit independently for variables for historical 

climate (i.e. climate for the year of the initial survey), absolute change in climate (historical – modern values), and rate of change in 

climate (absolute change/time between surveys). We refer to each climatic variable with the prefix “historical”, “absolute.change” and 

“rate.change” and we present the results for these three sets of variables in that order. We show DAPC loadings (LD1 loading) for 

each of these variables within each of the three analyzed datasets. Bioclim variables are defined in SI Appendix, Table S2. Given that 

some odds were very large, we summarize odds greater than nine as “>9”. 

Variable Descriptive statistics Univariate logistic regression DAPC 

No local extinction Local extinction Odds P LD1 

loading Mean SD Mean SD 

historical.Bio1 1.530 6.080 11.600 5.410 1.250 <0.001 0.039 

historical.Bio2 8.770 1.900 9.710 1.830 1.260 <0.001 0.009 

historical.Bio3 30.800 11.500 48.500 19.700 1.070 <0.001 0.023 

historical.Bio4 7.110 1.490 4.310 2.300 0.508 <0.001 0.000 

historical.Bio5 17.800 5.050 23.900 3.860 1.250 <0.001 0.129 

historical.Bio6 -12.700 7.130 1.330 7.680 1.210 <0.001 0.275 

historical.Bio7 30.100 4.240 22.500 7.000 0.804 <0.001 0.091 

historical.Bio8 6.090 3.640 11.000 5.560 1.250 <0.001 0.006 

historical.Bio9 0.271 7.960 13.500 5.620 1.230 <0.001 0.035 

historical.Bio10 10.500 4.920 17.100 3.680 1.280 <0.001 0.069 

historical.Bio11 -6.630 7.180 6.680 7.570 1.210 <0.001 0.011 

historical.Bio12 929.000 526.000 1350.000 941.000 1.000 <0.001 0.128 

historical.Bio13 159.000 69.200 225.000 115.000 1.010 <0.001 0.005 

historical.Bio14 29.300 21.200 36.100 41.900 1.010 0.012 0.003 

historical.Bio15 53.400 8.550 59.100 16.200 1.050 <0.001 0.003 

historical.Bio16 339.000 175.000 506.000 292.000 1.000 <0.001 0.077 

historical.Bio17 139.000 98.900 186.000 182.000 1.000 <0.001 0.035 

historical.Bio18 259.000 141.000 301.000 279.000 1.000 0.018 0.006 

historical.Bio19 214.000 126.000 333.000 190.000 1.010 <0.001 0.060 

        

absolute.change.Bio1 1.170 0.516 0.413 0.367 0.060 <0.001 0.057 

absolute.change.Bio2 0.061 0.348 0.056 0.214 0.951 0.864 0.001 

absolute.change.Bio3 -0.003 0.749 0.428 1.380 1.550 <0.001 0.023 

absolute.change.Bio4 -0.065 0.070 0.011 0.106 >9 <0.001 0.050 
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Variable Descriptive statistics Univariate logistic regression DAPC 

No local extinction Local extinction Odds P LD1 

loading Mean SD Mean SD 

absolute.change.Bio5 0.147 0.205 0.413 0.299 >9 <0.001 0.216 

absolute.change.Bio6 1.210 1.210 0.231 0.505 0.111 <0.001 0.045 

absolute.change.Bio7 -0.763 0.729 0.264 0.709 5.240 <0.001 0.079 

absolute.change.Bio8 1.040 1.800 0.311 0.866 0.757 <0.001 0.092 

absolute.change.Bio9 -0.563 1.560 0.190 1.040 1.420 <0.001 0.022 

absolute.change.Bio10 1.050 0.420 0.445 0.456 0.071 <0.001 0.023 

absolute.change.Bio11 0.373 0.294 0.205 0.199 0.050 <0.001 0.005 

absolute.change.Bio12 80.000 83.000 -29.000 102.000 0.988 <0.001 0.094 

absolute.change.Bio13 -2.290 10.900 -8.880 20.700 0.966 <0.001 0.013 

absolute.change.Bio14 6.520 11.900 13.000 30.300 1.020 0.001 0.101 

absolute.change.Bio15 -7.780 4.560 -0.845 4.600 1.320 <0.001 0.115 

absolute.change.Bio16 16.100 25.200 1.260 40.100 0.980 <0.001 0.015 

absolute.change.Bio17 7.440 19.000 -1.180 27.600 0.981 <0.001 0.003 

absolute.change.Bio18 28.500 26.400 9.870 53.600 0.984 <0.001 0.017 

absolute.change.Bio19 8.980 22.700 -10.900 34.300 0.970 <0.001 0.033 

        

rate.change.Bio1 0.015 0.005 0.013 0.009 0.000 0.077 0.029 

rate.change.Bio2 -0.001 0.011 0.003 0.007 >9 <0.001 0.100 

rate.change.Bio3 0.003 0.020 0.015 0.042 >9 <0.001 0.012 

rate.change.Bio4 -0.001 0.002 0.001 0.004 >9 <0.001 0.045 

rate.change.Bio5 0.005 0.012 0.018 0.017 >9 <0.001 0.297 

rate.change.Bio6 0.015 0.017 0.006 0.011 0.000 <0.001 0.000 

rate.change.Bio7 -0.008 0.025 0.017 0.028 >9 <0.001 0.234 

rate.change.Bio8 0.015 0.029 0.014 0.029 0.565 0.861 0.000 

rate.change.Bio9 0.003 0.037 0.013 0.039 >9 0.008 0.004 

rate.change.Bio10 0.014 0.007 0.015 0.011 >9 0.105 0.004 

rate.change.Bio11 0.007 0.008 0.007 0.007 >9 0.747 0.000 

rate.change.Bio12 0.614 1.830 -1.130 2.500 0.695 <0.001 0.054 

rate.change.Bio13 -0.100 0.333 -0.415 0.640 0.214 <0.001 0.000 

rate.change.Bio14 0.088 0.259 0.295 0.643 2.990 <0.001 0.060 

rate.change.Bio15 -0.082 0.070 -0.018 0.131 >9 <0.001 0.032 

rate.change.Bio16 0.102 0.503 -0.142 1.130 0.608 <0.001 0.024 

rate.change.Bio17 -0.043 0.461 -0.150 0.658 0.669 0.032 0.024 

rate.change.Bio18 0.238 0.692 -0.031 1.300 0.703 0.002 0.000 

rate.change.Bio19 0.003 0.890 -0.588 1.080 0.518 <0.001 0.080 
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Table S4. Summary of the proportion of species vulnerable to extinction from climate change 

(without dispersal or niche shifts). For each combination of RCP and available GCM, we 

estimate the number of species projected to have their current distributions (on their transect) 

outside of their current range of values for maximum annual temperature by 2070. These species 

are vulnerable to extinction from climate change, unless they undergo dispersal or niche shifts. 

The number of these species is then divided by the total number of species in our dataset 

(n=538) to estimate the proportion of species vulnerable to extinction (without dispersal or niche 

shifts). We also summarize the distance to the current thermal niche (for maximum annual 

temperature) as the mean across all species for each combination of RCP and GCM. This 

distance is the difference between the projected value for maximum annual temperature in 2070 

at the coolest site in the species’ current range (usually the highest elevation site) and the current 

maximum value of maximum annual temperature within the species current range (at the time of 

the resurvey). The species-level data on which this summary is based are presented in Dataset 

S5. 

 

RCP GCM Proportion species outside current niche Distance to current niche 

2.6 BC 0.703 0.536 

2.6 CC 0.704 0.529 

2.6 CN 0.695 0.545 

2.6 GD 0.539 0.550 

2.6 GF 0.829 2.243 

2.6 GS 0.604 0.473 

2.6 HD 0.511 0.941 



 
 

2 
 

2.6 HE 0.770 1.032 

2.6 IP 0.708 1.198 

2.6 MC 0.742 1.041 

2.6 MG 0.636 0.498 

2.6 MI 0.855 1.440 

2.6 MP 0.641 0.821 

2.6 MR 0.807 1.760 

2.6 NO 0.727 0.593 

 

4.5 AC 0.745 1.765 

4.5 BC 0.710 1.032 

4.5 CC 0.734 1.217 

4.5 CE 0.875 2.820 

4.5 CN 0.779 1.082 

4.5 GD 0.714 1.095 

4.5 GF 0.890 2.995 

4.5 GS 0.714 1.022 

4.5 HD 0.799 1.959 

4.5 HE 0.842 1.761 

4.5 HG 0.792 1.606 

4.5 IN 0.667 0.437 

4.5 IP 0.779 1.932 

4.5 MC 0.822 1.574 
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4.5 MG 0.664 0.999 

4.5 MI 0.922 2.018 

4.5 MP 0.697 1.561 

4.5 MR 0.901 2.074 

4.5 NO 0.762 1.251 

 

6 BC 0.732 1.248 

6 CC 0.738 1.319 

6 GD 0.730 1.205 

6 GS 0.725 1.136 

6 HD 0.801 1.522 

6 HE 0.879 1.880 

6 IP 0.781 1.962 

6 MC 0.768 1.639 

6 MG 0.680 1.253 

6 MI 0.929 2.266 

6 MR 0.870 2.108 

6 NO 0.749 1.215 

 

8.5 AC 0.868 2.688 

8.5 BC 0.762 2.064 

8.5 CC 0.835 2.250 

8.5 CN 0.851 1.777 
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8.5 GF 0.948 4.325 

8.5 GS 0.805 1.710 

8.5 HD 0.928 2.601 

8.5 HE 0.941 3.151 

8.5 HG 0.931 2.987 

8.5 IN 0.684 1.374 

8.5 IP 0.894 3.223 

8.5 MC 0.892 2.342 

8.5 MG 0.770 2.092 

8.5 MI 0.950 3.529 

8.5 MP 0.777 2.852 

8.5 MR 0.950 3.621 

8.5 NO 0.866 2.033 
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Table S5. Mean distances and rates of elevational dispersal at species’ upper elevational range limits. Many species moved upwards 

in elevation between surveys (n=185), and for these species we calculated the absolute amount (in meters above sea level) that their 

upper elevational limit increased between surveys. A large number of species (n=101) moved downwards at their upper elevational 

ranges over time instead (presumably due to local extinctions at upper sites). For these species, we calculated the decrease in the 

elevation of their upper ranges as the amount of dispersal, and this value divided by the time between surveys yields the downward 

dispersal rate (although this presumably reflects local extinction rather than movement of individuals). Note that 47% of the analyzed 

species (n=252) did not disperse between surveys at their upper elevational range limits. Species-level data are provided in Dataset 

S6. 

 

Species n Dispersal amount Dispersal rate 

Upward dispersing 185 312.872 m (SD=246.242) 9.899 m/year (SD=10.868) 

Downward dispersing 101 -241.810 m (SD=413.607) -3.965 m/year (SD=20.035) 
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Table S6. Summary statistics for univariate regressions testing the relationship between maximum annual temperatures (Bio5) and 

elevation across sites. We fit separate regression models for each transect. We also summarize here the elevation at the highest 

sampled site on the transect, and the highest elevation on the mountain on which the transect is located. 

 

Study Maximum elevation along 

the transect 

Mountain 

summit 

r2 P Slope 

 

Brusca et al. (5) 2743 2791 0.992 1.66E-07 -7.18E-03 

Chen et al. (6) 3675 4021 0.948 2.07E-06 -4.38E-03 

Felde et al. (7) 1610 2292 0.841 5.72E-127 -6.24E-03 

Forero-Medina et al. (8) 2220 2274 0.989 4.92E-04 -2.92E-03 

Freeman and Freeman (9) 2382 2423 0.763 1.76E-12 -4.10E-03 

Menendez et al. (10) 2518 3322 0.198 4.05E-03 -4.40E-03 

Ploquin et al. (11) 2306 2549 0.724 1.66E-34 -2.18E-03 

Raxworthy et al. (2) 2500 2774 0.982 8.54E-02 -5.18E-03 

Sheldon (3) 1113 1929 0.967 3.95E-23 -6.58E-03 

Warren and Chick (4) 1052 1565 0.958 6.14E-09 -5.24E-03 
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Table S7. Estimated level of extinction assuming that upward-dispersing species respond to 

climate change only by dispersing. We include only species that dispersed upwards (at their 

upper elevational range limits) between surveys (n=185). We show estimates for the proportion 

of these 185 species that are projected to go extinct by 2070, for two alternative dispersal 

scenarios. The unconstrained scenario assumes that upward dispersal is not restricted by the 

height of the mountain range on which the survey was undertaken. The constrained scenario 

assumes that species can only disperse until they reach the highest elevation possible on the 

mountain range containing their elevational transect (i.e. the top of the mountain range). Results 

are shown for multiple climatic scenarios based on the 12–19 available GCMs for each of the 

four RCPs. We present results for two different RCPs in the main text: RCP4.5 and RCP8.5. For 

each of these two RCPs, we simply averaged the extinction frequencies across all nested GCMs. 

Not all combinations of GCMs and RCPs are available. The species-level data are presented in 

Dataset S6, along with model abbreviations. 

 

RCP GCM Extinction frequency 

(Unconstrained) 

Extinction frequency 

(Constrained) 

2.6 BC 0.135 0.168 

2.6 CC 0.130 0.157 

2.6 CN 0.151 0.178 

2.6 GD 0.092 0.124 

2.6 GF 0.330 0.384 

2.6 GS 0.097 0.135 

2.6 HD 0.168 0.205 
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2.6 HE 0.222 0.308 

2.6 IP 0.232 0.314 

2.6 MC 0.184 0.222 

2.6 MG 0.119 0.146 

2.6 MI 0.314 0.324 

2.6 MP 0.162 0.189 

2.6 MR 0.308 0.330 

2.6 NO 0.119 0.157 

 

4.5 AC 0.324 0.411 

4.5 BC 0.200 0.238 

4.5 CC 0.232 0.319 

4.5 CE 0.643 0.735 

4.5 CN 0.238 0.276 

4.5 GD 0.211 0.292 

4.5 GF 0.578 0.681 

4.5 GS 0.200 0.238 

4.5 HD 0.357 0.443 

4.5 HE 0.368 0.459 

4.5 HG 0.319 0.400 

4.5 IN 0.092 0.135 

4.5 IP 0.357 0.443 

4.5 MC 0.286 0.378 
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4.5 MG 0.211 0.286 

4.5 MI 0.416 0.481 

4.5 MP 0.292 0.368 

4.5 MR 0.411 0.486 

4.5 NO 0.243 0.303 

 

6 BC 0.254 0.292 

6 CC 0.254 0.335 

6 GD 0.216 0.254 

6 GS 0.243 0.335 

6 HD 0.341 0.432 

6 HE 0.400 0.476 

6 IP 0.368 0.449 

6 MC 0.308 0.400 

6 MG 0.222 0.303 

6 MI 0.443 0.503 

6 MR 0.416 0.470 

6 NO 0.249 0.276 

 

8.5 AC 0.578 0.676 

8.5 BC 0.341 0.427 

8.5 CC 0.416 0.514 

8.5 CN 0.373 0.449 
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8.5 GF 0.768 0.859 

8.5 GS 0.346 0.411 

8.5 HD 0.524 0.611 

8.5 HE 0.654 0.741 

8.5 HG 0.649 0.735 

8.5 IN 0.232 0.330 

8.5 IP 0.703 0.789 

8.5 MC 0.551 0.649 

8.5 MG 0.384 0.443 

8.5 MI 0.546 0.616 

8.5 MP 0.535 0.611 

8.5 MR 0.659 0.724 

8.5 NO 0.427 0.524 
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Table S8. Estimated level of extinction assuming that all species respond to climate change only by dispersing. We include species that dispersed upwards between surveys, in 

addition to species that dispersed downwards or did not disperse between surveys. We show estimates for the proportion of these 538 species projected to go extinct by 2070, for 

three alternative dispersal scenarios. Scenario 1: we assumed that species that did not previously disperse upwards (at their upper elevational range limits) between surveys would 

not disperse upwards in the future. Scenario 2: we assumed that these previously non-dispersing species would instead move upwards at the mean upward rate across all species 

that did disperse upwards (including downward dispersal as negative values when calculating the mean). Scenario 3: we assumed that these previously non-dispersing species 

would instead move upwards at the mean upward rate across all species (including downward dispersal as negative values when calculating the mean and counting non-dispersing 

species as zero). For each of these three scenarios, we also estimated the projected proportion of extinctions if species are not restricted by the height of the mountain range on 

which the survey was undertaken (unconstrained), or if species can only disperse until they reach the highest elevation possible on the mountain range containing their elevational 

transect (i.e. the top of the mountain range; constrained). Results are shown for multiple climatic scenarios based on the 12–19 available GCMs for each of the four RCPs. We 

present results for two different RCPs in the main text: RCP4.5 and RCP8.5. For each of these two RCPs, we simply averaged the extinction frequency across all nested GCMs. 

Not all combinations of GCMs and RCPs are available. The species-level data are presented in Dataset S6, along with model abbreviations. 

 

RCP GCM Scenario1_Unconstrained Scenario1_Constrained Scenario2_Unconstrained Scenario2_Constrained Scenario3_Unconstrained Scenario3_Constrained 

2.6 BC 0.416 0.428 0.416 0.428 0.416 0.428 

2.6 CC 0.416 0.426 0.416 0.426 0.416 0.426 

2.6 CN 0.420 0.429 0.420 0.429 0.420 0.429 

2.6 GD 0.314 0.325 0.314 0.325 0.314 0.325 

2.6 GF 0.593 0.612 0.593 0.612 0.593 0.612 
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2.6 GS 0.362 0.375 0.362 0.375 0.362 0.375 

2.6 HD 0.303 0.316 0.303 0.316 0.303 0.316 

2.6 HE 0.507 0.537 0.507 0.537 0.507 0.537 

2.6 IP 0.468 0.496 0.468 0.496 0.468 0.496 

2.6 MC 0.476 0.489 0.476 0.489 0.476 0.489 

2.6 MG 0.374 0.383 0.374 0.383 0.374 0.383 

2.6 MI 0.604 0.608 0.604 0.608 0.604 0.608 

2.6 MP 0.388 0.398 0.388 0.398 0.388 0.398 

2.6 MR 0.554 0.561 0.554 0.561 0.554 0.561 

2.6 NO 0.442 0.455 0.442 0.455 0.442 0.455 

        

4.5 AC 0.522 0.552 0.522 0.552 0.522 0.552 

4.5 BC 0.459 0.472 0.459 0.472 0.459 0.472 

4.5 CC 0.485 0.515 0.485 0.515 0.485 0.515 

4.5 CE 0.730 0.762 0.730 0.762 0.730 0.762 

4.5 CN 0.530 0.543 0.530 0.543 0.530 0.543 

4.5 GD 0.463 0.491 0.463 0.491 0.463 0.491 

4.5 GF 0.716 0.751 0.716 0.751 0.716 0.751 

4.5 GS 0.467 0.480 0.467 0.480 0.467 0.480 

4.5 HD 0.569 0.599 0.569 0.599 0.569 0.599 

4.5 HE 0.617 0.649 0.617 0.649 0.617 0.649 

4.5 HG 0.556 0.584 0.556 0.584 0.556 0.584 
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4.5 IN 0.375 0.390 0.375 0.390 0.375 0.390 

4.5 IP 0.552 0.582 0.552 0.582 0.552 0.582 

4.5 MC 0.576 0.608 0.576 0.608 0.576 0.608 

4.5 MG 0.422 0.448 0.422 0.448 0.422 0.448 

4.5 MI 0.686 0.708 0.686 0.708 0.686 0.708 

4.5 MP 0.472 0.498 0.472 0.498 0.472 0.498 

4.5 MR 0.665 0.691 0.665 0.691 0.665 0.691 

4.5 NO 0.509 0.530 0.509 0.530 0.509 0.530 

        

6 BC 0.489 0.502 0.489 0.502 0.489 0.502 

6 CC 0.494 0.522 0.494 0.522 0.494 0.522 

6 GD 0.481 0.494 0.481 0.494 0.481 0.494 

6 GS 0.487 0.519 0.487 0.519 0.487 0.519 

6 HD 0.572 0.604 0.572 0.604 0.572 0.604 

6 HE 0.649 0.675 0.649 0.675 0.649 0.675 

6 IP 0.554 0.582 0.554 0.582 0.554 0.582 

6 MC 0.537 0.569 0.537 0.569 0.537 0.569 

6 MG 0.454 0.481 0.454 0.481 0.454 0.481 

6 MI 0.704 0.725 0.704 0.725 0.704 0.725 

6 MR 0.647 0.665 0.647 0.665 0.647 0.665 

6 NO 0.500 0.509 0.500 0.509 0.500 0.509 
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8.5 AC 0.701 0.734 0.701 0.734 0.701 0.734 

8.5 BC 0.532 0.561 0.532 0.561 0.532 0.561 

8.5 CC 0.625 0.658 0.625 0.658 0.625 0.658 

8.5 CN 0.621 0.647 0.621 0.647 0.621 0.647 

8.5 GF 0.820 0.851 0.820 0.851 0.820 0.851 

8.5 GS 0.586 0.608 0.586 0.608 0.586 0.608 

8.5 HD 0.727 0.757 0.727 0.757 0.727 0.757 

8.5 HE 0.781 0.810 0.781 0.810 0.781 0.810 

8.5 HG 0.773 0.803 0.773 0.803 0.773 0.803 

8.5 IN 0.452 0.485 0.452 0.485 0.452 0.485 

8.5 IP 0.760 0.790 0.760 0.790 0.760 0.790 

8.5 MC 0.714 0.747 0.714 0.747 0.714 0.747 

8.5 MG 0.561 0.582 0.561 0.582 0.561 0.582 

8.5 MI 0.749 0.773 0.749 0.773 0.749 0.773 

8.5 MP 0.608 0.634 0.608 0.634 0.608 0.634 

8.5 MR 0.788 0.810 0.788 0.810 0.788 0.810 

8.5 NO 0.651 0.684 0.651 0.684 0.651 0.684 
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Table S9. Estimated level of extinction assuming that species respond to climate change by 

shifting their climatic niches. We estimate the proportion of all 538 species that are projected to 

go extinct (within their transect) by 2070, assuming that these species can respond to climate 

change only by shifting their climatic niches, not by dispersing. For each species we evaluated 

whether all sites across their current range will warm above the estimated threshold for 

maximum annual temperatures that typically leads to local extinction, using two different 

thresholds. First, we used the increase in maximum annual temperature (Bio5) at which 95% of 

the species experienced local extinction at their warmest site (2.860ºC). Second, we used the 

increase in maximum annual temperature at which 50% of the species experienced local 

extinction at their warmest site (0.519ºC). For the 0.50 threshold, we assumed that only 50% of 

the species that experienced temperatures above this threshold would go extinct. Results are 

shown for multiple climatic scenarios based on 12–19 GCMs and all four RCPs. We present 

results for two different RCPs in the main text: RCP4.5 and RCP8.5. For each of these two 

RCPs, we averaged the extinction frequency across all nested GCMs. Not all combinations of 

RCPs and GCMSs are available (especially for RCP 2.6 and 6). Species-level data are presented 

in Dataset S7, along with model abbreviations. 

 

RCP GCM Extinction frequency 

Niche shift threshold=0.95 (2.860ºC) Niche shift threshold=0.50 (0.519ºC) 

2.6 BC 0.000 0.117 

2.6 CC 0.000 0.124 

2.6 CN 0.000 0.121 

2.6 GD 0.000 0.079 
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2.6 GF 0.216 0.399 

2.6 GS 0.000 0.105 

2.6 HD 0.002 0.176 

2.6 HE 0.000 0.315 

2.6 IP 0.000 0.340 

2.6 MC 0.000 0.326 

2.6 MG 0.000 0.096 

2.6 MI 0.221 0.298 

2.6 MP 0.000 0.252 

2.6 MR 0.180 0.350 

2.6 NO 0.000 0.141 

    

4.5 AC 0.052 0.364 

4.5 BC 0.002 0.322 

4.5 CC 0.004 0.352 

4.5 CE 0.231 0.418 

4.5 CN 0.000 0.368 

4.5 GD 0.091 0.248 

4.5 GF 0.257 0.424 

4.5 GS 0.000 0.316 

4.5 HD 0.152 0.380 

4.5 HE 0.130 0.399 

4.5 HG 0.034 0.374 
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4.5 IN 0.000 0.089 

4.5 IP 0.091 0.367 

4.5 MC 0.104 0.386 

4.5 MG 0.000 0.304 

4.5 MI 0.223 0.443 

4.5 MP 0.080 0.339 

4.5 MR 0.232 0.421 

4.5 NO 0.034 0.365 

    

6 BC 0.048 0.356 

6 CC 0.004 0.355 

6 GD 0.091 0.339 

6 GS 0.000 0.349 

6 HD 0.041 0.385 

6 HE 0.167 0.415 

6 IP 0.091 0.366 

6 MC 0.011 0.366 

6 MG 0.000 0.326 

6 MI 0.294 0.459 

6 MR 0.245 0.417 

6 NO 0.004 0.358 

    

8.5 AC 0.303 0.414 
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8.5 BC 0.206 0.369 

8.5 CC 0.143 0.396 

8.5 CN 0.106 0.399 

8.5 GF 0.771 0.468 

8.5 GS 0.054 0.379 

8.5 HD 0.316 0.447 

8.5 HE 0.431 0.467 

8.5 HG 0.385 0.461 

8.5 IN 0.026 0.337 

8.5 IP 0.701 0.421 

8.5 MC 0.218 0.424 

8.5 MG 0.164 0.365 

8.5 MI 0.444 0.475 

8.5 MP 0.258 0.376 

8.5 MR 0.429 0.474 

8.5 NO 0.218 0.412 
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Table S10. Estimated level of extinction assuming that species respond to climate change by 

both dispersing and shifting their climatic niches. For each of the analyzed species (n=538), we 

estimated if dispersal could decrease the change in maximum annual temperatures that a species 

experiences to below the estimated threshold for local extinction (i.e. the amount of niche shift 

possible without extinction). We used two different thresholds. First, the increase in maximum 

annual temperature at which 95% of the species experienced local extinction at their warmest site 

(2.860ºC). Second, the increase in maximum annual temperature at which 50% of the species 

experienced local extinction at their warmest site (0.519ºC). For the 0.50 threshold, we assumed 

that only 50% of the species that experienced temperatures above this threshold would go 

extinct. We explored three different dispersal scenarios. Scenario 1: we assumed that species that 

did not previously disperse upwards (at their upper elevational range limits) between surveys 

would not disperse upwards in the future. Scenario 2: we assumed that these previously non-

dispersing species would instead move upwards at the mean upward rate across all species that 

dispersed (including downward dispersal as negative values when calculating the mean). 

Scenario 3: we assumed that these previously non-dispersing species would instead move 

upwards at the mean upward rate across all species (counting non-dispersing species as zero 

when calculating the mean and including downward dispersal as negative values). Results are 

shown for multiple climatic scenarios based on the 12–19 GCMs and all four RCPs. We present 

results for two different RCPs in the main text: RCP4.5 and RCP8.5. For each of these two 

RCPs, we simply averaged the extinction frequency across all nested GCMs. Not all 

combinations are available. The species-level data are presented in Dataset S8 for the first 

scenario, Dataset S9 for the second, and Dataset S10 for the third. Model abbreviations are 

explained in Dataset S8. 
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RCP GCM Niche shift threshold=0.95 (2.860ºC) Niche shift threshold=0.5 (0.519ºC) 

Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 

2.6 BC 0.056 0.056 0.056 0.137 0.129 0.130 

2.6 CC 0.052 0.052 0.052 0.133 0.118 0.123 

2.6 CN 0.052 0.052 0.052 0.144 0.130 0.135 

2.6 GD 0.043 0.041 0.041 0.111 0.112 0.112 

2.6 GF 0.231 0.238 0.238 0.309 0.305 0.309 

2.6 GS 0.054 0.050 0.054 0.113 0.111 0.112 

2.6 HD 0.048 0.043 0.043 0.129 0.130 0.133 

2.6 HE 0.069 0.067 0.067 0.231 0.225 0.234 

2.6 IP 0.097 0.091 0.091 0.239 0.235 0.240 

2.6 MC 0.089 0.087 0.087 0.225 0.226 0.227 

2.6 MG 0.052 0.052 0.052 0.116 0.107 0.108 

2.6 MI 0.199 0.193 0.199 0.257 0.247 0.256 

2.6 MP 0.082 0.080 0.080 0.188 0.185 0.188 

2.6 MR 0.225 0.212 0.206 0.273 0.260 0.273 

2.6 NO 0.060 0.058 0.058 0.139 0.138 0.141 

        

4.5 AC 0.128 0.110 0.110 0.280 0.282 0.283 

4.5 BC 0.078 0.071 0.071 0.225 0.218 0.229 

4.5 CC 0.089 0.087 0.087 0.249 0.248 0.251 

4.5 CE 0.283 0.292 0.290 0.377 0.371 0.374 
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4.5 CN 0.087 0.086 0.086 0.263 0.256 0.260 

4.5 GD 0.128 0.132 0.132 0.198 0.174 0.179 

4.5 GF 0.303 0.307 0.305 0.363 0.360 0.362 

4.5 GS 0.091 0.069 0.069 0.230 0.221 0.234 

4.5 HD 0.197 0.173 0.175 0.302 0.304 0.304 

4.5 HE 0.184 0.152 0.152 0.320 0.315 0.319 

4.5 HG 0.119 0.100 0.100 0.289 0.286 0.290 

4.5 IN 0.050 0.050 0.050 0.105 0.084 0.101 

4.5 IP 0.178 0.164 0.162 0.289 0.284 0.289 

4.5 MC 0.178 0.152 0.151 0.287 0.284 0.287 

4.5 MG 0.082 0.082 0.082 0.221 0.217 0.218 

4.5 MI 0.281 0.266 0.264 0.351 0.348 0.351 

4.5 MP 0.149 0.132 0.132 0.257 0.258 0.260 

4.5 MR 0.284 0.266 0.266 0.325 0.326 0.327 

4.5 NO 0.102 0.099 0.099 0.252 0.253 0.255 

        

6 BC 0.125 0.106 0.106 0.248 0.246 0.250 

6 CC 0.100 0.093 0.093 0.253 0.254 0.256 

6 GD 0.171 0.156 0.154 0.237 0.230 0.232 

6 GS 0.113 0.091 0.091 0.248 0.246 0.249 

6 HD 0.126 0.108 0.108 0.282 0.278 0.281 

6 HE 0.219 0.204 0.203 0.336 0.334 0.337 

6 IP 0.180 0.165 0.164 0.289 0.288 0.290 
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6 MC 0.106 0.099 0.099 0.270 0.265 0.268 

6 MG 0.089 0.087 0.087 0.246 0.239 0.244 

6 MI 0.314 0.316 0.318 0.365 0.365 0.368 

6 MR 0.271 0.279 0.273 0.330 0.324 0.329 

6 NO 0.115 0.093 0.093 0.253 0.248 0.253 

        

8.5 AC 0.299 0.296 0.301 0.358 0.353 0.355 

8.5 BC 0.214 0.225 0.223 0.285 0.286 0.286 

8.5 CC 0.227 0.214 0.214 0.329 0.323 0.328 

8.5 CN 0.184 0.167 0.167 0.317 0.313 0.316 

8.5 GF 0.548 0.554 0.545 0.444 0.444 0.445 

8.5 GS 0.128 0.125 0.125 0.293 0.286 0.289 

8.5 HD 0.327 0.340 0.333 0.383 0.382 0.383 

8.5 HE 0.420 0.431 0.424 0.410 0.407 0.410 

8.5 HG 0.357 0.364 0.364 0.402 0.403 0.403 

8.5 IN 0.115 0.097 0.097 0.234 0.236 0.239 

8.5 IP 0.476 0.480 0.478 0.390 0.388 0.392 

8.5 MC 0.253 0.260 0.262 0.355 0.353 0.354 

8.5 MG 0.197 0.201 0.199 0.286 0.285 0.286 

8.5 MI 0.457 0.467 0.465 0.407 0.410 0.410 

8.5 MP 0.279 0.290 0.286 0.310 0.311 0.311 

8.5 MR 0.448 0.455 0.454 0.414 0.415 0.417 

8.5 NO 0.231 0.238 0.240 0.329 0.326 0.326 
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