

Supplementary Information for

Heat shock proteases promote survival of Pseudomonas aeruginosa during growth arrest

David W. Basta, David Angeles-Albores, Melanie A. Spero, John A. Ciemniecki, Dianne K. Newman

Dianne K. Newman Email: dkn@caltech.edu

This PDF file includes:

Supplementary Text Figures S1 to S7 Tables S1 to S4 Legends for Datasets S1 and S2 SI References

Other supplementary materials for this manuscript include the following:

Datasets S1 and S2

Supplementary Text

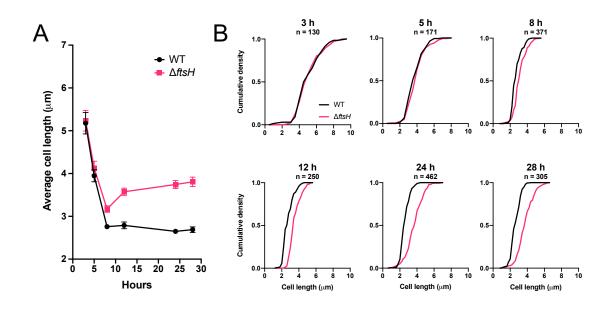
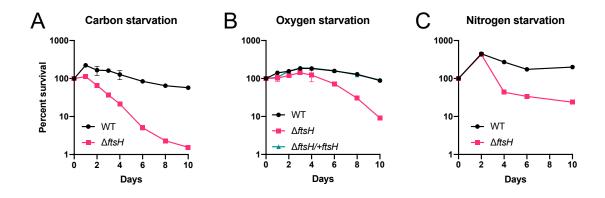
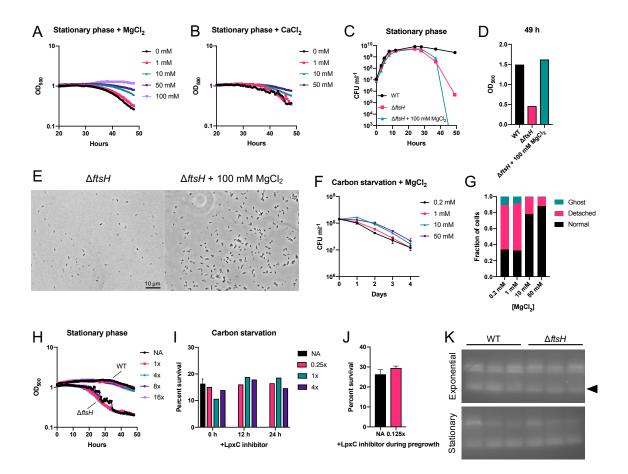
The morphology of growth-arrested $\Delta ftsH$ cells of *P. aeruginosa* was similar to the phenotype of a gain-of-function mutation in *mIaA* (designated *mIaA**) in *E. coli* during growth arrest (1). *mIaA** mutants aberrantly transport phospholipids to the outer leaflet of the OM, which normally comprises almost exclusively LPS (1, 2). The accumulation of phospholipids in the outer leaflet triggers compensatory LPS synthesis via increased activity of LpxC, which ultimately destabilizes the OM and leads to vesiculation and loss of OM lipids (1, 3, 4). During growth, lost lipids can be replenished by ongoing synthesis and transport from the IM to the OM. Upon growth arrest, however, *de novo* lipid synthesis ceases while lipid loss from the OM continues unabated. The continual transport of lipids from the IM to the OM results in shrinkage of the IM and ultimately cell lysis (1). Lysis could be suppressed by adding MgCl₂ or CaCl₂ to LB, because cations stabilize the negatively charged LPS and prevent vesiculation and lipid loss (1, 2). Importantly, increased LpxC activity in *mIaA** is believed to be caused by reduced FtsH proteolysis (1, 3). Thus, deletion of *ftsH* in *P. aeruginosa* could compromise cell integrity by inducing LPS overproduction, phenocopying the results in *E. coli*.

Although FtsH does not regulate LpxC in *P. aeruginosa* during growth (5), it is possible that it regulates LpxC specifically upon entry into growth arrest. In support of this possibility, LpxC degradation has been shown to inversely correlate with growth rate in *E. coli*, highlighting the importance of tightly coordinating LPS synthesis with the cellular demand (6). Thus, we performed experiments to test the hypothesis that LPS overproduction in $\Delta ftsH$ results in cell death of *P. aeruginosa* during growth arrest.

Cation supplementation could suppress lysis of $\Delta ftsH$ in stationary phase in a dosedependent manner (Fig. S3A and B), although the cation concentration necessary for complete suppression was much greater than that required in *E. coli* (100 mM vs. 5 mM MgCl₂) (1). However, suppression of lysis did not suppress cell death (Fig. S3C and D). The high cation concentration simply preserved the "carcasses" of dead cells (Fig. S3E). Furthermore, during carbon starvation cation supplementation had a mildly positive, but transient, effect on viability

2

(Fig. S3F) and only partially reduced the abundance of "detached" and "ghost" cells (Fig. S3G). Treatment with the LpxC inhibitor CHIR-090 (7) during growth arrest or at sub-inhibitory concentrations during pre-growth of cultures had no effect on survival (Fig. S3H-J). Finally, we measured LPS levels directly and observed no difference between WT and $\Delta ftsH$ during exponential growth or stationary phase (Fig. S3K). Therefore, we conclude that LPS production is unaltered in growth-arrested *P. aeruginosa* in the absence of FtsH.

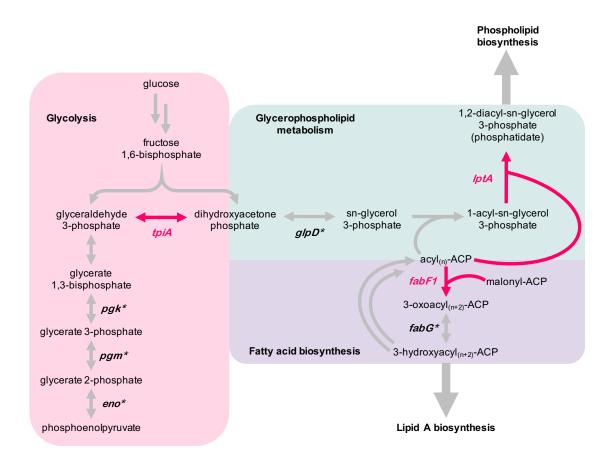

Fig. S1. Cell length diverges between WT and $\Delta ftsH$ during stationary phase. (A) Overnight cultures grown in LB were diluted to a starting OD₅₀₀ of 0.01 and incubated at 37°C. Samples were taken for microscopy at the indicated time points and the average cell length is plotted over time. Cells entered stationary phase at ~8 h. Time points were taken in conjunction with the viability measurements in Fig. S3C and all data are derived from a single experiment. Error bars show 95% confidence intervals. (B) Empirical cumulative frequency distributions of cell length at each time point in (A).

Fig. S2. FtsH is generally required for survival during growth arrest. Survival during carbon starvation (A), oxygen starvation (B), and nitrogen starvation (C). ~1-2% of $\Delta ftsH$ cells remain viable after extended carbon starvation, in contrast to complete viability loss in stationary phase. Cultures were supplemented with 40 mM pyruvate or 10 mM glucose as a carbon source during oxygen or nitrogen starvation, respectively. Error bars show standard deviation of biological replicates in (A) and (B) (n = 3), and representative data from two independent experiments are shown in (C).

Fig. S3. Cation supplementation and LpxC inhibition does not rescue viability of Δ*ftsH* **during growth arrest.** Addition of MgCl₂ (A) or CaCl₂ (B) to LB prevents cell lysis of Δ*ftsH* during stationary phase, as measured by optical density. However, 100 mM MgCl₂ does not rescue viability of Δ*ftsH* (C), although it prevents cell lysis (D) and (E). Viability was below the limit of detection (~3x10³ CFU ml⁻¹) for Δ*ftsH* at 49 h in (C), (D), and (E). (F) Addition of MgCl₂ mildly rescues viability of Δ*ftsH* during carbon starvation, but the effect is transient. Error bars show standard deviation of biological replicates (n = 3). (G) MgCl₂ partially rescues the morphological defects of Δ*ftsH* on day 1 of carbon starvation. A minimum of 300 cells were counted for each MgCl₂ concentration. (H) Addition of the LpxC inhibitor CHIR-090 to stationary phase cells of Δ*ftsH* does not prevent cell lysis. The concentration of inhibitor was 1x-16x the minimum inhibitory concentration (MIC) (1 µg ml⁻¹). (I) Addition of CHIR-090 after 0 h, 12 h, or 24 h of carbon starvation does not rescue viability of $\Delta ftsH$ on day 3 of carbon starvation. NA = nothing added. Error bar shows standard deviation of biological replicates (n = 3) in the NA condition. (J) Addition of a sub-MIC concentration of CHIR-090 to $\Delta ftsH$ cells during growth does not rescue viability on day 3 of carbon starvation. Error bar shows standard deviation of biological replicates (n = 3). (K) The amount of LPS is similar between WT and $\Delta ftsH$ during exponential phase and stationary phase. Cell lysates were separated by SDS/PAGE and stained with Pro-Q Emerald 300 LPS Gel Stain Kit and LPS was visualized by UV transillumination. The arrowhead indicates LPS-core.

Fig. S4. Genetic interactions with *ftsH* at the intersection of glycolysis, fatty acid biosynthesis, and phospholipid metabolism. Genes catalyzing the reactions in red were >10fold depleted in reads (P < 0.05) in the $\Delta ftsH$ background compared to the WT background. Genes denoted with an asterisk also had a statistically significant depletion in reads, but the depletion was <10-fold (Dataset S1).

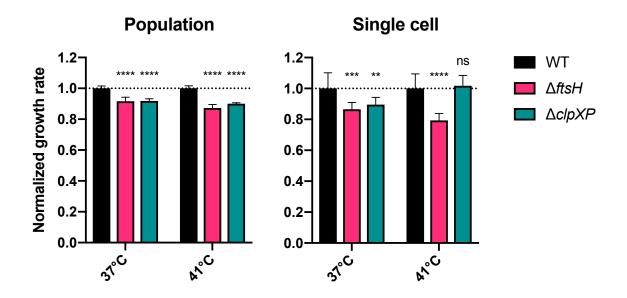


Fig. S5. Comparison of population and single cell growth rates at high temperature. All growth rates were normalized to the WT growth rate in LB at the indicated temperature. The population growth rate was measured using optical density and the single cell growth rate was measured using time-lapse microscopy (see Materials and Methods). High temperature experiments were performed at 41°C, as this was the maximum temperature that could be stably maintained in the time-lapse incubation chamber. Results of one-way ANOVA with Dunnett's multiple comparisons test are denoted as follows: ns = not significant; **, P < 0.005; ****, P < 0.0001. Error bars show standard deviation of biological replicates (n ≥ 6 for population and n ≥ 9 for single cell growth rates).

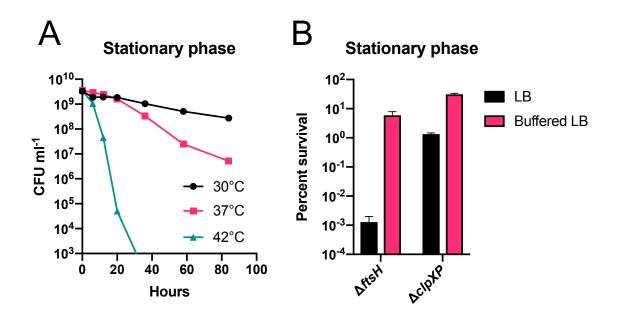
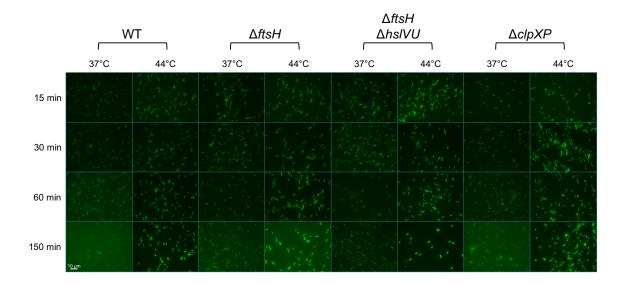
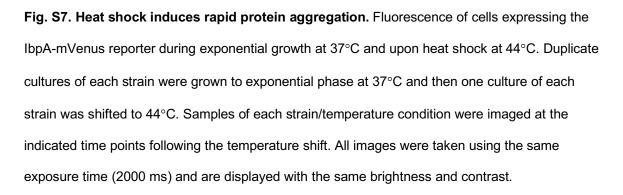




Fig. S6. Heat and alkaline pH exacerbate survival defects of protease mutants. (A) Survival of $\Delta clpXP$ during stationary phase is reduced at higher temperature. Cultures were grown to stationary phase in LB at 37°C and then incubated at the indicated temperature. Viability was below the limit of detection (~1.7x10² CFU ml⁻¹) at 42°C after 36 h. (B) Incubation in MOPS buffered LB at 37°C mitigates cell death of $\Delta ftsH$ and $\Delta clpXP$ during stationary phase. Percent survival is measured as the ratio of CFU ml⁻¹ after 40 h in stationary phase relative to 16 h in stationary phase. Error bars show standard deviation of biological replicates (n = 3).

Table S1. Strains used in this study.

P. aeruginosa strains	Description	Reference
DKN263; PA14 WT	UCBPP-PA14, wild type (WT)	
DKN1992; PA14 ∆ <i>ftsH</i>	WT with a deletion in <i>ftsH</i> (<i>PA14_62860);</i> made using pDB36	This study
	WT with a deletion in <i>hsIVU</i> (<i>PA14_66770; 66790</i>); made using	
DKN1993; PA14 ∆hslVU	pDB48	This study
DKN1994; PA14 ∆ <i>lon</i>	WT with a deletion in <i>lon (PA14_41220);</i> made using pDB54	This study
DKN1995; PA14 ∆ <i>clpXP</i>	WT with a deletion in <i>clpXP</i> (<i>PA14_41230; 41240</i>); made using pDB55	This study
	WT with a deletion in <i>amgRS</i> (<i>PA14 68680; 68700</i>); made using	
DKN1996; PA14 ∆ <i>amgRS</i>	pDB43	This study
DKN1997; PA14 <i>∆fabF1</i>	WT with a deletion in <i>fabF1</i> (<i>PA14_25690);</i> made using pDB49	This study
DKN1998; PA14 <i>∆tpiA</i>	WT with a deletion in <i>tpiA</i> (<i>PA14_62830);</i> made using pDB50	This study
DKN1999; PA14 <i>∆lptA</i>	WT with a deletion in <i>lptA</i> (<i>PA14_00060);</i> made using pDB51	This study
DKN2000; PA14 ∆ <i>htpX</i>	WT with a deletion in <i>htpX</i> (<i>PA14_27480</i>); made using pDB58	This study
· · · · ·	WT with a deletion in <i>Ion</i> and <i>clpXP</i> (<i>PA14_41220; 41230; 41240</i>);	
DKN2001; PA14 $\Delta lon \Delta clpXP$	made using pDB56	This study
DKN2002; PA14 ∆ftsH ∆hsIVU	$\Delta ftsH$ with a deletion in <i>hsIVU;</i> made using pDB48	This study
DKN2003; PA14 ∆ftsH ∆lon	<i>∆ftsH</i> with a deletion in <i>lon;</i> made using pDB54	This study
DKN2004; PA14 ∆ftsH ∆clpXP	<i>∆ftsH</i> with a deletion in <i>clpXP;</i> made using pDB55	This study
DKN2005; PA14 ∆hslVU ∆lon	Δ <i>hsIVU</i> with a deletion in <i>lon;</i> made using pDB54	This study
DKN2006; PA14 <i>\Delta hslVU \Delta clpXP</i>	Δ <i>hsIVU</i> with a deletion in <i>clpXP;</i> made using pDB55	This study
DKN2007; PA14 ∆ftsH ∆hsIVU ∆lon	$\Delta ftsH \Delta lon$ with a deletion in <i>hsIVU;</i> made using pDB48	This study
DKN2008; PA14 $\Delta ftsH \Delta hsIVU \Delta clpXP$	$\Delta ftsH \Delta clpXP$ with a deletion in <i>hsIVU</i> ; made using pDB48	This study
DKN2009; PA14 $\Delta ftsH \Delta lon \Delta clpXP$	<i>∆ftsH</i> with a deletion in <i>lon</i> and <i>clpXP;</i> made using pDB56	This study
DKN2010; PA14 Δ hslVU Δ lon Δ clpXP	$\Delta hs/VU$ with a deletion in <i>lon</i> and <i>clpXP;</i> made using pDB56	This study
DKN2011; PA14 ∆ftsH ∆hsIVU ∆lon ∆clpXP	$\Delta hsIVU \Delta lon \Delta clpXP$ with a deletion in <i>ftsH;</i> made using pDB36	This study
DKN2013; PA14 ∆ftsH ∆amgRS	$\Delta ftsH$ with a deletion in <i>amgRS;</i> made using pDB43	This study
DKN2014; PA14 ∆ftsH ∆fabF1	$\Delta ftsH$ with a deletion in fabF1; made using pDB49	This study
DKN2015; PA14 ∆ftsH ∆tpiA	$\Delta ftsH$ with a deletion in tpiA; made using pDB50	This study
DKN2016; PA14 ∆ <i>ftsH</i> ∆lptA	$\Delta ftsH$ with a deletion in lptA; made using pDB51	This study
DKN2017; PA14 ∆ftsH ∆htpX	$\Delta ftsH$ with a deletion in htpX; made using pDB58	This study
DKN2018; PA14 ∆ftsH/+ftsH	$\Delta ftsH$ complemented at the <i>att</i> Tn7 site on the chromosome; made using pDB37	This study
	PA14 expressing ibpA ORF fused to mVenus inserted at the attTn7	
DKN2019; PA14 WT::IbpA-mVenus	site on the chromosome; made using pLREX97	This study
DKN2020; PA14 ∆ <i>ftsH</i> ::IbpA-mVenus	Δ <i>ftsH</i> expressing ibpA ORF fused to mVenus inserted at the <i>att</i> Tn7 site on the chromosome; made using pLREX97	This study
	$\Delta ftsH \Delta hs/VU$ expressing ibpA ORF fused to mVenus inserted at the	This study
DKN2021; PA14 ∆ <i>ftsH</i> ∆ <i>hslVU</i> ::IbpA-mVenus	attTn7 site on the chromosome; made using pLREX97	This study
<i>E. coli</i> strains	Description	Reference
DKN89; DH10B	Host for routine cloning and plasmid stocks	(8)
DKN1298; SM10Ipir	Helper strain for integration at the <i>att</i> Tn7 site and for generation of the transposon library in <i>P. aeruginosa</i> (carries pTNS1 or pIT2)	(9)
DKN1299; HB101	Helper strain for integration at the <i>att</i> Tn7 site and for making unmarked deletions in <i>P. aeruginosa</i> (carries pRK2013)	(9)

Table S2. Plasmids used in this study.

Plasmid	Description	Reference
pMQ30	Conjugal vector for making unmarked deletions in <i>P. aeruginosa</i>	(10)
pUC18T-mini-Tn7T	Conjugal vector for inserting genes at the attTn7 site in P. aeruginosa	(9)
pTNS1	Helper plasmid for integration at the attTn7 site (carried by SM10)	(9)
pRK2013	Helper plasmid for integration at the <i>att</i> Tn7 site and for making unmarked deletions in <i>P. aeruginosa</i> (carried by HB101)	(9)
pIT2	Vector containing transposon T8 (<i>ISlacZhah</i> -tc) for generation of the transposon library in <i>P. aeruginosa</i> (carried by SM10)	(11)
pDB36	ftsH deletion vector; ~1kb upstream and ~1kb downstream of ftsH ORF cloned into pMQ30	This study
pDB48	hs/VU deletion vector; ~1kb upstream and ~1kb downstream of hs/VU ORF cloned into pMQ30	This study
pDB54	<i>lon</i> deletion vector; ~1kb upstream and ~1kb downstream of <i>lon</i> ORF cloned into pMQ30	This study
pDB55	<i>clpXP</i> deletion vector; ~1kb upstream and ~1kb downstream of <i>clpXP</i> ORF cloned into pMQ30	This study
pDB43	<i>amgRS</i> deletion vector; ~1kb upstream and ~1kb downstream of <i>amgRS</i> ORF cloned into pMQ30	This study
pDB49	fabF1 deletion vector; ~1kb upstream and ~1kb downstream of fabF1 ORF cloned into pMQ30	This study
pDB50	<i>tpiA</i> deletion vector; ~1kb upstream and ~1kb downstream of <i>tpiA</i> ORF cloned into pMQ30	This study
pDB51	<i>IptA</i> deletion vector; ~1kb upstream and ~1kb downstream of <i>IptA</i> ORF cloned into pMQ30	This study
pDB58	<i>htpX</i> deletion vector; ~1kb upstream and ~1kb downstream of <i>htpX</i> ORF cloned into pMQ30	This study
pDB56	<i>Ion</i> and <i>clpXP</i> deletion vector; ~1kb upstream and ~1kb downstream of <i>Ion/clpXP</i> locus cloned into pMQ30	This study
pDB37	ftsH complementation vector; ftsH promoter region and ORF cloned into pUC18T-mini-Tn7T	This study
pLREX97	<i>ibpA-mVenus</i> expression vector; <i>ibpA</i> promoter region and ORF fused to mVenus cloned into pUC18T-mini-Tn7T	This study

Table S3. Primers used in this study.

Primer	Sequence	Description
pDB36		
	taaaacgacggccagtgccaGTGGTGACCGATA	LC: overlap with pMQ30; UC: complementary to 5' end of
ftsH Upstream Fwd	GATTTGAACTG	ftsH upstream region
	cttccaggttGATGATCAGCCACAGAATCAGA	LC: overlap with <i>ftsH</i> downstream region; UC:
ftsH Upstream Rev	TTC	complementary to 3' end of <i>ftsH</i> upstream region
		LC: overlap with <i>ftsH</i> upstream region; UC: complementary
ftsH Downstream Fwd	gctgatcatcAACCTGGAAGAGTCGGGC	to 5' end of <i>ftsH</i> downstream region
	catgattacgaattcgagctACTCGCCAACACGA	LC: overlap with pMQ30; UC: complementary to 3' end of
ftsH Downstream Rev	CCAC	ftsH downstream region
pDB48		
·	taaaacgacggccagtgccaTGATCAACAACGT	LC: overlap with pMQ30; UC: complementary to 5' end of
hsIVU Upstream Fwd	CGCGC	hsIVU upstream region
·		LC: overlap with hs/VU downstream region; UC:
hsIVU Upstream Rev	cggttcgggaGGGGGAAATCTCCACACTG	complementary to 3' end of hs/VU upstream region
hsIVU Downstream		LC: overlap with <i>hsIVU</i> upstream region; UC:
Fwd	gatttcccccTCCCGAACCGGGGTATCC	complementary to 5' end of <i>hsIVU</i> downstream region
hsIVU Downstream	catgattacgaattcgagctAGGTCTGCATGTAG	LC: overlap with pMQ30; UC: complementary to 3' end of
Rev	CGCTTG	hsIVU downstream region
pDB54		
	taaaacgacggccagtgccaACGTGCCGTTCAC	LC: overlap with pMQ30; UC: complementary to 5' end of
lon Upstream Fwd	CATCG	<i>Ion</i> upstream region
•		LC: overlap with <i>lon</i> downstream region; UC:
lon Upstream Rev	tacctaccgaAATGTCGGCTCTACAGCGG	complementary to 3' end of <i>lon</i> upstream region
•	agccgacattTCGGTAGGTATTCTTGACACT	LC: overlap with <i>lon</i> upstream region; UC: complementary
lon Downstream Fwd	G	to 5' end of <i>lon</i> downstream region
	catgattacgaattcgagctTGCAGGATCAACTG	LC: overlap with pMQ30; UC: complementary to 3' end of
lon Downstream Rev	GTCC	Ion downstream region
pDB55		
1	taaaacgacggccagtgccaAGTTTCCGATGCT	LC: overlap with pMQ30; UC: complementary to 5' end of
clpXP Upstream Fwd	GATGTC	<i>clpXP</i> upstream region
		LC: overlap with <i>clpXP</i> downstream region; UC:
clpXP Upstream Rev	ccctgctcttGTCTTGCGATCACTCCCTAAC	complementary to 3' end of <i>clpXP</i> upstream region
<i>clpXP</i> Downstream		LC: overlap with <i>clpXP</i> upstream region; UC:
Fwd	atcgcaagacAAGAGCAGGGGCCTTCGG	complementary to 5' end of <i>clpXP</i> downstream region
<i>clpXP</i> Downstream	catgattacgaattcgagctAGCAGCCAGTCTAT	LC: overlap with pMQ30; UC: complementary to 3' end of
Rev	GTAGGAAC	<i>clpXP</i> downstream region
pDB43		
	taaaacgacggccagtgccaATCATGACTTCGC	LC: overlap with pMQ30; UC: complementary to 5' end of
amgRS Upstream Fwd	TTGGGTG	amgRS upstream region
	ccgtcgagtaAGAAACTCCCAGAATGAGTCA	LC: overlap with <i>amgRS</i> downstream region; UC:
amgRS Upstream Rev	GG	complementary to 3' end of <i>amgRS</i> upstream region
amgRS Downstream		LC: overlap with amgRS upstream region; UC:
Fwd	gggagtttctTACTCGACGGGTTTGTGCCG	complementary to 5' end of <i>amgRS</i> downstream region
amgRS Downstream	catgattacgaattcgagctTCGTCCCTCCTCCG	LC: overlap with pMQ30; UC: complementary to 3' end of
Rev	ACCAGAC	amgRS downstream region
pDB49		
טדטטק	taaaacgacggccagtgccaAACCGCTGATCGT	LC: overlap with pMQ30; UC: complementary to 5' end of
	GGTCAATAAC	<i>fabF1</i> upstream region

	gggtgccgttTACGACTTCCTCTTTCTCATTT	LC: overlap with fabF1 downstream region; UC:
fabF1 Upstream Rev	CAC	complementary to 3' end of <i>fabF1</i> upstream region
fabF1 Downstream		LC: overlap with <i>fabF1</i> upstream region; UC:
Fwd	ggaagtcgtaAACGGCACCCTGGTGTTC	complementary to 5' end of <i>fabF1</i> downstream region
fabF1 Downstream	catgattacgaattcgagctGAAACGTCCAGCAG	LC: overlap with pMQ30; UC: complementary to 3' end of
Rev	GCGC	fabF1 downstream region
pDB50		
	taaaacgacggccagtgccaTCGAGCTGATGAT	LC: overlap with pMQ30; UC: complementary to 5' end of
tpiA Upstream Fwd	CGAGGAACTG	tpiA upstream region
		LC: overlap with <i>tpiA</i> downstream region; UC:
tpiA Upstream Rev	gacagatcgcGCTGTACCTCGCGGGGCA	complementary to 3' end of <i>tpiA</i> upstream region
tpiA Downstream Fwd	gaggtacagcGCGATCTGTCGTGCCGCG	LC: overlap with <i>tpiA</i> upstream region; UC: complementary to 5' end of <i>tpiA</i> downstream region
	catgattacgaattcgagctACCTCCAGGGTGTA	LC: overlap with pMQ30; UC: complementary to 3' end of
tpiA Downstream Rev	CTCGCCG	<i>tpiA</i> downstream region
pDB51		
	taaaacgacggccagtgccaCTTTCGGTCCATT	LC: overlap with pMQ30; UC: complementary to 5' end of
IptA Upstream Fwd	CCTTG	<i>lptA</i> upstream region
	ttgcggccctGTATTCTGACCTTACTGAAGTA	LC: overlap with IptA downstream region; UC:
IptA Upstream Rev	ATG	complementary to 3' end of IptA upstream region
		LC: overlap with IptA upstream region; UC: complementary
IptA Downstream Fwd	gtcagaatacAGGGCCGCAAAGCCCCCT	to 5' end of <i>lptA</i> downstream region
	catgattacgaattcgagctACGTCAACGAGCAC	LC: overlap with pMQ30; UC: complementary to 3' end of
IptA Downstream Rev	GCTCCG	IptA downstream region
pDB58		
hts XII is store and Final	taaaacgacggccagtgccaAAGGTCTCGACAT	LC: overlap with pMQ30; UC: complementary to 5' end of
htpX Upstream Fwd	CCTCG tgaaagcggaGGTGTAAAGCTTCTCCTCAC	<i>htpX</i> upstream region LC: overlap with <i>htpX</i> downstream region; UC:
htpX Upstream Rev	G	complementary to 3' end of <i>htpX</i> upstream region
		LC: overlap with <i>htpX</i> upstream region; UC:
htpX Downstream Fwd	gctttacaccTCCGCTTTCACACTTGGG	complementary to 5' end of <i>htpX</i> downstream region
T	catgattacgaattcgagctCGGAAGCGTTGCTC	LC: overlap with pMQ30; UC: complementary to 3' end of
htpX Downstream Rev	GAĞC	htpX downstream region
pDB56		
Ion/clpXP Upstream	taaaacgacggccagtgccaAGTTTCCGATGCT	LC: overlap with pMQ30; UC: complementary to 5' end of
Fwd	GATGTC	Ion/clpXP upstream region
Ion/clpXP Upstream		LC: overlap with <i>lon/clpXP</i> downstream region; UC:
Rev	tacctaccgaGTCTTGCGATCACTCCCTAAC	complementary to 3' end of <i>lon/clpXP</i> upstream region
<i>lon/clpXP</i> Downstream		LC: overlap with <i>lon/clpXP</i> upstream region; UC:
Fwd Ion/clpXP Downstream	G catgattacgaattcgagctTGCAGGATCAACTG	complementary to 5' end of <i>lon/clpXP</i> downstream region LC: overlap with pMQ30; UC: complementary to 3' end of
Rev	GTCC	<i>lon/clpXP</i> downstream region
	0100	
pDB37	aattcgatcatgcatgagctATCCTCGAGATGGA	LC: overlap with pUC18T-mini-Tn7T; UC: complementary
<i>ftsH</i> Fwd	CAGCATCC	to 5' end of <i>ftsH</i> upstream region
	ttcgcgaggtaccgggcccaGCAAGGCAGTCGG	LC: overlap with pUC18T-mini-Tn7T; UC: complementary
ftsH Rev	GTCGG	to 3' end of <i>ftsH</i> downstream region
pLREX97		ž
	aggccttcgcgaggtaccgggcccaagcttTCAGTAG	LC: overlap with pUC18T-mini-Tn7T; UC: complementary
ibpA Upstream Fwd	CGAGTGAAGGTCAGGTAGTCGGC	to 5' end of <i>ibpA</i> upstream region
<u> </u>	cgatccctggccagacggtccctgcccggatccCTGGT	LC: overlap with 5' end of Linker+ <i>mVenus;</i> UC:
ibpA Rev	TGTCCAGTGCCGGGCGCTGGCC	complementary to 3' end of <i>ibpA</i>

Linker+ <i>mVenus</i> Fwd	ggccagcgcccggcactggacaaccagGGATCCG GGCAGGGACCGTCTGGCCAGGGATCG	LC: overlap with 3' end of <i>ibpA</i> ; UC: complementary to 5' end of Linker+ <i>mVenus</i>
mVenus Rev	gctaattcgatcatgcatgagctcactagTTACTTGTA CAGCTCGTCCATGCCGAGAGTG	LC: overlap with pUC18T-mini-Tn7T; UC: complementary to 3' end of <i>mVenus</i>

LC: Lowercase

UC: Uppercase Linker: GGATCCGGGGCAGGGACCGTCTGGCCAGGGATCGGGGGCCAGGATCAGGTCAAGGCTCCGGT

Table S4. Functional categories of genes that have an aggravating interaction with *ftsH* during growth. Insertions are >10-fold depleted (P <0.05) in the $\Delta ftsH$ library background compared to the WT library background.

Locus	Gene name	Description	Functional category	Read ratio	<i>P</i> value
DA44 00000			Amino acid transport and	0.00000057	0.040700744
PA14_03880	spuB	glutamine synthetase	metabolism	0.029829957	0.019768744
DA14 52620	or UE	succinylglutamate	Amino acid transport and metabolism	0.074124367	0.000667732
PA14_52630	aruE	desuccinylase imidazole glycerol		0.074124307	0.000007732
		phosphate synthase	Amino acid transport and		
PA14 67920	hisH	subunit HisH	metabolism	0.024450841	0.000734266
		triosephosphate	Carbohydrate transport and		0.000.0.200
PA14 62830	tpiA	isomerase	metabolism	0.004666208	0.006462704
			Cell envelope biogenesis, outer		
PA14_19170		hypothetical protein	membrane	0.064410998	0.00952381
			Cell envelope biogenesis, outer		
PA14_66120	ssg	hypothetical protein	membrane	0.007052033	4.24E-05
		glycosyl transferase family	Cell envelope biogenesis, outer		
PA14_66160	wapH	protein	membrane	0.031246536	5.29E-05
		ABC transporter ATP-			4 005 00
PA14_09300		binding protein	Defense mechanisms	0.063525034	4.03E-06
DA14 00220		ABC transporter ATP-	Defense mechanisme	0.027600511	
PA14_09320		binding protein catabolite repression	Defense mechanisms DNA replication, recombination, and	0.037609511	1.42E-06
PA14 70390	crc	control protein	repair	0.064077863	0.040662005
FA14_70390		pyruvate dehydrogenase		0.004077803	0.040002003
PA14_66290	aceE	subunit E1	Energy production and conversion	0.047988119	6.28E-06
17(14_00200	UUUL	dihydrolipoamide		0.047000110	0.202 00
PA14 66310	aceF	acetyltransferase	Energy production and conversion	0.049134279	0.038782988
PA14 04070		hypothetical protein	Function unknown	0.071908993	0.012460317
PA14 72930		hypothetical protein	Function unknown	0.041016874	0.039375977
PA14 14250		hypothetical protein	Function unknown	0.049761349	0.008730159
PA14_14230		hypothetical protein	Function unknown	0.006560515	0.028571429
PA14_58040		hypothetical protein	Function unknown	0.013467284	0.028857143
PA14_50710	shaD	ShaD	Inorganic ion transport and metabolism	0.005634115	2.51E-05
		phosphate uptake	Inorganic ion transport and		
PA14_70800	phoU	regulatory protein PhoU	metabolism	0.024783057	0.014679487
		preprotein translocase			
PA14_14610	yajC	subunit YajC	Intracellular trafficking and secretion	0.037379051	0.047714286
PA14_00060	<i>IptA</i>	acyltransferase	Lipid metabolism	0.026131147	0.006074592
PA14_25690	fabF1	3-oxoacyl-ACP synthase	Lipid metabolism	0.010658398	0.00019428
		phosphoribosylamine	Nucleotide transport and		
PA14_64220	purD	glycine ligase	metabolism	0.097334294	0.000789115
		orotate	Nucleotide transport and		
PA14_70370	pyrE	phosphoribosyltransferase	metabolism	0.086529909	0.024300699
			Posttranslational modification,		
PA14_27480	htpX	heat shock protein HtpX	protein turnover, chaperones	0.004960439	0.018971617
DA44 57500		stringent starvation	Posttranslational modification,	0.040500500	0.007000070
PA14_57530	sspA	protein A	protein turnover, chaperones	0.049522582	0.027922078
DA14 62060	smpB	SerA-binding protoin	Posttranslational modification,	0.086787305	0 042609412
PA14_63060	smpB	SsrA-binding protein	protein turnover, chaperones	0.000/0/305	0.042698413

		ATP-dependent protease	Posttranslational modification,		
PA14_66770	hslV	peptidase subunit	protein turnover, chaperones	0.056683992	0.007936508
		ATP-dependent protease	Posttranslational modification,		
PA14_66790	hslU	ATP-binding subunit HsIU	protein turnover, chaperones	0.070003096	0.000201401
			Secondary metabolites biosynthesis, transport, and		
PA14_06200		hypothetical protein	catabolism	0.05514422	0.028571429
		two-component sensor			
PA14_68680	envZ	EnvZ (AmgS)	Signal transduction mechanisms	0.011819731	2.27E-05
		osmolarity response			
PA14_68700	ompR	regulator (AmgR)	Signal transduction mechanisms	0.007752306	0.000582751
PA14_72390		two-component sensor	Signal transduction mechanisms	0.046897485	0.000209592
PA14_06680	nirH	hypothetical protein	Transcription	0.018169261	0.007936508
PA14_65950		transcriptional regulator	Transcription	0.026108949	0.03021645
		transcriptional regulator			
PA14_56070	mvaT	MvaT, P16 subunit	Transcription	0.071169721	0.028571429

Dataset S1 (separate file). Read ratios for each gene and intergenic region in the Tn-seq experiment. Ratios are derived from read counts in the $\Delta ftsH$ library background divided by the WT library background. IG = intergenic region.

Dataset S2 (separate file). Raw read counts for each gene and intergenic region in each Tn-seq library. The genome is divided into 100 bp windows and total reads within each window are aggregated. IG = intergenic region.

References

- 1. Sutterlin HA, et al. (2016) Disruption of lipid homeostasis in the Gram-negative cell envelope activates a novel cell death pathway. *Proc Natl Acad Sci USA* 113(11):E1565-74.
- 2. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. *Microbiol Mol Biol Rev* 67(4):593–656.
- 3. May KL, Silhavy TJ (2018) The Escherichia coli Phospholipase PldA Regulates Outer Membrane Homeostasis via Lipid Signaling. *MBio* 9(2).
- 4. Ogura T, et al. (1999) Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HfIB) in *Escherichia coli. Mol Microbiol* 31(3):833–844.
- Langklotz S, Schäkermann M, Narberhaus F (2011) Control of lipopolysaccharide biosynthesis by FtsH-mediated proteolysis of LpxC is conserved in enterobacteria but not in all Gram-negative bacteria. *J Bacteriol* 193(5):1090–1097.
- Schäkermann M, Langklotz S, Narberhaus F (2013) FtsH-mediated coordination of lipopolysaccharide biosynthesis in *Escherichia coli* correlates with the growth rate and the alarmone (p)ppGpp. *J Bacteriol* 195(9):1912–1919.
- McClerren AL, et al. (2005) A slow, tight-binding inhibitor of the zinc-dependent deacetylase LpxC of lipid A biosynthesis with antibiotic activity comparable to ciprofloxacin. *Biochemistry* 44(50):16574–16583.
- 8. Casadaban MJ, Cohen SN (1980) Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. *J Mol Biol* 138(2):179–207.
- 9. Choi K-H, Schweizer HP (2006) mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. *Nat Protoc* 1(1):153–161.
- 10. Shanks RMQ, Caiazza NC, Hinsa SM, Toutain CM, O'Toole GA (2006) *Saccharomyces cerevisiae*-based molecular tool kit for manipulation of genes from gram-negative bacteria. *Appl Environ Microbiol* 72(7):5027–5036.
- 11. Jacobs MA, et al. (2003) Comprehensive transposon mutant library of Pseudomonas aeruginosa. *Proc Natl Acad Sci USA* 100(24):14339–14344.