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S1. Rigorous Formulation and Proofs

We first treat the simplest case of one evolving trait with only two different phenotypes (Section S1.1). We then show how to
adapt the key ideas to obtain a general statement, valid for an arbitrary trait space x and environmental space y (Section
S1.2). In Section S1.3 we treat a more explicit example, given by the logistic model involving one trait with a continuous range
of phenotypes, and show that the ideas of the general case can be adapted to this more explicit setting.

S1.1. One evolving trait with two phenotypes. We first consider the simplest possible system where the combination of a slow
negative and a fast but weaker positive feedback cause continual evolution. We consider a single species with only two
phenotypes A and B (we refer to the population densities of the subpopulation with phenotype A and B with just A and B,
short for u(A) and u(B)), and we will introduce a negative feedback induced by a single environmental factor ϕ. We will write

R = A

A+B
.

Thus R takes on values in the interval [0, 1]. We assume that the total population will remain bounded, from above as well as
below, so that R→ 0 corresponds to the extinction of population A, and R→ 1 to the extinction of population B. In describing
the differential equations governing the dynamics of A, B and ϕ, we separate the ecological factors and the evolutionary factors.
The rate of change in A due to ecological factors naturally vanishes when A = 0, and similarly the rate of change of B due to
ecological factors vanishes when B = 0. Thus we can write the system of differential equations in the form

dA

dt
= A · fA(A,B,ϕ) + εm · g(A,B),

dB

dt
= B · fB(A,B,ϕ)− εm · g(A,B), and

dϕ

dt
= εe · h(A,B,ϕ),

where fA and fb represent ecological factors and g represents the rate of change due to mutations.
We will assume that the functions fA, fB , g, and h are all continuously differentiable, and the constants εm and εe will be

chosen arbitrarily small in order to represent that both mutations and the change in the environmental factor ϕ occur at a
slower time scale than the ecology of A and B. The function g is assumed to be strictly positive for A small, and strictly
negative for B small. Recall that the total population size is assumed to stay bounded from below, hence when A is small B is
not, and vice versa.

The following assumption guarantees a positive ecological feedback on the subpopulations A and B:

(PF) For all values of A,B, and ϕ we have(
∂

∂A
− ∂

∂B

)
fA > 0, and

(
∂

∂B
− ∂

∂A

)
fB > 0.

Thus, if an amount of B is replaced by an equal amount of A while ϕ remains constant, the fitness of the population A
increases while the fitness of the population B decreases. It is clear that in absence of mutations and in an environment with a
constant environmental factor ϕ the (PF) assumption would lead to extinction of either A or B for almost all initial values.

The next assumption, which we will refer to as the unique stable value assumption, will be used to draw conclusions about
the sign of dR

dt
without knowing the exact values of A and B. We do not claim that this assumption is necessary for our results,

but it turns out to be satisfied in many models and is certainly convenient:
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(USV1) For fixed values of B and ϕ, there is a unique value A0 ≥ 0 such that

fA(A,B,ϕ) > 0

for 0 ≤ A < A0, and
fA(A,B,ϕ) < 0

for A > A0.

(USV2) For fixed values of A and ϕ, there is a unique value B0 ≥ 0 such that

fB(A,B,ϕ) > 0

for B < B0, and
fB(A,B,ϕ) < 0

for B > B0.

For ϕ fixed we can therefore consider A0 as a graph ηA(B,ϕ), and similarly B0 = ηB(A,ϕ). The positive feedback condition
guarantees the following:

Lemma 1. The derivatives ∂ηA
∂B

and ∂ηB
∂A

are both strictly less than −1, and possibly −∞.

Proof. We prove the first statement, the second is analogous. Let A0, B, ϕ be a triple for which fA(A0, B, ϕ) = 0. The unique
stable value assumption implies that

∂fA
∂A

(A0, B, ϕ) ≤ 0,

and the positive feedback assumption gives
∂fA
∂B

<
∂fA
∂A

.

The function ηA is implicitly defined by fA(ηA(B,ϕ), B, ϕ) = 0. When ∂fA
∂A
6= 0 the Implicit Function Theorem gives

∂ηA
∂B

= −
∂fA
∂B
∂fA
∂A

which gives ∂ηA
∂B

< −1. When ∂fA
∂A

= 0 we have ∂fA
∂B

< 0 by assumption (PF), and hence ∂ηA
∂B

= −∞.

We now will impose three conditions that guarantee a negative feedback induced by the environmental factor ϕ. The first of
these conditions is clear: replacing B with A is beneficial for ϕ, while an increase in ϕ is beneficial for B. The second condition
guarantees that the negative feedback dominates the positive feedback for extreme values of ϕ.

(NF1)
∂

∂ϕ
(fA − fB) < 0 and

(
∂

∂A
− ∂

∂B

)
h > 0.

(NF2) There exists 0 < ϕ−− < ϕ++ < 1 such that
fB > fA

whenever ϕ > ϕ++, while
fA > fB

whenever ϕ < ϕ−−.

Hence, for ϕ sufficiently large and ϕ sufficiently small the level sets {fA = 0} and {fB = 0} do not intersect. We may write
ϕ++ and ϕ−− for the maximal resp. minimal value of ϕ for which the level sets intersect.

Observe that condition (NF2) would be vacuous if the values ϕ−− and ϕ++ could never be reached. In order to guarantee
that the negative feedback eventually dominates the positive feedback we therefore assume a final condition, which we will
refer to as a “transitivity” assumption:

(Tr) The function h is strictly positive when ϕ ≤ ϕ++, B = 0 and A = ηA(0, ϕ++). Similarly, the function h is strictly
negative when ϕ ≥ ϕ−−, A = 0 and B = ηB(0, ϕ−−).
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Let us consider, for a fixed value of ϕ, joint solutions of the two equations

A · fA = 0 and B · fB = 0.

It is clear that, besides the origin, there always is a unique solution on each of the axes. For A,B > 0 it follows from Lemma
1 that there either is no solution or a unique solution, depending on the value of ϕ. For ϕ = ϕ++ the intersection point of
{fA = 0} and {fB = 0} lies in the axis {A = 0}, while for ϕ = ϕ−− the intersection point lies in the axis {B = 0}. See Fig. S1
(left) for a simple depiction of the level sets {fA = 0} (in red) and {fB = 0} (in blue).

Let us consider the ecological dynamics in the (A,B)-plane caused by the differential equations

dA

dt
= A · fA,

dB

dt
= B · fB

for a fixed value of ϕ. When ϕ ≤ ϕ−− or ϕ ≥ ϕ++ there are three fixed points where

dA

dt
= dB

dt
= 0,

namely the origin and the two intersection points of the curves {fA = 0} and {fB = 0} with the respective axes {B = 0} and
{A = 0}. The origin is always repelling. One of the points on the axes is a saddle fixed point, with stable manifold equal to the
axis. The third fixed point is attracting, and all orbits of initial values not lying on the axes converge to this attracting fixed
point.

When ϕ−− < ϕ < ϕ++ there are four fixed points. Again the origin is a repelling fixed point. There are again two fixed
points on the axes, which are now both attracting. Finally, there is an intersection point of the curves {fA = 0} and {fB = 0},
and assumption (i) implies that this is a hyperbolic saddle fixed point. Its stable manifold is the separatrix of the two attracting
basins.

Let us now consider the effect of the mutations, represented by εm · g(A,B), on the dynamics in the (A,B)-plane in the
case ϕ−− < ϕ < ϕ++. The behavior near each of the fixed points is stable under small C1-perturbations, and the qualitative
behavior of the system is robust. Hence, by choosing εm sufficiently small, there will still be a repelling fixed point at the origin,
and a saddle point with separatrix near the intersection point of the curves {fA = 0} and {fB = 0}. The rest of the quadrant
is attracted to neighborhoods of the original attracting fixed points. These neighborhoods can be chosen arbitrarily small by
choosing εm sufficiently small. Note that the addition of mutations causes the axes to be repelling, hence the attracting fixed
point no longer lies on the axis but sufficiently nearby.

Finally let us consider the full three-dimensional dynamical system, taking into account that ϕ is not fixed. We assume
that for given t0 we have ϕ(t0) < ϕ++, and that (A(t0), B(t0)) lies in the small attracting region near the A-axis. For any
δ > 0 we can, by taking εe and εm sufficiently small, assume that A(t0) − ηA(0, ϕ++) > −δ and B < δ. It follows that
h(A(t0), B(t0), ϕ(t0)) is strictly positive. It follows that ϕ will continue to grow while ϕ < ϕ++ + δ and while (A(t), B(t))
remains trapped in the small attracting neighborhood near the A-axis.

Let us consider the first time t1 at which either ϕ ≥ ϕ++ + δ or at which (A,B) leaves the small attracting neighborhood.
In either case it follows that the orbit (A(t), B(t)) is guaranteed to approach the small attracting neighborhood near the B-axis.
If εe is sufficiently small the value of ϕ can only decrease arbitrarily little while this happens. The conclusion is that we end
up with a time t2 > t1 when ϕ(t1) > ϕ−− and (A(t2), B(t2)) lies in the attracting neighborhood near the B-axis. By the
symmetry of our assumptions the process will repeat itself. We have proved the following:

Theorem 2. Let 0 < a < b < 1, ϕ−− < c < d < ϕ++, and write K for the rectangle [a, b] × [c, d]. Then for εe and εm
sufficiently small there exists an orbit (A(t), B(t), ϕ(t) for which the coordinates (R(t), ϕ(t)) avoid K, and for which R(t)
fluctuates between values larger than b and smaller than a.

S1.2. General case: Projection to two dimensions. Before considering systems with more (possibly infinitely many) traits, let
us take look back at the strategy used in the previous section. We introduced a one-dimensional projection (A,B) 7→ R, which
happened to be the ratio between the subpopulation sizes A and B. It turned out that in order to conclude continual evolution
we needed to deduce the sign of ∂R/∂t in an appropriate region of (A,B,ϕ) space. We will try to mimic this approach in more
general settings.

In the rest of this section, we will not use any assumptions on the trait space (x) or the environmental space (y). We will
introduce a projection M(u), playing the role of the ratio R(u) used in the previous section, and a similar environmental
projection Φ(ϕ) and consider the dynamics in the (M,Φ)-plane. While ∂M/∂t and ∂Φ/∂t can generally not be obtained from
only the values of M and ϕ, the key observation is that knowing the signs of these derivatives in an appropriate region is
(almost) sufficient to deduce the strong fluctuations in M and Φ.

Let us state more precise hypotheses on the signs of ∂M/∂t and ∂Φ/∂t that are sufficient to guarantee continual evolution.
Here we focus first on stating hypotheses that are as simple as possible. Afterwards we will discuss examples leading to more
realistic but also more complicated assumptions that are still sufficient to obtain continual evolution.
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A

B

dA/dt = 0
dB/dt = 0

φ intermediate lower φ

higher φ

Fig. S1. Left: Dynamics in the (A,B)-plane for fixed ϕ−− < ϕ < ϕ++. Right: Changes in the phase plane when ϕ decreases below ϕ−− (top) or increases above ϕ++
(top).
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Suppose that we have found a function M(u), taking values in R, and that the environmental projection Φ also takes on
values in R. Without loss of generality we may also assume that both M and Φ take on values in the closed interval [0, 1]. We
assume that all rates of change, both ecologically and those due to mutations, vary continuously with u and Φ. We assume that
there exists values 0 < Φ− < Φ+ < 1 such that the rates of change due to ecology only satisfy the following feedback conditions:

PF1 When Φ < Φ+ we assume that ∂M
∂t

> 0 whenever M is unequal to, but sufficiently close to 1, and similarly:

PF2 When Φ > Φ− we assume that ∂M
∂t

< 0 whenever M is unequal to, but sufficiently close to 0.

NF1 When Φ ≥ Φ+ and M < 1 we assume that ∂M
∂t

< 0. When M = 1 and Φ ≤ Φ+ we assume that ∂Φ
∂t

> 0, and similarly:

NF2 When Φ ≤ Φ− and M > 0 we assume that ∂M
∂t

> 0. When M = 0 and Φ ≥ Φ− we assume that ∂Φ
∂t

< 0.

Note that (PF2) and (NF2) are the symmetric equivalents of the conditions (PF1) and (NF1). Although it is not necessarily
the case, we think of the extremal values M ∈ {0, 1} as extinction of all but one phenotype. Therefore we assume that (still
when considering only the effects due to ecology) ∂M/∂t = 0 when M ∈ {0, 1}.

Next, we introduce mutations. The simple fact that mutations are possible naturally leads to the assumption that ∂M/∂t < 0
when M = 1, and similarly that ∂M/∂t > 0 when M = 0.

Finally, we introduce time scale assumptions. We assume that the rates of change ∂Φ/∂t and the effect of mutations
on ∂M/∂t are both arbitrarily small. In particular given a compact region of the (M,Φ)-domain where the rate of change
∂M/∂t due to ecology is known to be non-zero, we may assume that the rate will still be non-zero (with the same sign) after
introducing the effects due to mutations.

Theorem 3. Suppose that the assumptions introduced above are satisfied. Then there exist initial values (u,Φ) for which M(t)
will fluctuate infinitely often between values arbitrarily close to both 0 and 1.

Proof. At several steps in the proof we may need to strengthen the separation of time scales. That is, we may need to decrease
the bounds on the rate of change ∂Φ/∂t and on the effect of mutations. Since we may need to do this only finitely many times
it does not lead to a contradiction.
Step 1. Start with an initial value (M,Φ) where M is close but not equal to 1 and Φ < Φ+.
Step 2. Assumption (PF1) guarantees that M stays close to 1, while assumption (NF1) plus continuity of derivatives guarantee
that Φ grows steadily, until the value of Φ gets sufficiently close to Φ+. By choosing the effect of mutations sufficiently small
we can guarantee that M remains close to 1 until Φ is as close to Φ+ as we want.
Step 3. When Φ gets sufficiently close to Φ+, Φ remains increasing, while assumption (NF1) plus the effects of mutations
guarantee that M moves away from the value 1 by some definite amount. That is, an amount that is independent from the
separation of time scales.
Step 4. Once M is strictly smaller than 1 by some definite amount while Φ is still at least arbitrarily close to Φ+, it follows
from the continuity assumption that the rate of change ∂M/∂t due to mutations is strictly negative. By our assumption on the
time scales, the effect of mutations does not change this. Thus M starts to decrease even further, and as long as Φ remains at
least arbitrarily close to Φ+, and by compactness considerations reaches a value that is as close to 0 as we want in some finite
time. Note that the length of this time interval depends on how close to 0 we want the value of M to reach. Once this choice is
fixed, it follows that if the rate of change of Φ is chosen sufficiently small, Φ can change only arbitrarily little in this time
interval, hence will not negate the decrease in M .
Step 5. We have ended up with a new initial condition where M is arbitrarily close to 0 and Φ is strictly larger than Φ−.
Observe that the assumptions (PF2) and (NF2) are equivalent to (PF1) and (NF1) under replacing M and Φ by respectively
1−M and 1− Φ. This symmetry guarantees that the process repeats itself.

To apply this proof of the general case to a specific system, there is a critical issue with the assumptions (NF1) and (NF2).
The assumption in (NF1) and (NF2) that the ecological part of ∂M/∂t is strictly negative when Φ > Φ+ is unrealistic: when u
consists of a single phenotype, one cannot expect changes in M due to ecology. Therefore, we have to rely on mutations to be
able to pass from M close to 1 to M close to 0. However, we want to maintain the assumption that mutations occur at a
slower time scale than changes in M due to ecology. An extra assumption is then needed to guarantee that, in Step 4 of the
proof, the value of Φ stays sufficiently close to Φ+ in the time interval when M decreases from a value near 1 all the way to a
chosen value sufficiently close to 0.

We will suggest two alternative assumptions. The first assumption, which is simplest, is to assume that the time scale
at which Φ changes is still arbitrarily slower than the time scale at which mutations take place, in which cases no changes
to the above proof are necessary. This may or not be a realistic assumption, depending on the environmental factor Φ that
the model considers. A second solution, which we will discuss in more detail below, is to assume that mutations from any
trait to any other trait are possible, with uniform bounds on the ratios of different mutation rates. While it may not be
immediately apparent, we will prove that this assumption is still sufficient to mimic step 4 of the proof of Theorem 3 for the
model considered in the next section, and therefore to obtain continual evolution.
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S1.3. One evolving trait with a continuous range of phenotypes. We will now present a more explicit setting in which we can
prove continual evolution for a continuous range of traits x ∈ R and a single environmental factor ϕ ∈ R, corresponding to a
single point y. The interested reader will have no difficulty translating the results in this section to a discrete space x. In fact,
all arguments literally hold true when the L1 norm is replaced by the `1 norm.

The argument closely follows the strategy presented previously: We will introduce a one-dimensional projection M(u), and
consider the dynamics in the (M,ϕ)-plane. While in the model it will not be possible to deduce the value of ∂M/∂t from only
the values of M and ϕ, the key observation is again that knowing the sign of ∂M/∂t in an appropriate region is (almost)
sufficient to deduce the strong fluctuations in M and ϕ.

Without loss of generality we consider a population density u depending on traits x ∈ [0, 1]. As before, we will stipulate a
fast positive feedback and a slow but dominating negative feedback caused by an environmental factor ϕ. We will assume that
ϕ is produced more by traits with larger x, and for fixed values of u = (u0, . . . , u1) converges towards the average index M
given by

M := ‖xu‖‖u‖ ,

where ‖ · ‖ represents the L1-norm on the interval [0, 1], e.g.

‖xu‖ =
∫ 1

0
xu(x) dx.

Looking first only at the ecological factors of the dynamical system, ignoring for the moment the effects due to mutations,
we assume that the densities of the individuals with trait x change according to the logistic model

∂u

∂t
(x) = u(x)

(
µx(u, ϕ)

(
1− ‖u‖

K

)
− d
)
,

where K > 0 is the carrying capacity, d > 0 the death rate and each growth rate µx is strictly positive, depends continuously
on x, u and ϕ, and we assume that for any given values of u and ϕ the dependence of µ on x is either constant or strictly
monotonic.

We further assume that the death rate is such that ‖ ∂u
∂t
‖ > 0 whenever ‖u‖ is sufficiently small, hence the total population

size stays bounded from below. It is clear that the total population size automatically stays bounded from above by K.

When µ is constant the relative population sizes do not change, and it follows that ∂M
∂t

= 0. The monotonicity of µ will be
used to determine the sign of ∂M

∂t
:

Lemma 4. When µ is strictly increasing (resp. decreasing) in x, the rate ∂M
∂t

is strictly positive (resp. negative).

Proof. Let us assume that µ is strictly increasing, the argument is identical when µ is decreasing. We note that

∂M

∂t
= ∂

∂t

(
‖xu‖
‖u‖

)
=
‖x ∂u

∂t
(x)‖ · ‖u‖ − ‖xu‖ · ‖ ∂u

∂t
(x)‖

‖u‖2 .

Since we are currently only interested in the sign of ∂M
∂t

, we can drop the denominator and hence need to prove that

‖x ∂u
∂t

(x)‖
‖xu(x)‖ >

‖ ∂u
∂t

(x)‖
‖u‖ .

Plugging in the formula for ∂u
∂t

(x), we note that the terms (1− ‖u‖
K

) and −d, which are both independent of x, drop out of the
quotients, and we are therefore left with showing that

‖xµ(x) · u(x)‖
‖xu(x)‖ >

‖µ(x) · u(x)‖
‖u‖ ,

which is equivalent to
‖xµ(x) · u(x)‖
‖µ(x) · u(x)‖ >

‖xu(x)‖
‖u‖ .

Since µ is assumed to be increasing in x this inequality holds.

We will assume that the rate of change of the environmental factor ϕ can be written as

dϕ

dt
= εe · h(u, ϕ),

where the constant εe will later be assumed to be sufficiently small and h is continuously differentiable. We make the following
negative feedback assumptions, corresponding to the conditions with the same name discussed in section S1.2 discussing the
general case:
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(NF1) The function h satisfies h > 0 when ϕ < M . Moreover, there exist 0 < ϕ+ < 1 such that for any non-zero u the rate µ is
decreasing in x for ϕ > ϕ+.

(NF2) The function h satisfies h < 0 when ϕ > M . Moreover, there exist 0 < ϕ− < 1 such that for any non-zero u the rate µ is
increasing in x for ϕ < ϕ−.

A simple example of a function h satisfying the first condition in each of these assumptions is h(u) = M(u)− ϕ. In general
it may not be possible to express the function h in terms of M and not in u. These two assumption implies that for each
value of M there is a unique value ϕ = ϕ(M) for which h = 0. The assumption that this unique value equals M is merely a
convenience, which by the implicit function theorem can be obtained by a change of coordinates whenever ∂h

∂ϕ
(u, ϕ) 6= 0 is

satisfied for all u and ϕ = ϕ(M). We also note that necessarily ϕ+ > ϕ−.
For convenience we combine the two positive feedback assumptions (PF1) and (PF2) into the following assumption.

(PF) For each ϕ there is a unique value Mϕ such that µ is strictly increasing at (u, ϕ) whenever M(u) > Mϕ, and strictly
decreasing whenever M(u) < Mϕ. We assume that the dependance of Mϕ on ϕ is non-decreasing.

As a consequence of these feedback assumptions it follows that when µ is non-decreasing, it must remain so when ϕ is
decreased or when M(u) is increased, and in the latter case must become strictly increasing. Similarly, when µ is non-increasing,
it must remain so when ϕ is increased or when M(u) is decreased, in the latter case it must become strictly decreasing.

By continuity of µ it follows from (PF) that µ is constant when M(u) = Mϕ. Note that we may redefine ϕ+ as the smallest
ϕ for which Mϕ = 1, and similarly ϕ− as the largest ϕ for which Mϕ = 0. Note also that we do not assume that µ is a function
of M .

Let us now add mutations to the model:

du

dt
(x) = u(x)

(
µ(x)

(
1− ‖u‖

K

)
− d
)

+ εm ·
∫ 1

0
gx̂,x(u) dx̂.

Here gx̂,x represent mutations from x̂ to x. We assume that g is continuously differentiable in x, x̂ and u, that gx,x̂ = −gx̂,x, and
that gx̂,x = 0 when u(x̂) = u(x) = 0. We moreover assume that gx̂,x = 0 is strictly increasing in x̂, and thus strictly decreasing
in x. In particular

∫ 1
0 gx̂,x(u) dx̂ is strictly positive when u(x) = 0 but u 6= 0, and mutations from any trait to any other trait

are possible. We will later discuss alternative assumptions, making it possible to restrict the mutations that can occur.

Lemma 5. Each u(x) remains bounded from below by Cεm, where C > 0 can be chosen independently of εm.

Proof. Since the rate of change in ‖u‖ due to mutations vanishes, our earlier assumptions on the death rate d guarantee that
‖u‖ remains bounded from above and below, i. e. ‖u‖ = O(1). It follows that as u(x)→ 0:

εm ·
∫ 1

0
gx̂,x(u) dx̂ ≥ O(εm).

Thus for u(x) small, the worst case scenario is that

∂u

∂t
(x) ≥ −c1 · u(x) + c2 · εm,

for some uniform constants c1, c2 > 0 that are independent of εm. It follows that

u(x) ≥ c2εm
c1

= Cεm.

Theorem 6. For εe and εm sufficiently small there exist orbits (u(t), ϕ(t)) for which M(t) alternates between values arbitrarily
close to both 0 and 1 infinitely often.

Proof. Step 1. Suppose that we start with initial values u(t0), ϕ(t0) for which M(t0) := M(u(t0)) > ϕ+, and for which µ is
increasing in x. By our assumptions such initial values exist. It follows that ϕ(t0) < ϕ+, hence ϕ(t0) < M(t0) and therefore ϕ
is increasing at time t0.
Step 2. By choosing εm sufficiently small we can guarantee that M(t) remains arbitrarily close to 1 until ϕ > ϕ+ − δ, where
δ > 0 can be chosen arbitrarily small. Note that ϕ remains increasing while ϕ ≤ ϕ+ − δ, hence at some time t1 > t0 we must
have M(t1) = Mϕ(t1). We may assume that t1 is the first time that this occurs, from which it follows that M(t1) must still be
arbitrarily close to 1, while ϕ(t1) must be arbitrarily close to ϕ+. In particular ϕ is still increasing at time t1, while M(t) is
decreasing due to mutations. As a consequence (PF) implies that µ becomes strictly decreasing, hence M(t) will continue to
decrease.
Step 3. Since ϕ remains increasing and M(t) remains decreasing, it follows that there is a smallest time t2 > t1 for which
M(t2) = ϕ(t2). We may assume that t2 is the first time at which equality occurs, from which it follows that ϕ has only
increased between t1 and t2, and hence ϕ(t2) > ϕ+ − δ.
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We claim that at time t2 we have that u(0), the population density at x = 0, is bounded from below by a constant that is
independent from the choice of εm. To see this, note that since ‖u‖ remains bounded, it follows that u(x) for x ∈ [0, 1− ξ]
must remain comparable to εm for t ∈ (t0, t1) for some ξ that can be chosen arbitrarily small. It follows that the corresponding
growth factors µ(x)

(
1− ‖u‖

K

)
− d must remain strictly negative, with a uniform bound from above. It follows that populations

u(x) for x ≤ 1− ξ remain comparable to εm, where Lemma 5 implies the estimate from below, and in particular the populations
ux(t1) for x ≤ 1− ξ are comparable to each other, with ratios independent of εm. Recall that for t ∈ (t1, t2) we noted that µ is
increasing in x, and hence the growth factor µi

(
1− ‖u‖

K

)
− d is largest for x = 0. It follows that in the interval [t1, t2] the

population u0 grows faster than any other population ui, with a strictly larger exponential coefficient. At time t2 the average
M(t) has decreased by an amount independent of εm. Since the total population remains bounded away from 0 by assumption,
it follows that the size of u0 must have increased by an amount independent of εm, thus obtaining the claim.
Step 4. By assuming that εm and εe are sufficiently small, it follows from (PF) and continuity of µ that µ will remain
decreasing and M(t) decreases below µ−, say at time t3, and that the time interval t3 − t2 is bounded and independent of εm
or εe. Since εe is assumed to be small, it follows that ϕ(t2) ∼ ϕ(t1).
Step 5. We have ended up with assumptions on M(t3) and ϕ(t3) that are symmetrical to those on M(t0) and ϕ(t0). The
symmetry of our assumptions implies that the process will repeat itself infinitely often, causing arbitrarily large fluctuations in
M(u).

If we drop the assumption that mutations from any strain to any other strain are possible, and replace it instead by the
much weaker assumption that given any two traits there is a possible sequence of mutations from one to the other, Lemma 5
fails, and the above proof breaks down. We cannot guarantee that at time t2 the trait u(0) has increased to a definite size,
independent of εm, and as a result we cannot give a bound on the time interval t3 − t2.

This issue can be solved by assuming that the constant εe is sufficiently small, where the bound on εe may have to depend
on the choice of εm. Note the difference with the above statement, which holds whenever both εm and εe are sufficiently small.
In practice the stronger assumption on εe, which can imply that εe is much smaller than εm, may or may not be desirable.

S2. Examples: Rate equations, diversity index and supplementary figures

S2.1. Shannon index. The Shannon diversity index (H) is used in ecological research to describe species richness. Here we used
the measure to describe phenotype richness within a species (we do not discuss whether bimodal phenotype distributions lead
to different species). We calculate this diversity with the following formula:

H = −
n∑
1

pi ln pi

Where n is the number of phenotypes and pi the proportion of phenotype i in the population.

S2.2. A single evolving trait with two phenotypes. We have two examples for the case of a species with a single evolving trait
with only two possible phenotype. In the first example we keep the total population constant and use R as the ratio between
the two subpopulations. We use the following equations:

dR

dt
= R

 0.011 + R
1+R

kA
(
1 + ϕ

kB

)(
1 +

0.011+ R
1+R

kA

) − 0.5

+ εM
1−R
1 +R

dϕ

dt
= εE

(
R

1 +R
− ϕ
)

R and ϕ are short for R(t) and ϕ(t) since they are time dependent. R is the ratio of the two phenotypes, A and B (R = A
B

),
where A is the phenotype interacting with the negative environmental factor ϕ. Fig. S2 shows the result of time simulations of
this example.

A second example, without the constant population size, is shown in Fig. 5 in the main text and the equations for the time
derivatives of the subpopulations with phenotypes A and B and the environmental factor ϕ for that figure are:

dA

dt
= A

(
(0.011 +A)

(
1− A+B

K

)
kA
(
1 + ϕ

kB

) (
1 + 0.011+A

kA

) − d)+ εM (B −A)

dB

dt
= B

(
0.5
(

1− A+B

K

)
− d
)

+ εM (A−B)

dϕ

dt
= εE (A− ϕ)

A, B and ϕ are all time dependent and therefore short for A(t), B(t) and ϕ(t). kA and kB are parameters describing the
growth of A, d is a death rate and K the carrying capacity. The parameters used for Fig. 5 are kA = 0.01, kB = 0.5, d = 0.3
and K = 10. For the continual evolution we used εE = 0.0005 and εM = 0.00005, for the fast evolution we used εE = 0.1 and
εM = 0.01 and for no evolution we used εE = 0.01 and εM = 0.
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Fig. S2. Example with a single evolving trait with two phenotypes with a fixed population size Behaviour of a system with two phenotypes with a fixed population size.
A phase plane diagram (left) of population density with phenotype A and the environmental factor ϕ shows the possible system behaviour depending on the relative timescales
of population dynamics, the environment and mutations. The density of the subpopulation with phenotype B is 1 minus the subpopulation size with phenotype A. Slow
environmental feedback and mutations leads to continual cyclic evolutionary dynamics, almost independent of initial conditions (right top). With fast environmental feedback and
mutations an equilibrium is reached (right middle). No evolution (right bottom) leads to the extinction of one of the subpopulation (in this case the one with phenotype B). We
used kA = 0.01 and kB = 0.5 throughout the figure. For the continual evolution we used εE = 0.008 and εM = 0.0005, for the fast evolution we used εE = 0.1 and
εM = 0.01 and for no evolution we used εE = 0.01 and εM = 0
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S2.3. One evolving trait with a range of phenotypes. The equations used for Fig. 3 in the main text are:

dui
dt

= ui

([1
2 + i

(1
3(M − 1

2))− 2
3(ϕ− 1

2)
)](

1− U

K

)
− d
)

+ εM
∑
j∈I

1
n

(uj − ui)e−10|i−j|

dϕ

dt
= εE (M − ϕ)

The collection of phenotypes I consists of n phenotypes with trait value i and subpopulation density ui. The total population

size is U =
∑

i
ui. The average value of the trait in the population is M =

∑
i∈I

i·ui

U
. ϕ is the level of the environmental factor,

K the carrying capacity and d the death rate.
The rate with which mutations change the phenotype decreases exponentially with the difference between the phenotypes.

This is to simulate that mutations with small effect are more prevalent than mutations with large effects.
We did a time simulation with different values of the rate of evolution (εM ) and the delay in the change of the environmental

factor (εE). For Fig. 3 in the main text we used the following parameters: K = 1 and d = 0.01 throughout and for the continual
dynamics εE = 10−4 and εM = 10−6, for the fast evolution εE = 0.1 and εM = 0.01 and when there is no evolution εE = 10−4

and εM = 0. We assumed a subpopulation to go extinct if the subpopulation size was under 0.005.

S2.4. Two evolving traits. We simulated a system with two traits associated with two environmental factors for Fig. 6 in the
main text. The time derivatives of the subpopulations ui, where i = {i1, iA} is a vector of the two subpopulations, are:

dui
dt

= ui

(1
2 + 1

2

[
i1

(1
3(M1 −

1
2)− 2

3(ϕ1 −
1
2)
)

+ iA

(1
3(MA −

1
2)− 2

3(ϕA −
1
2)
)](

1− U

K

)
− d
)

+ εM

 ∑
j∈I|j1=i1

(uj − ui)e−10|iA−jA| +
∑

j∈I|jA=iA

(uj − ui)e−10|i1−j1|


dϕ1

dt
= εE (M1 − ϕ1)

dϕA
dt

= 1
4 εE (MA − ϕA)

The collection of phenotypes I consists of n phenotypes with trait value {i1, iA} and subpopulation density ui. The total

population size is U =
∑

i
ui. The average value of the first trait in the population is M1 =

∑
i∈I

i1·ui

U
and of the second trait

MA =
∑

i∈I
iA·ui

U
. ϕ1 is the level of the environmental factor for the first trait, ϕA the level of the environmental factor for the

second trait, K the carrying capacity and d the death rate.
Since mutations are rare we ignore mutations in both traits at the same time and the rate of mutations in one trait from

one phenotype to the other decreases exponentially with increasing difference between the phenotype.
We used the parameters d = 0.01, K = 1, εE = 0.0001 and εM = 0.0005 for Fig. 6 in the main text.

S2.5. Literature models. We used the competitor-competitor model from Khibnik and Kondrashov(1) where they show RQ
dynamics (Fig. 2 in Khibnik and Kondrashov (1)). We changed the model to allow for a polymorphic population, which leads
to the following equations:

dxi
dt

= xi

(
r1,i − r2

∑
i

xi −
∑
j

r3,i,jyj

)
+ εM

∑
k∈I

1
n

(xk − xi)e−10|i−k|

dyj
dt

= yjεE

(
r4,j − r5

∑
j

yj −
∑
i

r6,i,jxi

)
+ εM

∑
k∈J

1
n

(yk − yj)e−10|j−k|

The parameters are given in Khibnik and Kondrashov(1) Eqs 6 and Fig. 2. εE is set to 1 in Fig. S3B and to 0.1 in Fig. S3C.
The trait values (i and j) range from 0.5 to 1.5 and we simulated 100 different phenotypes per species within this range.

References

1. Khibnik AI, Kondrashov AS (1997) Three mechanisms of red queen dynamics. Proceedings of the Royal Society of London
B: Biological Sciences 264(1384):1049–1056.

2. Maynard Smith J, Brown RL (1986) Competition and body size. Theoretical Population Biology 30(2):166–179.
3. Kisdi E (1999) Evolutionary branching under asymmetric competition. Journal of Theoretical Biology 197:149–162.
4. Abrams PA (2006) Evolution of resource-exploitation traits in a generalist consumer; the evolution and coexistence of

generalists and specialist. Evolution 60:427–439.

Meike T. Wortel, Han Peters, Juan A. Bonachela, Nils Chr. Stenseth 11 of 12



α1
α2

0 200 400 600 800 10000

0.5

1

1.5

Time

Tr
ai
t
va
lu
e

0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

Trait value

Eq
ui
lib

riu
m

de
ns
ity

0 200 400 600 800 1000
0

0.5

1

1.5

Time
A
ve
ra
ge

tr
ai
t
va
lu
e

A B C

Fig. S3. RQ dynamics disappears when adding polymorphism to a population. We have adapted a competitor-competitor model from (1) with originally an adaptive
dynamics approach that previously showed Red Queen Dynamics to an instance with our assumptions (the possibility of a polymorphic trait distribution and larger mutations). A
The competitor-competitor model of Khibnik and Kondrashov (1) shows the evolvable trait (α) of the two competitors following each other in a RQ manner (figure replicated
from Fig. 2 in Khibnik and Kondrashov (1)). B When we allow for a polymorphic population the system tends to a bimodal distribution for the trait α2, and the RQ dynamics
disappear. (such evolutionary outcomes are also shown in e. g. (2–4)) C Using the results from this paper that a slow negative feedback allows for RQ dynamics, we change the
timescales and make the feedback (competitor species in this example) 10 times slower. The RQ dynamics are retrieved.
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