1	DNTAC
2	rinas
3	www.pnas.org
4	
5	Supporting Information for:
6	An unexpected catalyst dominates formation and radiative forcing of regional haze
7	Fang Zhang ^{a,b} , Yuan Wang ^c , Jianfei Peng ^b , Lu Chen ^a , Yele Sun ^d , Lian Duan ^{b,e} , Xinlei Ge ^f , Yixin
8 9	Li ^g , Jiayun Zhao ^g , Chao Liu ^h , Xiaochun Zhang ⁱ , Gen Zhang ⁱ , Yuepeng Pan ^d , Yuesi Wang ^d , Annie L. Zhang ^j , Yuemeng Ji ^k , Gehui Wang ^l , Min Hu ^m , Mario J. Molina ^{n,1} , Renyi Zhang ^{b,g,1}
10	¹ Corresponding authors. Email: <u>renyi-zhang@tamu.edu (R.Z.); mjmolina@ucsd.edu (M.J.M.)</u>
11	This PDF file includes:
12	Tables S1 and S2 (Tables S1 and S2 are referenced in the main manuscript)
13	Figs. S1 to S7 (Figs. S1 through S7 are referenced in the main manuscript)
14	
15	
16	
17	
18	
19 20	
20	

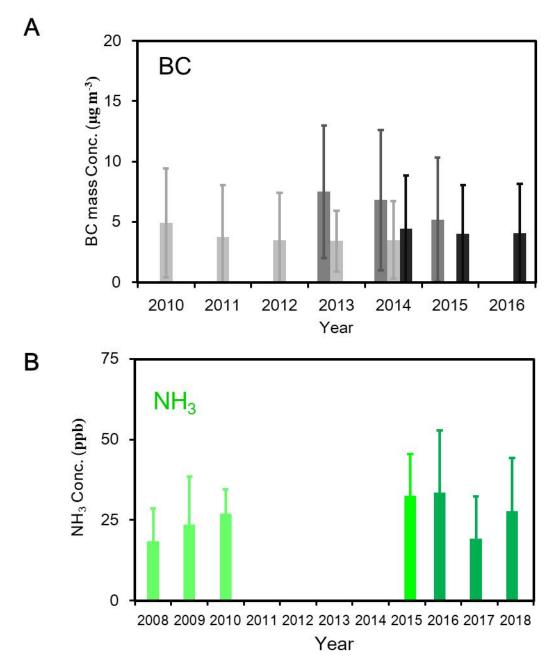


Fig. S1. Long-term trends of BC and NH₃ in Beijing. (A and B) Measurements of BC (A) and NH₃ (B). In (A), the BC mass concentrations marked by light-grey, grey, and black columns are taken from Liu et al. (39), Emilenko et al. (40), and measurements at PKU (16), respectively. In (B), the NH₃ concentrations marked by light-green, green, and dark-green columns are taken from Meng et al. (41), measurements at CMA, and Wang et al. (13), respectively.

27

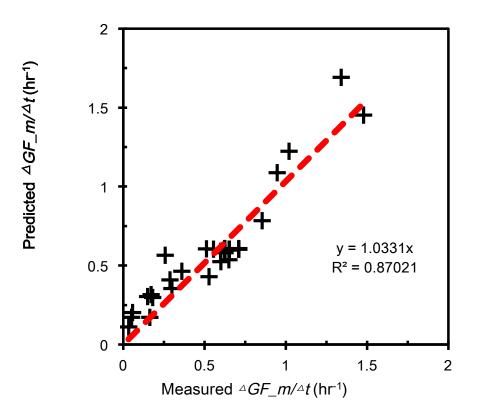
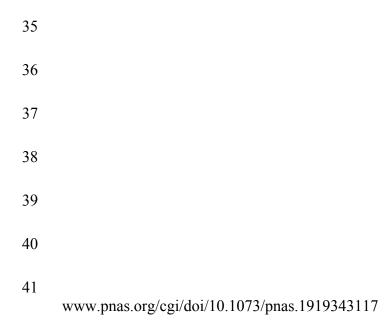
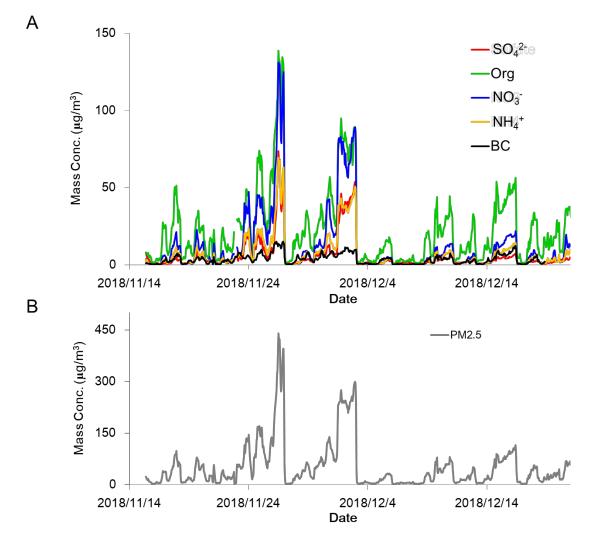
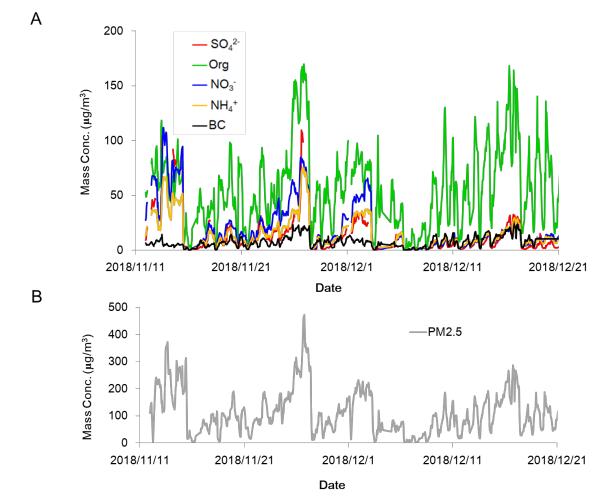
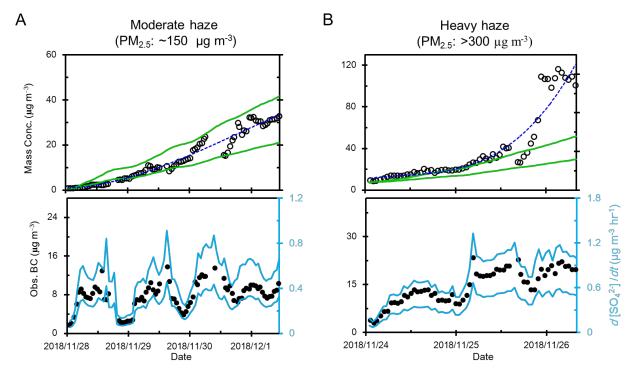




Fig. S2. Parameterization of the BC-catalyzed sulfate production rate. Comparison between the calculated and measured growth rates from the experimental results shown in Fig. 2, with a correlation coefficient of 0.87. The calculated value is based on the parameterization from laboratory experiments (see Methods).



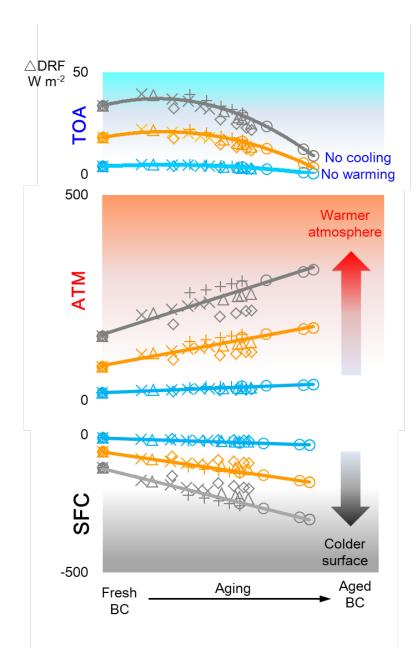
43 **Fig. S3.** $PM_{2.5}$ and chemical composition during 2018 winter Beijing. (A) Measurements of 44 various the chemical compositions in $PM_{2.5}$ by AMS from November 15 to December 25, 2018. 45 (B) $PM_{2.5}$ during the same period. The average $PM_{2.5}$ mass concentration is 53 µg m⁻³, and the 46 $PM_{2.5}$ ranges from less than 10 to 440 µg m⁻³ during this period. There were two heavy haze 47 episodes on November 27-30 and December 1-3, with the maximum $PM_{2.5}$ mass concentration of 48 150 and 300 µg m⁻³, respectively.

- 50
- 51
- 52



53

Fig. S4. $PM_{2.5}$ and chemical composition in 2018 winter Gucheng. (A) Measurements of the various chemical compositions in $PM_{2.5}$ by AMS from November 11 to December 21, 2018. (B) $PM_{2.5}$ during the same period. The average $PM_{2.5}$ mass concentration is 112 µg m⁻³, and the $PM_{2.5}$ ranges from less than 10 to 490 µg m⁻³ during the period. There were two heavy haze episodes on November 24-26 and November 28 - December 1, with the maximum $PM_{2.5}$ mass concentration of 224 and 473 µg m⁻³, respectively.



- 61
- 62
- 63
- 64

66 Fig. S5. Quantifying BC-catalyzed sulfate formation in Gucheng. (A and B) Calculated (green 67 lines) and measured (circles and dashed line) sulfate mass concentrations during a moderate day 68 and a heavy haze day, respectively. (C and D) BC mass concentration (left axis) and sulfate formation rate $(d[SO_4^{2-}]/dt, right axis)$ during a moderate day and a heavy haze day, respectively. 69 The range of the BC estimation (green and blue lines) are derived by assuming that 40% and 20% 70 71 of the measured BC mass concentration are freshly emitted (34). Since there were no measurements of gaseous NH₃ during the observation period in Gucheng, we assumed a NH₃ 72 73 concentration of 20 and 30 ppb during moderate and heavy haze periods, respectively, based on 74 previous data in China (4,13).

Fig. S6. Δ **DRF dependence on BC aging at TOA, ATM and SFC** on clean/light haze (blue lines), moderate haze (orange lines), and heavy haze (grey lines) days. The ambient average BC concentrations are assumed to be 2, 5, and 10 µg m⁻³, on clean/light haze, moderate haze, and heavy haze days, respectively. A core–shell Mie model is adopted (35). The calculation is made at 532 nm with a unit of W m⁻² µm⁻¹. The initial fresh BC diameter is 150 nm.

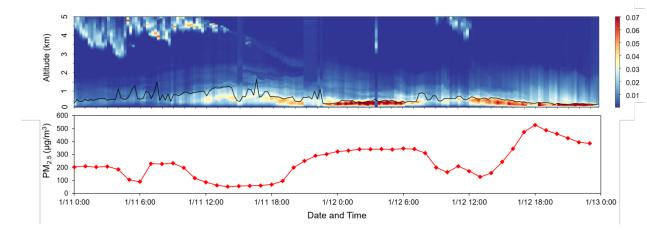


Fig. S7. PBL and PM_{2.5} in Beijing. (A) The PBL height (solid line) derived from Lidar
measurements during a haze event (January 11-12, 2019). (B) Mass concentration of PM_{2.5} during
the same period.

Variables	Conc. (ppb)	Gfm (within 2 hrs)	d(Gfm-1)/dt (hr ⁻¹)
	7.5	2.18	0.62
	37.5	2.07	0.60
	90*	1.40	0.20
	90*	1.80	0.40
$\mathrm{SO_2}^{\mathrm{a}}$	180*	1.40	0.20
	300	2.09	0.55
	375	2.23	0.65
	750	2.38	0.71
	750	2.26	0.62
	37.5	0.95	0.02
	37.5	1.26	0.16
	180*	1.40	0.20
NO_2^{b}	375	2.23	0.65
	375	2.38	0.71
	375	2.26	0.62
	750	2.93	0.95
	100	1.59	0.30
	180*	1.40	0.20
$\mathrm{NH_3}^{\mathrm{c}}$	300	1.40	0.20
	500	2.23	0.65
	1000	2.64	0.85
	12%	1.00	0.00
	21%	1.19	0.10
	30%	1.36	0.18
	41%	1.59	0.29
Relative	43%	2.02	0.51
humidity	56%	2.34	0.67
$(RH)^d$	68%	2.23	0.62
	70%	2.26	0.63
	70%	2.38	0.69
	81%	2.20	0.60
	95%	2.26	0.63

92 **Table S1.** Measured Gfm (within 2 hrs) and derived d(Gfm-1)/dt (in hr⁻¹) at variable

93 concentrations of SO₂, NO₂, and NH₃ as well as RH.

 a With NO₂, NH₃ and RH of 375 ppb, 500 ppb, and 70% for each experiment ;

⁹⁵ ^bWith SO₂, NH₃ and RH of 375 ppb, 500 ppb and 70% for each experiment;

96 ^cWith SO₂, NO₂, and RH of 375 ppb, 375 ppb and 70% for each experiment;

97 *The data were not included in deriving the parameterization, but were used for validating the

98 performance of the fitted parameterization. The experiments were performed in the SO₂, NO₂,

99 NH₃ concentrations of 180-500 ppb and RH of 70%-90%.

100

www.pnas.org/cgi/doi/10.1073/pnas.1919343117

	Chemical components in PM _{2.5} and PM _{2.5} (µg m ⁻³)								Meteorological parameters			Trace gases (ppb)				
										Wind						
	SO4 ²⁻	Org	NO ₃	$\mathrm{NH_4}^+$	Cl	BC	PM _{2.5}	T (° C)	RH (%)	$(m s^{-1})$	O_3	СО	SO_2	NO_2	NH ₃	
Beijing																
Moderate																
haze	4.7±3.3	24.9±12.0	11.8±11.2	7.1±5.2	1.1±0.8	4.8±2.0	54.5±32.5	4.4±2.2	34.9±11.5	2.1±0.7	3.4±3.3	1.1±0.3	5.9±3.5	43.9±11.3	19.6±5.5	
Heavy																
haze	32.6±15.2	68.3±20.8	61.9±23.6	33.4±12.6	3.6±1.9	8.2±1.7	208.1±72.8	5.2±1.5	72.4±16.1	1.9±0.8	5.0±7.0	1.7±0.6	3.7±2.0	60.4±10.1	36.1±8.7	
Gucheng																
Moderate																
haze	14.1±10.8	61.3±22.3	24.2±16.6	17.7±10.9	5.1±1.9	7.8±2.8	128.7±60.3	2.1±3.6	77.5±18.8	0.3±0.5	4.2±4.8	1.6±0.5	8.0±1.7	34.9±7.6	NA	
Heavy							264.0±119.									
haze	40.2±34.8	108.2±43.4	52.2±18.6	37.1±19.5	11.6±5.9	14.5±5.3	9	2.4±4.3	81.3±20.1	0.6±0.8	5.2±6.6	2.2±0.7	10.3±5.8	49.7±12.6	NA	

Table S2. Gaseous and PM pollutants and meteorological parameters in Beijing and Gucheng.