Supporting Information for

Short Communication

A systematic strategy for screening therapeutic constituents of *Schisandra chinensis* (Turcz.) Baill infiltrated blood-brain barrier oriented in lesions using ethanol and water extracts: a novel perspective for exploring chemical material basis of herb medicines Viwen Zhang^a, Xinyan Lv^b, Jiameng Qu^b, Xin Zhang^a, Mingyang Zhang^a, Hao Gao^a, Qian Zhang^a,

Ran Liu^a, Huarong Xu^a, Qing Li^a, Kaishun Bi^{a,*}

^aSchool of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China ^bSchool of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016,

China

Received 20 May 2019; received in revised form 3 September 2019; accepted 14 October 2019

*Corresponding author. Tel.: +86 24 23986012; fax: +86 24 23986259.

E-mail address: kaishunbi.syphu@gmail.com (Kaishun Bi).

Table of contents

Table S1 Chronic unpredictable stress procedure
Table S2 Optimized multiple-reaction-monitoring (MRM) parameters for all samples.
Table S3 The calibration parameters of analytes. 4
Table S4 Summary of precision of analytes in rat brain $(n = 6)$
Table S5 Summary of accuracy of analytes in rat brain $(n = 6)$.4
Table S6 Summary of matrix effect of analytes in rat brain $(n = 6)$.4
Table S7 Stability of analytes in brain at different conditions $(n = 3)$
Table S8 Precision, repeatability and stability in the method validation of contents <i>in vitro</i> 5
Table S9 Precision, repeatability and stability in the method validation of contents in vivo 5
Figure S1 The experimental design of our study
Figure S2 Typical LC–MS MRM chromatograms of (A) reference standard solution of analytes and IS. (B) 5-HT, DA and NE in rat brain sample
Figure S3 Structures of the components of <i>S. chinensis</i>
Figure S4 Results of 9 reference standards:7, schisandrol A; 9, gomisin D; 11, gomisin J; 12, gomisin O; 13, epigomisin O; 16, schisandrol B; 30, schisandrin A; 31, gomisin N; 32, schisandrin B (the numbers represent the peak No. in Table 2)
Figure S5 Proposed metabolic pathways of transform process between schisandrol A, schisandrol B, schisandrirn A, schisandrin B
Figure S6 The active ingredients of <i>S. chinensis</i> protect against oxidative stress and inflammation in CNS diseases

Day	Stressor		
	Morning	Afternoon	Night
1	Cage tilting (45°, 6 h)	Sawdust-free cage (12 h)	Overnight illumination
2	Electric shock (0.8 mA, 5 s	_	Water deprivation
	duration, 60 s inter-shock interval)		(overnight)
3	Soiled cage	_	Food deprivation
	(200 mL water sprinkled on		(overnight)
	sawdust bedding for 12 h)		
4	Restraint stress	Horizontal shaking cage	White noise (30 min)
		(30min)	
5	Cold swimming (10 °C)	_	Sawdust-free cage (12 h)
6	Sawdust-free cage (12 h)	Electric shock (0.8 mA, 5 s	_
		duration, 60 s inter-shock	
		interval)	
7	Horizontal shaking cage (30 min)	Cage tilting (45°, 6 h)	_
8	White noise (30 min)	Electric shock (0.8 mA, 5 s	_
		duration, 60 s inter-shock	
		interval)	
9	Soiled cage (200 mL water	Horizontal shaking cage (30	Overnight illumination
	sprinkled on sawdust bedding for	min)	
	12 h)		
10	Water deprivation (12 h)	_	Eage tilting (45°, 6 h)
11	Restraint stress	Cold swimming (10 °C)	_
12	Electric shock (0.8 mA, 5 s	Horizontal shaking cage (30	Food deprivation
	duration, 60 s inter-shock interval)	min)	(overnight)
13	Sawdust-free cage (12 h)	White noise (30 min)	_
14	Horizontal shaking cage (30 min)	Restraint stress	Soiled cage (200 mL water
			sprinkled on sawdust
			bedding for 12 h)

 Table S1 Chronic unpredictable stress procedure.

-Not applicable.

Analyte	Mode (±)	Q1(amu)	Q3 (amu)	DP(V)	CE (eV)	$t_{\rm R}$ (min)
NE	+	170.1	152.0	38	21	2.01
5-HT	+	177.2	160.2	43	12	2.23
DA	+	154.1	137.1	42	14	2.58
Isoprenaline (IS)	+	212.0	194.0	46	12	2.82

Table S2 Optimized multiple-reaction-monitoring (MRM) parameters for all samples.

 Table S3 The calibration parameters of analytes.

Analyte	Liner range (µg/mL)	Slope	Intercept	Regression coefficient (R)
DA	1.00-200	$7.340 imes 10^{-2}$	$2.375 imes 10^{-2}$	0.9962
NE	5.00-1000	1.795×10^{-2}	4.833×10^{-1}	0.9953
5-HT	5.00-1000	$6.060 imes 10^{-2}$	6.775×10^{-2}	0.9977

Table S4 Summary of precision of analytes in rat brain (n = 6).

Analyte	Intra-day	(RSD, 9	%)		Inter-day (RSD, %)			
	LLOQ	Low	Medium	High	LLOQ	Low	Medium	High
DA	6.0	3.4	4.6	7.6	13.8	4.4	10.5	8.7
NE	12.6	5.4	9.8	6.5	10.3	5.6	7.5	1.9
5-HT	15.8	8.7	4.3	5.0	12.5	4.9	6.4	8.5

Table S5 Summary of accuracy of analytes in rat brain (n = 6).

Analyte	Intra-day		Inter-day (RE, %)					
7 mary to	LLOQ	Low	Medium	High	LLOQ	Low	Medium	High
DA	8.0	12.3	-8.9	7.3	14.3	14.5	4.5	-6.2
NE	-5.7	10.2	12.9	-8.8	-6.1	3.9	9.9	5.1
5-HT	-1.2	7.7	4.3	-3.4	-9.3	4.6	-6.2	-6.6

Table S6 Summary of matrix effect of analytes in rat brain (n = 6).

Analyte	IS-normaliz	zed MF (%)		RSD (%)		
	Low	Medium	High	Low	Medium	High
DA	110.4	91.8	98.1	12.5	12.1	7.1
NE	96.7	91.4	102.6	8.9	9.3	7.3
5-HT	90.8	101.3	82.6	6.5	8.7	5.9

Analytes	−80 °C fo	80 °C for a month		freeze-thaw	4 °C in autosampler		1 week at r.t. for	
	(RE, %)		cycles (RE	cles (RE, %) for 24 h (RE, %)		derivatiz	ed analytes	
							(RE, %)	
	Low	High	Low	High	Low	High	Low	High
DA	12.1	-5.7	13.2	8.9	12.8	6.8	7.2	3.3
NE	12.3	11.3	6.9	9.8	-2.3	-10.3	1.1	2.9
5-HT	10.6	12.5	-13.7	-10.4	3.8	4.8	2.5	1.9

Table S7 Stability of analytes in brain at different conditions (n = 3).

Table S8 Precision, repeatability and stability in the method validation of contents *in vitro*.

RT (min)	Fragment	Precis	sion	Repe	atability	Stability	
	ions (m/z)	(RSD	,%)	(RSD	,%)	(RSD, %)	
		RT	Intensity	RT	RT	Intensity	RT
5.05	221.0583	0.6	3.3	0.2	2.6	0.3	2.9
16.82	419.1992	0.5	5.1	0.4	2.6	0.8	4.3
24.49	433.2148	0.8	4.4	0.0	3.4	0.1	2.5
31.90	417.1835	0.0	1.8	1.2	0.9	0.8	2.4
50.60	537.2046	0.3	2.2	1.5	3.4	0.6	4.5
62.02	403.2042	0.7	2.8	1.1	1.9	0.9	3.3
77.81	417.2199	1.2	4.8	0.6	4.8	0.2	4.6
85.09	385.1573	0.5	4.9	0.2	1.9	0.0	5.0

Table S9 Precision, repeatability and stability in the method validation of contents *in vivo*.

RT (min)	Fragment	Precis	Precision Repeatability		atability	Stabi	lity
	ions (m/z)	(RSD	,%)	(RSD	9,%)	(RSD, %)	
		RT	Intensity	RT	Intensity	RT	Intensity
5.05	221.0583	0.5	6.9	1.2	7.1	1.0	9.5
16.82	419.1992	1.4	10.1	0.7	5.9	0.9	4.8
24.49	433.2148	0.9	6.8	1.4	7.8	0.8	9.9
31.90	417.1835	1.3	8.2	0.7	10.5	0.2	9.1
50.60	537.2046	0.6	9.2	0.3	6.2	0.6	6.7
62.02	403.2042	0.7	5.9	1.5	8.0	1.3	7.9
77.81	417.2199	1.0	7.9	0.8	9.1	0.7	5.1
85.09	385.1573	0.4	10.8	0.3	7.7	0.3	10.2

Figure S1 The experimental design of our study.

Figure S2 Typical LC–MS MRM chromatograms of (A) reference standard solution of analytes and IS. (B) 5-HT, DA and NE in rat brain sample.

Componund	R_1	R_2	R_3	R_4
Schisandrol B	(CH2	Me	Me
Schisandrin A	Me	Me	н	Me
Angeloygomisin H	Me	Me	OH	Ang
Tigloylgomisin H	Me	Me	OH	Tig
Benzoylgomisin H	Me	Me	Me	Ben

Componund	R ₁	\mathbf{R}_2	R ₃
wilsonilignan C	——C	H2——	OMe
Gomisin O	C	H2	OH
Gomisin N	C	H2——	Н
Schisanhenol	Me	Me	н
Gomisin S	Me	Me	OH

Componund	R_1	R_2
Citric acid	OH	OH
1,5 - Dimethyl citrate	Me	Me

Componund	R_1	
Gomisin D	OH	
Gomisin E	Н	

Componund	R_1	R_2	R ₃	R_4	R ₅	R ₆	R_7	R ₈
Schisandrin B	Me	Me	C	H2	Н	Н	Η	Me
Schisandrin C	C	H2	C	H2	н	Н	Н	Me
Gomisin J	Me	н	Me	Н	Н	н	Н	Me
Epigomisin O	Me	Me	C	H2	н	OH	Н	Me
Tigloylgomisin Q	Me	Me	Me	Me	Me	OTig	Me	OH
Angeloylgomisin Q	Me	Me	Me	Me	Me	OAng	Me	OH
Gomisin C	Me	Me	C	H2	OBen	н	Me	OH
Schisantherin B	Me	Me	C	H2	OAng	н	Me	OH
Schisantherin C	Me	Me	C	H2	OTig	Н	Me	OH
Schisantherin D	C	H2	C	H2	OBen	Н	Me	OH
Gomisin G	C	H2	Me	Me	OBen	н	Me	OH
Schisantherin E	OH	Me	Me	Me	OBen	н	Me	OH
Gomisin F	C	H2	Me	Me	OTig	Н	Me	OH
Benzoylgomisin Q	Me	Me	Me	Me	OBen	Н	Me	OH
Benzoylgomisin P	C	H2	Me	Me	OBen	н	Me	OH
Benzoylgomisin O	Me	Me	C	H2	OBen	н	Н	Me
Rubrisandrin A	OH	Me	Me	OH	н	н	Н	Me
Schisphenlignan A	OH	Me	C	H2	OBen	Н	OH	Me

Componund	R ₁	R ₂	R ₃	R ₄	R ₅
Schisanwilsonin D	Н	Н	Me	Me	Me
Schisanwilsonin B	Me	Me	OH		-CH2

Pregomisin

Mexicanolide

Schisanlactone B

Schisanlactone D

PRXFPPAVWQDTHT-UHFFFAOYSA-N

CH

СН3

H₃C

Figure S3 Structures of the components of S. chinensis.

Figure S4 Results of 9 reference standards:7, schisandrol A; 9, gomisin D; 11, gomisin J; 12, gomisin O; 13, epigomisin O; 16, schisandrol B; 30, schisandrin A; 31, gomisin N; 32, schisandrin B (the numbers represent the peak No. in Table 2).

Figure S5 Proposed metabolic pathways of transform process between schisandrol A, schisandrol B, schisandrin A, schisandrin B.

Figure S6 The active ingredients of *S. chinensis* protect against oxidative stress and inflammation in CNS diseases.