Supporting Information for

Original article

Discovery of a highly selective VEGFR2 kinase inhibitor CHMFL-VEGFR2-002 as a novel anti-angiogenesis agent

Zongru Jiang^{a,b,†}, Li Wang^{a,b,†}, Xuesong Liu^{a,b,†}, Cheng Chen^{a,b,†}, Beilei Wang^{a,b}, Wenliang Wang^{a,b}, Chen Hu^a, Kailin Yu^a, Ziping Qi^a, Qingwang Liu^c, Aoli Wang^a, Jing Liu^{a,d}, Guangchen Hong^{e,***}, Wenchao Wang^{a,d,**}, Qingsong Liu^{a,b,c,d,f,*}

^aHigh Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China

^bUniversity of Science and Technology of China, Hefei 230026, Anhui, PR China ^cPrecision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, Anhui, PR China

^dPrecision Medicine Research Laboratory of Anhui Province, Hefei 230088, Anhui, PR China

^eThe People's Hospital of Shinan District, Qingdao 266002, Shandong, PR China ^fInstitutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, PR China

Received 7 May 2019; received in revised form 12 September 2019; accepted 12 October 2019

*Corresponding author. Tel.: +86 551 65595161.

E-mail addresses: qsliu97@hmfl.ac.cn (Qingsong Liu), wwcbox@hmfl.ac.cn (Wenchao Wang), 2297023869@qq.com (Guangchen Hong).

[†]These authors made equal contributions to this work.

Figure S1 The ¹H NMR spectrum of CHMFL-VEGFR2-002.

Figure S2 The ¹³C NMR spectrum of CHMFL-VEGFR2-002.

CHMFL-VEGFR2-002.d	Sample Name	LXS
Sample	Position	Vial 10
Instrument 1	User Name	
01012018NORMAL.m	Acquired Time	5/8/2019 11:52:42 AM
Success	DA Method	3.m
	CHMFL-VEGFR2-002.d Sample Instrument 1 01012018NORMAL.m Success	CHMFL-VEGFR2-002.d Sample Sample Position Instrument 1 User Name 01012018NORMAL.m Acquired Time Success DA Method

Sample GroupAcquisition SW6200VersionQ-TO

Info. 6200 series TOF/6500 series Q-TOF B.05.00 (B5042.2)

User Chromatograms

Figure S3 The LC-MS spectrum of CHMFL-VEGFR2-002.

		GI ₅₀ (GI ₅₀ (µmol/L)		
Compound	Structure	BaF3	TEL- VEGFR1- BaF3	TEL- VEGFR2- BaF3	TEL- VEGFR3- BaF3
1 (CHMFL- VEGFR2- 002)		> 10	> 10	0.15	> 10
2	N N N N N N N N N N N N N N N N N N N	> 10	1.5	0.25	3.6
3		7.9	1.3	0.39	2.6
4	N N N N N N N N N N N N N N N N N N N	3.05	2.7	0.5	3.8
5	N S C N S C	3.73	1.1	0.2	> 10
6	N N N N N N N N N N N N N N N N N N N	3.39	2.29	0.19	2.89
7	HZ S S S S S S S S S S S S S S S S S S S	2.99	4.38	0.61	2.19
8	N S S S S S S S S S S S S S S S S S S S	2.48	1.02	0.38	3.19

Table S1 Anti-proliferative activity (GI_{50}) test in engineered BaF3 cells.

9	N N N N N N N N N N N N N N N N N N N	4.27	4.2	0.5	3.3
10		> 10	0.36	0.15	0.96
11	N S CI CF3	> 10	0.35	0.19	0.93
12	N N N N N N N N N N N N N N N N N N N	> 10	0.3	0.33	2
13	N N N N N N N N N N N N N N N N N N N	7.4	0.5	0.12	1.2
14	H N N N N N N N N N N N N N N N N N N N	> 10	1	0.18	2
15		> 10	> 10	1.5	> 10
16	H H H H H H H H H H H H H H H H H H H	0.59	0.55	0.19	0.67
17	HZ HZ HZ OL HZ OL HZ OL	> 10	2.0	0.73	4.5
18	N H CF3	> 10	1.1	0.75	2.9

Figure S4 Docking analysis of compounds **2**, **10**, **14** and CHMFL-VEGFR2-002. (A), (C) and (E) Cartoon mode illustration of compounds **2**, **10** and **14** in complex with

VEGFR2 kinase (PDB ID: 4AG8). (B), (D), (F) and (G) Solid surface illustration of two important hydrophobic pockets including the gate keeper region and the DFG-out region. (H) Overlapping of compounds **2**, **10**, **14** and CHMFL-VEGFR2-002 in the hydrophobic pocket with solid surface illustration mode.

Figure S5 Acute toxicity test of CHMFL-VEGFR2-002.

Figure S6 Acute toxicity test of sunitinib.