SUPPLEMENTARY DATA

AON-induced splice-switching and *DMPK* pre-mRNA degradation as potential therapeutic approaches for Myotonic Dystrophy type 1

Ewa Stepniak-Konieczna^{1*}, Patryk Konieczny², Piotr Cywoniuk¹, Julia Dluzewska¹, and Krzysztof Sobczak^{1*}

¹Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland

²Department of Integrative Genomics, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland

*To whom correspondence should be addressed: Tel.: +4861 829 5958; Fax: +4861 829 5949; Email: ksobczak@amu.edu.p

Correspondence may also be addressed to: esk@amu.edu.pl

LIST OF SUPPLEMENTARY DATA

SUPPLEMENTARY MATERIALS AND METHODS

Assessment of cell viability and AONs toxicity.

SUPPLEMENTARY FIGURES

Supplementary Figure S1. Graphical output of exonic splicing enhancer (ESE) analyses within *DMPK* e5, e9 and e15.

Supplementary Figure S2. AONs complementary to sequences within *DMPK* e5, e9 and e15 induce efficient skipping of targeted exons in non-DM1 and DM1 fibroblasts.

Supplementary Figure S3. LNA-PS AONs targeting e5 and e15 induce weaker exon skipping compared to their 2'-Ome-PS equivalents.

Supplementary Figure S4. AON-mediated exclusion of e5 and e9 fails to reduce DMPK mRNA.

Supplementary Figure S5. Antisense gapmers complementary to *DMPK* intron 14 efficiently reduce *DMPK* mRNA.

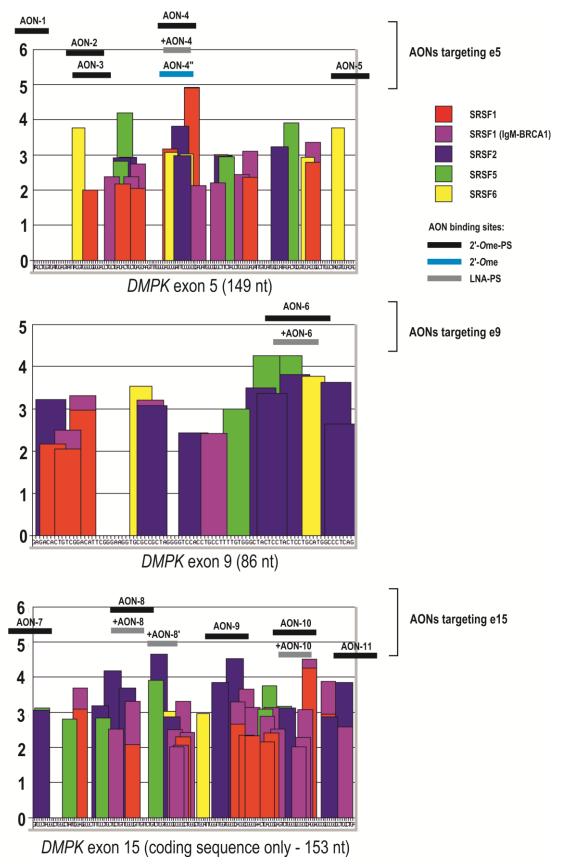
Supplementary Figure S6. 2'-Ome-PS-modified AONs aggravate pre-existing DM1-spliceopathy.

Supplementary Figure S7. LNA-PS equivalents of 2'-Ome-PS splice-switching AONs do not affect alternative splicing events in non-DM1 fibroblasts.

SUPPLEMENTARY TABLES

Supplementary Table 1. Summary of AONs used in this study.

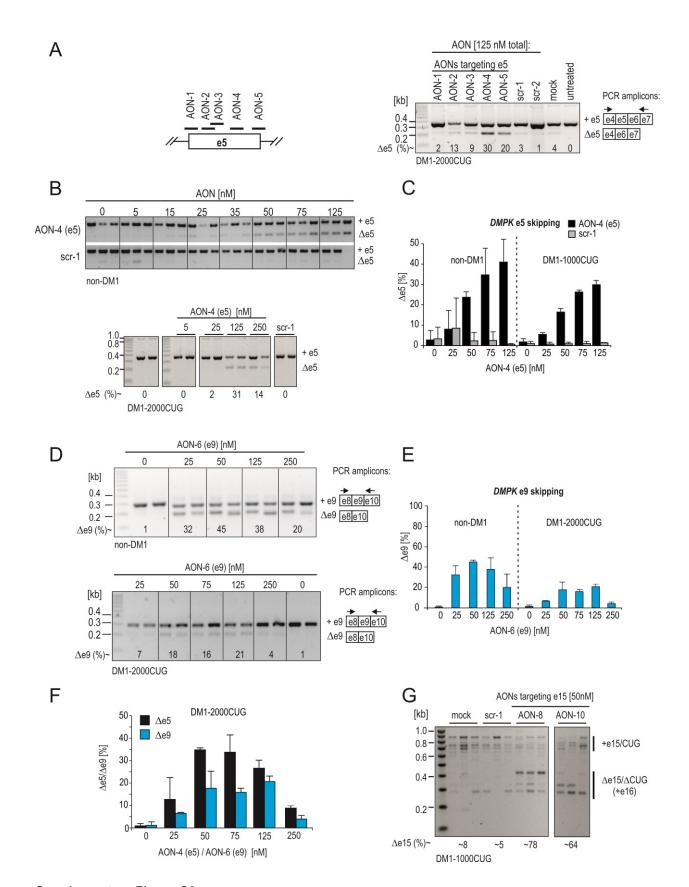
Supplementary Table 2. Tabular output of ESE analyses within *DMPK* e5, e9 and e15.


Supplementary Table 3. PCR primers used for alternative splicing assays and gene expression analyses.

SUPPLEMENTARY MATERIALS AND METHODS

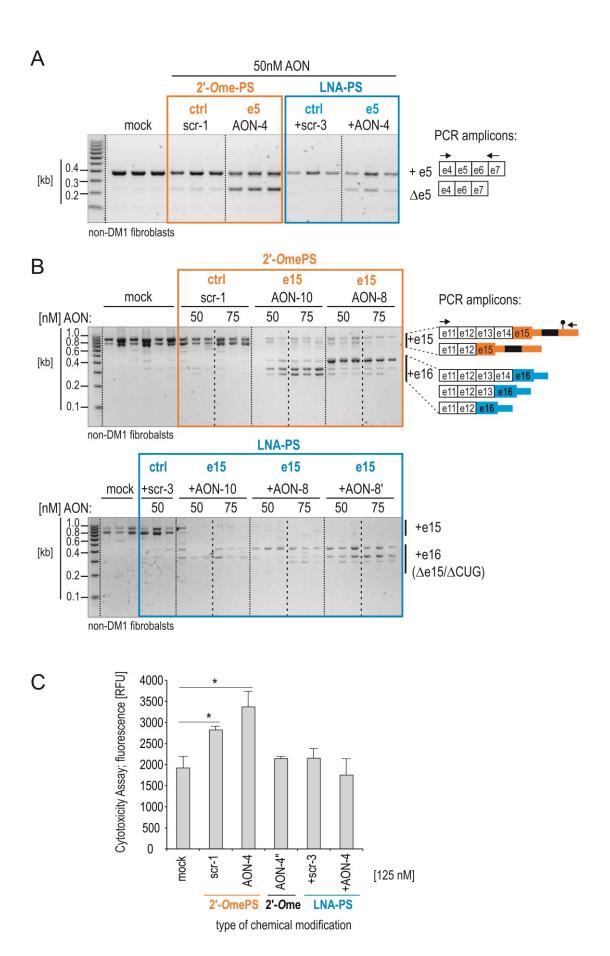
Assessment of cell viability and AONs toxicity

Viability of cells upon experimental manipulation and dosing with AONs was performed using CellToxTM Green Cytotoxicity Assay (Promega) per manufacturer's recommended protocol. Assay was performed in non-DM1 fibroblasts 48h post transfection with 75 nM of distinct AONs targeting the same core sequence within e5, but differing in backbone chemistries (Supplementary Figure S3C).

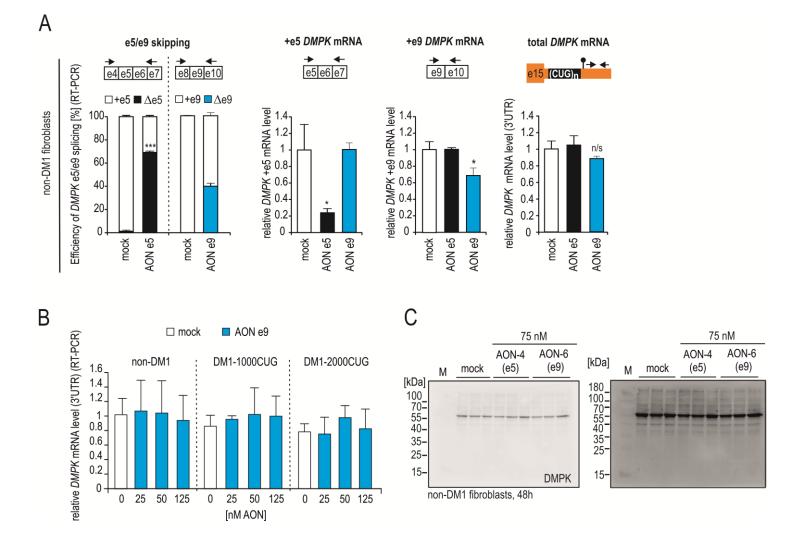

SUPPLEMENTARY FIGURES

Supplementary Figure S1.

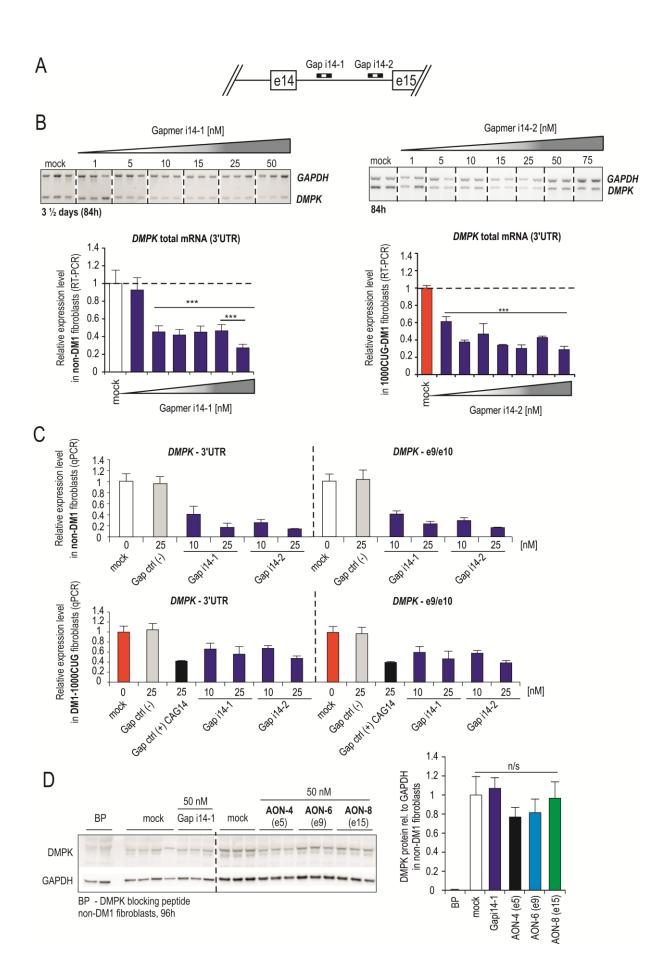
Supplementary Figure S1.


Graphical output of exonic splicing enhancer (ESE) analyses within *DMPK* e5, e9 and e15. The analyzed exonic sequence is reproduced along the X-axis. Putative binding sites for distinct serine/arginine-rich proteins (SRSF) are represented by bars. The height of the bars represents the motif scores, and the width of the bars indicates the length of the motif (6, 7 or 8 nucleotides). Different SRSF protein high-scores are color-coded as illustrated in the legend. Approximate AON binding sites within targeted exons are represented as horizontal lines indicated in the legend.

Supplementary Figure S2.

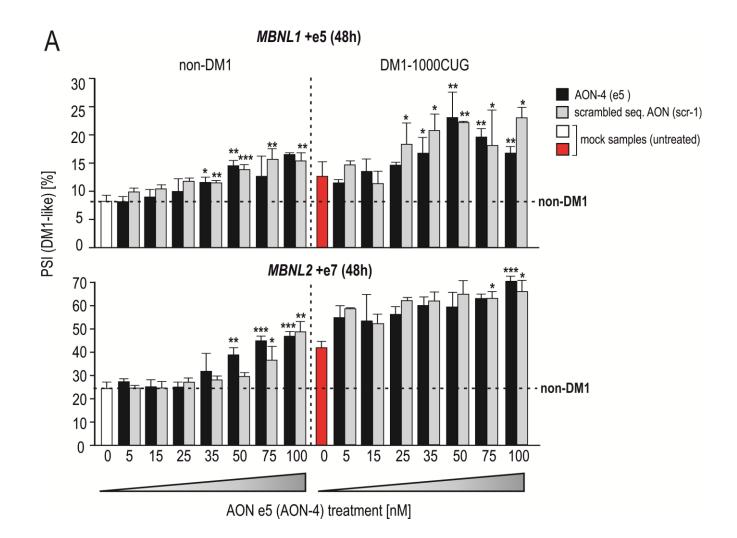

AONs complementary to sequences within *DMPK* e5, e9 and e15 induce efficient skipping of targeted exons in non-DM1 and DM1 fibroblasts. (A) Schematic representation of AON binding sites within e5 and representative RT-PCR gel showing e5 skipping in DM1-2000CUG fibroblasts transfected

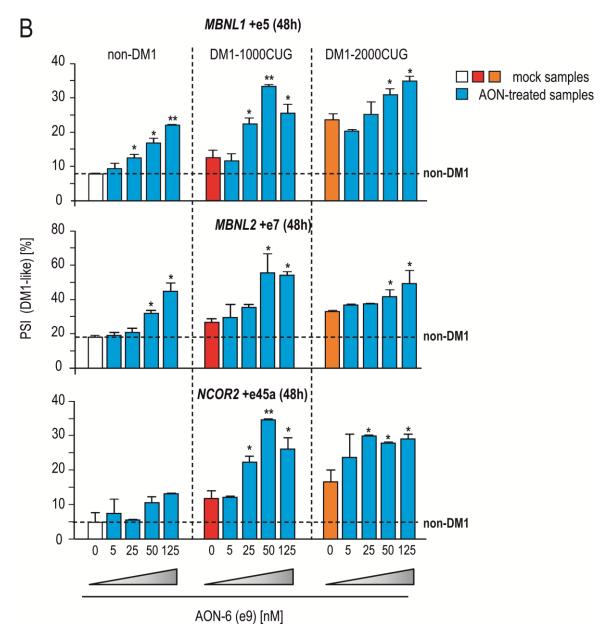
with 125 nM of indicated AONs. Δ e5 (%) indicates percent e5 spliced out. **(B)** Representative RT-PCR analysis of e5 skipping in non-DM1 (top) vs DM1-2000CUG fibroblasts (bottom) transfected with indicated amounts of AON-4 targeting e5, or control scrambled sequence AON (scr-1). **(C)** Quantitation of e5 skipping efficiency in non-DM1 vs DM1-1000CUG fibroblasts transfected with increasing amounts of indicated AONs. **(D)** Representative RT-PCR analyses of AON-6-induced e9 skipping in control (top) and DM1 fibroblasts (bottom). PCR amplicons are indicated and Δ e9 (%) refers to the percentage of e9 spliced out. **(E)** Quantitation of results shown in (D). **(F)** RT-PCR-based quantitation of e5 and e9 skipping in DM1 fibroblasts treated with AON-4 and AON-6 at the same time. **(G)** Representative RT-PCR gel image showing e15/CUG skipping in DM1-1000CUG fibroblasts dosed with indicated AONs.


Supplementary Figure S3.

LNA-PS AONs targeting e5 and e15 induce weaker exon skipping compared to their 2'-Ome-PS equivalents. (A-B) Representative images of RT-PCR comparing e5 (A) and e15 (B) skipping in non-DM1 fibroblasts transfected with indicated amounts of 2'-Ome-PS (orange) or equivalent LNA-PS (blue) AONs targeting the same core sequences within *DMPK* e5 (A) or e15 (B). Scrambled AONs scr-1 and +scr-3 with appropriate chemical modifications were used as controls. *DMPK* splice isoforms and primer locations are indicated to the right of gel images. AON sequences are listed in Supplementary Table 1, and schematic of AON binding sites within targeted exon is shown in Supplementary Figure 1. **(C)** Quantitation of cell viability/cytotoxicity in non-DM1 fibroblasts treated with 75nM of e5 targeting AON-4. Chemical modifications are indicated. AON-4, AON-4" and +AON-4 target the same core sequence within e5.

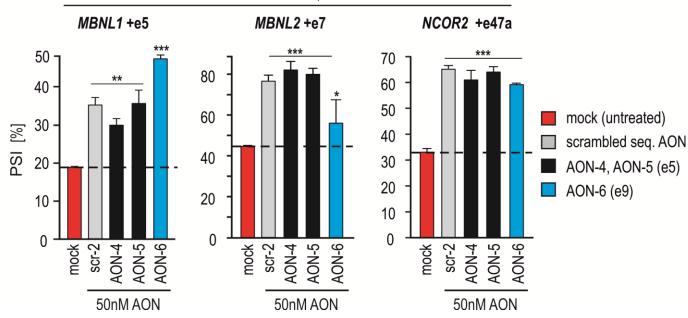
Supplementary Figure S4.


AON-mediated exclusion of e5 and e9 fails to reduce *DMPK* mRNA. (A) RT-PCR-based quantitation of e5 or e9 skipping efficiency, e5-containing *DMPK* mRNA (+e5 *DMPK* mRNA), e9-containing *DMPK* mRNA (+e9 *DMPK* mRNA) and total *DMPK* mRNA (3'UTR) in control non-DM1 primary fibroblasts treated with indicated amounts of AONs directed at e5 (AON-4) and e9 (AON-6). Schematics of PCR amplicons are indicated. (B) RT-PCR quantitation of total *DMPK* mRNA (amplicon within 3'UTR) demonstrates lack of *DMPK* transcript reduction upon e9 skipping in control and indicated DM1 fibroblasts. *DMPK* expression is shown relative to *GAPDH* and increasing doses of AON e9 (AON-6) are indicated. (C) Whole-membrane scan of western blot analysis showing unaffected *DMPK* protein level in non-DM1 fibroblasts dosed with 75 nM of indicated AONs directed at e5 (AON-4) and e9 (AON-6). Low exposition (left) and high exposition (right) images of the same western blot analysis are shown to visualize protein ladder (M) and lack of detectable truncated protein isoforms. Three lanes indicate individual samples.

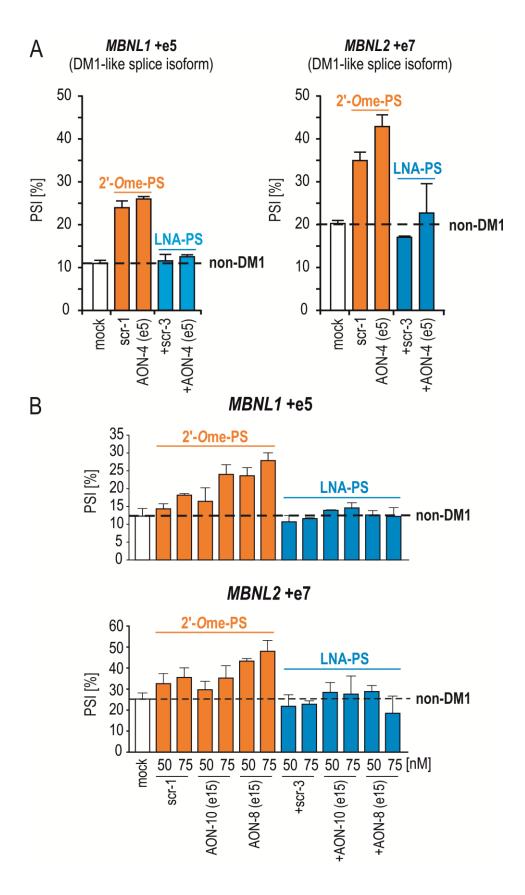

Supplementary Figure S5.

Supplementary Figure S5.

Antisense gapmers complementary to *DMPK* intron 14 efficiently reduce *DMPK* RNA. (A) Schematic representation of distinct regions within *DMPK* intron 14 (i14) targeted by antisense gapmers Gap i14-1 and Gap i14-2. White boxes indicate exons, horizontal line indicates i14, approximate gapmer binding sites are depicted. (B) Representative RT-PCR gels (top) and quantitations (bottom) of total *DMPK* mRNA in unaffected (left panel) vs DM1-affected (right panel) human fibroblasts treated with indicated amounts of Gap i14-1 (left panel) and Gap i14-2 (right panel) for 3 ½ days. Gapmer dose increment is indicated with triangles. (C) qPCR (real-time PCR) – based quantitation of *DMPK* transcript level in non-DM1 (top) vs DM1-affected (bottom) human fibroblasts 72h after dosing the cells with indicated gapmer-AONs. Quantitation is based on analyses of two distinct amplicons across *DMPK* transcript: 3'UTR (left) or internal region spanning e9 through e10 (right). Grey bars indicate negative control – scrambled sequence gapmer-AON, black bars indicated positive control – gapmer-AON targeting CUG-repeat region. (D) Representative immunoblot showing lack of DMPK protein reduction in non-DM1 fibroblasts 96h post transfection with indicated AONs. Note that no protein reduction is detectable even after dosing the cells with gapmer AON. Antibody blocking peptide (BP) was used as a negative control.



Supplementary Figure S6.


Supplementary Figure S6.

Supplementary Figure S6.

2'-Ome-PS-modified AONs aggravate pre-existing DM1-spliceopathy. RT-PCR-based quantitation of splicing changes in the alternative exons of established DM1-biomarker transcripts: *MBNL1*, *MBNL2*, and *NCOR2* in control (non-DM1) and DM1 fibroblasts (DM1-1000CUG and DM1-2000CUG) dosed with increasing amounts of indicated AONs targeting e5 (**A, C**) or e9 (**B, C**). Dose increment is depicted with triangles, and exact AON amounts are indicated. Increasing percentages of alternative exons inclusion (PSI) observed in (A-C) upon increasing doses of AONs directed at e5 and e9 indicate a DM1-like splicing shift of a given alternative exon (compare mock samples in non-DM1 vs DM1 cells). Time-points post AON treatment are indicated. Horizontal dashed lines mark the percentage of alternative exon inclusion in mock (lipofectamine) controls. Statistical significance compared to respective mock controls is indicated.

Supplementary Figure S7.

LNA-PS equivalents of 2'-Ome-PS splice-switching AONs do not affect alternative splicing events in non-DM1 fibroblasts. (A-B) Quantitation of DM1-like splicing shift (alternative exon inclusion; PSI) in

the alternative exons of indicated DM1 biomarkers in non-DM1 fibroblasts 48h post transfection with indicated amounts of AONs targeting the same core sequence within e5 (A) or e15 (B), but harboring distinct chemical modification – either 2'-Ome-PS (orange) or LNA-PS (blue). 2'-Ome-PS- and LNA-PS-modified scrambled sequence AONs were used as chemistry controls (scr-1 and +scr-3, respectively).

SUPPLEMENTARY TABLES

2'-O me-PS AONs

AON name	target exon (e) / intron (i) ‡	sequence 5'-3'	length (nt)
SPLICE-SWI7	CHING AONS TARGETING e5		
AON-1	e5 -15/+10	mU* mG* mA* mC* mC* mA* mG* mG* mU* mA* mC* mU* mG* mA* mG* mA* mA* mG* mG* mG* mG*	25
AON-2	e5 +20+41	mG* mU* mC* mA* mG* mC* mA* mG* mG* mU* mC* mC* mC* mC* mG* mC* mC* mC* mC* mC* mC* mG* mU	22
AON-3	e5 +22+43	mG* mU* mG* mU* mC* mA* mG* mC* mA* mG* mG* mU* mC* mC* mC* mC* mC* mC* mC* mC* mC* mC	22
AON-4	e5 +60+81	mC* mA* mU* mC* mU* mC* mG* mG* mC* mC* mG* mG* mA* mA* mU* mC* mC* mG* mC* mU* mC* mC	22
AON-5	e5 +135+149/-7	mC* mA* mC* mC* mC* mA* mC* mC* mU* mG* mU* mG* mC* mA* mC* mG* mU* mA* mG* mC* mA	22
SPLICE-SWIT	CHING AONS TARGETING e9		
AON-6	e9 +63+80	mG* mC* mC* mA* mU* mG* mC* mA* mG* mG* mA* mG* mU* mA* mG* mG* mA* mG	18
SPLICE-SWIT	CHING AONS TARGETING e1	5	
AON-7	e15 -15/+10	mG* mC* mC* mU* mA* mG* mG* mG* mA* mC* mC* mU* mG* mC* mG* mG* mG* mG* mA* mG* mA*	25
AON-8	e15 +39+59	mG* mA* mC* mA* mG* mA* mA* mC* mA* mA* mC* mG* mG* mG* mC* mG* mA* mA* mC* mA* mG* mG	21
AON-9	e15 +92+112	mU* mG* mA* mG* mU* mU* mG* mG* mC* mC* mG* mG* mC* mG* mU* mG* mG* mG* mC* mC* mA	21
AON-10	e15 +121+141	mG* mG* mC* mG* mG* mC* mU* mC* mU* mG* mG* mG* mC* mG* mG* mC* mG* mC* mG* mC* mA	21
AON-11	e15 +145+153/-12	mC* mA* mG* mU* mU* mC* mU* mA* mG* mG* mG* mU* mU* mC* mA* mG* mG* mG* mA* mG* mC	21
SCRAMBLED	SEQUENCE CONTROL AONS		
scr-1	none	mG* mC* mC* mU* mC* mG* mA* mC* mC* mU* mA* mU* mC* mG* mC* mG* mC* mC* mU* mC* mA* mG	22
scr-2	none	mG* mA* mG* mA* mA* mC* mG* mA* mA* mC* mA* mA* mC* mG* mA* mG* mC* mG* mG* mC* mA	21

2'-Ome AONs

AON name	target exon (e) / intron (i) ‡	sequence 5'-3'	length (nt)					
SPLICE-SWITCH	SPLICE-SWITCHING AONs TARGETING e5							
AON-4"	e5 +60+81	mC mA mU mC mU mC mG mG mC mC mG mG mA mA mU mC mC mG mC mU mC mC	22					

LNA-PS AONs

AON name	target exon (e) / intron (i) ‡	sequence 5'-3'	length (nt)					
SPLICE-SWITCHING AONs TARGETING e5								
+AON-4	e5 +64+77	+T*+C*+G*+G*+C*+C*+G*+G*+A*+A*+T*+C*+G	14					
SPLICE-SWITC	CHING AONS TARGETING e9							
+AON-6	e9 +63+76	+T*+G*+C*+A*+G*+G*+A*+G*+T*+A*+G*+G*+A*+G	14					
SPLICE-SWITC	CHING AONS TARGETING e15							
+AON-8	e15 +39+52	+C*+A*+A*+C*+G*+G*+C*+G*+A*+A*+C*+A*+G*+G	14					
+AON-8'	e15 +57+70	+C*+G*+G*+C*+G*+G*+C*+A*+C*+G*+A*+G*+A*+C	14					
+AON-10	e15 +125+138	+G*+G*+C*+T*+C*+C*+T*+G*+G*+G*+C*+G*+C	14					
SCRAMBLED	SCRAMBLED SEQUENCE CONTROL AON							
+scr-3	none	+A*+G*+C*+A*+G*+G*+G*+A*+C*+G*+C*+A*+A*+C	14					

LNA-PS/DNA-PS AONs

RNase H-COMPATIBLE GAPMER AONS								
Gap i14-1	i14 +67+82	A*A*A*T*G*C*G*C*A*G*C*T*A*A*G*C	16					
Gap i14-2	i14 +183+197	G*T*T*A*G*T*C*C*A*C*T*C*G*C*A	15					
Gap ctrl (+) CAG14	CUG repeat region; (+) control	+A*+G*+C*A*G*C*A*G*C*A*G*+C*+A*+G	14					

NEGATIVE CONTROL GAPMER AON							
Gap ctrl (-)	none; (-) control	G*C*T*C*C*C*T*T*C*A*A*T*C*C*A*A	16				

Supplementary Table 1.

Summary of AONs used in this study. 5'-3' sequences are shown including 2'-Omethyl (m) and phosphorothicate modifications (*) as well as locked nucleic acid modifications (+). (‡) Numbers correspond to complementary region within targeted exon relative to the first nucleotide (+1). (/) indicates AONs targeting an intron-exon (-/+) or exon-intron (+/-) boundary, respectively.

Note: the position of LNA modifications in Gapmer AONs is proprietary to Exiqon. CAG14 gapmer used as a positive control was described previously (14).

Δ

DMPK e5:

TACCTGGTCATGGAGTATTACGTGGGCGGGGACCTGCTGACACTGCTGAGCAAGTTTGGGGGAGCGGATTCCGGCCGAGATGGCGCGCTTCTACCTGGCGGAGAT TGTCATGGCCATAGACTCGGTGCACCGGCTTGGCTACGTGCACAG

	SRSF1		SRSF1 (IgM-BRCA1)			SRSF2			SRSF5			SRSF6		
thre	threshold: 1.956		threshold: 1.867			threshold: 2.383			threshold: 2.67			threshold: 2.676		
Pos	ition*/Site/	Score	Position*/Site/Score		Position*/Site/Score			Position*/Site/Score			Position*/Site/Score		e/Score	
24 (-126)	GGGCG GG	1.99388	34 (-116)	CTGCT GA	2.37079	38 (-112)	TGACACT G	2.91892	38 (-112)	TGACA	2.81550	19 (-131)	TACG	3.76391
			43 (-107)				CACTGCT G	2.93377	40 (-110)		4.18642	1	, UA	3.06999
46 (-104)	CTGAGC A	2.03848	46 (-104)	CTGAG CA	2.73315	65 (-85)	GGATTCC G	3.80645	87 (-63)	CTTCT AC	2.95219	69 (-81)	TCCG GC	3.01803
61 (-89)	GAGCG GA	3.16789			4.91206		GATTCCG G		117 (-33)	AGACT CG	3.90189	85 (-65)	CGCT TC	3.00116
71 (-79)	CGGCC GA	4.90209			2.12433		CGCTTCT					125 (-25)	TGCA CC	2.92201
98 (-52)	CGGAGA T	2.36054	83 (-67)	CGCGC	2.20838	111 (-39)	GGCCATA G	3.22712				139 (-11)	TACG TG	3.76391
127 (-23)	CACCG GC	2.78479	94 (-56)	CTGGC GG	2.43327									
			98 (-52)	CGGAG AT	3.10259									
			127 (-23)	CACCG	3.36278									

В

SRSF1		SRSF1 (IgM-BRCA1)			SRSF2			SRSF5			SRSF6				
threshol	threshold: 1.956			threshold: 1.867			threshold: 2.383			threshold: 2.67			threshold: 2.676		
Position*	/Site/Score		I	Site/Score		Position*/	Site/Score		Position*/	Site/Score		Position*/Site/Score		е	
3 (-84)	GACACT	2.16497	7 (-80)	CTGTC	2.49246	2 (-85)	AGACACT	3.21649	52 (-35)	TTTGT	2.99502	27 (-60)	TGCG	3.53067	
7 (-80)	CTGTCG G	2.04268	11 (-76)	CGGAC	3.31052	29 (-58)	CGCCGCT		60 (-27)	CTACT	4.26167	73 (-14)	TGCA	3.7639	
11 (-76)	CGGACA	2.96466	29 (-58)	CGCCG	3.21040	40 (-47)	GTCCACC	2.42696	66 (-21)	CTACT	4.26167				
			46 (-41)	CTGCC	2.41158	58 (-29)	GGCTACT C	3.48823							
						61 (-26)	TACTCCT	3.36043	1						
						67 (-20)	TACTCCT	3.81032	1						
						78 (-9)	GGCCCTC	3.62831	1						
						79 (-8)	GCCCTCA	2.63323	1						

Supplementary Table 2.

DMPK e15 (coding sequence only):

SRSF1			SRSF1 (lgl	M-BRCA1)		SRSF2			SRSF5			SRSF6			
threshold: 1.956		threshold: 1.867		threshold: 2.383			threshold: 2.67			threshold: 2.676					
Position*/Site/Score			Position*/S	Position*/Site/Score			Position*/Site/Score			Position*/Site/Score			Position*/Site/Score		
20 (-134)	CGGAGG		20 (-134)	CGGAGG		1 (-153)	GTCCCTA G		2 (-152)		3.11530	63 (-91)	TGCCG	3.01803	
45 (-109)	CGCCGT	2.07093	37 (-117)	CTCCTG		29 (-125)	TTTCCCT		15 (-139)	CCTATC	2.80006	79 (-75)	TGCAT T	2.96614	
69 (-85)	CGCCCT	2.30151	45 (-109)	CGCCGT		35 (-119)	TGCTCCT		31 (-123)		2.84049				
95 (-59)	CCCACG	2.65699	65 (-89)	CCGCCG	2.50941	42 (-112)	GTTCGCC	3.69293	56 (-98)	TGTCTC	3.90423	1			
99 (-55)	CGCCGG	2.33756	66 (-88)	CGCCGC	2.01370	57 (-97)	GTCTCGT G	4.65783	108 (-46)	ACTCAC	3.07925				
102 (-52)	CGGCCA	2.32435	68 (-86)	CCGCCC		63 (-91)	TGCCGC	2.85990	110 (-44)	TCACCO	3.74479				
109 (-45)	CTCACC	2.16204	69 (-85)	CGCCCT	3.31465	86 (-68)	GGTTGGT	3.83890	117 (-37)	AGTCTC G	3.16024				
111 (-43)	CACCGC	2.41309	71 (-83)	CCCTGG G		93 (-61)		4.55042		~~~~~	~~~~				
129 (-25)	CCCAGG	4.25952	95 (-59)	CCCACG	3.29648	118 (-36)	GTCTGGC	3.11571	1						
138 (-16)	CGCCCG	2.94168	99 (-55)	cgccgg	3.66101	138 (-16)		12.00339							
			102 (-52)	CGGCCA	3.13241	145 (-9)	GCTCCCT G	3.84665	1						
			109 (-45)	CTCACC G											
			111 (-43)	CACCGC	3.13987										
			114 (-40)	CGCAGT	2.52351										
			124 (-30)	CGCCGC	2.01370										
			126 (-28)	CCGCCC											
			127 (-27)	CGCCCA G	3.07831										
			129 (-25)	CCCAGG	4.51294										
			138 (-16)	CGCCCG	3.86893										
				СТСССТ											

Supplementary Table 2.

Tabular output of ESE analyses within *DMPK* **e5 (A), e9 (B) and e15 (C).** Putative ESEs were determined using ESEfinder 3.0 (34,35). The score values (relative to default threshold values) of ESEs corresponding to different SRSF are listed. Both positions from 5' end and 3' end (marked with "-") of the analyzed exonic sequence are given.

PCR target	Assay	Primer set	5'-3' sequence		
DMPK ∆e5	AON-induced e5 skipping; <i>DMPK</i> mRNA expression	DMPK_e4F	AGAGGGACGTGTTGGTGAAT		
DINFK Zes	AON-induced eo skipping, <i>DiviP</i> A MikiNA expression	DMPK_e7R	GATCTCGGGGGACAGGTAGT		
DMPK Acq	AON-induced e9 skipping; <i>DMPK</i> mRNA expression	DMPK_e8F	CCTTCTTCTTTGGCCTCGAC		
<i>DMPK</i> ∆e9	AON-induced es skipping, <i>DiviP</i> A MINNA expression	DMPK_e10R	CTTGCACGTGTGGCTCAAG		
DMPK ∆e15	AON-induced e15 skipping	DMPK_10F	CCTGGAGGAGGAGGTGCT		
DIMPK Ze15	AON-induced e 13 skipping	DMPK_558R	CTTTGCGAACCAACGATAGG		
DMPK 3'UTR	DMPK mRNA expression [qPCR]	DMPK 3'UTR_F	GCGATCTCTGCCTGCTTACT		
DIMPK 3 OTK	DIVIEN TITINIA EXPLESSION [QEON]	DMPK 3'UTR_R	GTCCTAGGTGGGGACAGACA		
DMPK e9-e10	DMPK total mRNA expression (e9-e10);	N11	CACTGTCGGACATTCGGGAAGGTGC		
DIVIPA es-e 10	+e9 mRNA expression	133	GCTTGCACGTGTGGCTCAAGCAGCTG		
DMPK +e5 mRNA	DMPK total mRNA expression (e5-e7);	DMPK_e5-F	CTTCTACCTGGCGGAGATTG		
DINFK +e5 IIIKNA	+e5 mRNA expression	DMPK_e7-R	GATCTCGGGGGACAGGTAGT		
CELF1 3'UTR	mRNA expression	CBP1_F	CCAAGGACCTGGTCTGAAAA		
CELFT 3 OTK	пплид ехргеззюп	CBP1_R	ATCCCTGGGAGGACTTTCAT		
GAPDH	mRNA expression	GAPDH_F	CATCAATGGAAATCCCATCAC		
GAPDII	пплид ехргеззюп	GAPDH_R	GGTTTTTCTAGACGGCAGGTC		
i14/e15/CUG	AON-induced splicing out of DMPK pre-mRNA	DMPK_i 14F	AGTCCCAGGAGCCAATCAG		
114/613/000	fragment containing i14/e15/CUG [qPCR]	DMPK_e15R	CCCGGAGTCGAAGACAGTTC		
DMPK i9-e10	pre-mRNA expression (i9-e10) [qPCR]	DMPK_i9F	CATTCTGTCTCCCTCCCCAC		
DIMFR 19-e10	pre-mitra expression (13-610) [qr Ort]	DMPK_e10R	CTTGCACGTGTGGCTCAAG		
MBNL1 e1	alternative splicing	HuEx1_F1	CAGCGACATGCAACAGTCTT		
MBNLTet	alternative splicing	HuEx1_R1	TGTCAGCAGGATGAGCAAAC		
MBNL1 e5	alternative splicing	MBNL1_F	ACCAACAGGCTCTAGCCAACATGC		
MDIAT I 62	alternative spiloting	MBNL1_R	CGTCCTTTACTCTAACCAAGC		
MBNL2 e7	alternative splicing	MBNL2_F	GCTGCCCAATACCAGGTCAAC		
MDMLZ 61	alternative spiloting	MBNL2_R	TGGTGGGAGAAATGCTGTATGC		
NCOR2 e45a	alternative splicing	NCOR2_F	ACACCCACAACCGGAATGAGCCTG		
NCORZ 843a	alternative spiloting	NCOR2_R	GGACTTGGCTTTTCGGCTGCTG		

Supplementary Table 3.

PCR primers used for alternative splicing assays and gene expression analyses. Assay, PCR targets as well as 5'-3' sequences are indicated for each primer pair.