Supplementary Information

DNA-mediated coupling of ATPase, translocase and nuclease activities of a Type ISP restriction-modification enzyme

Mahesh Kumar Chand, Vanessa Carle, K. G. Anuvind, Kayarat Saikrishnan^{*}

Division of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.

*Corresponding author email: saikrishnan@iiserpune.ac.in Phone: +91 2025908047 Fax: +91 2025908186

LIaBIIIVI-29	MYQ	A	РК	ų γ	Y G E S A	KKNAK	DKSILI	SMD
LlaGV1-29	MYQ	$\Gamma A T$	ГРК		YGESA	KKNAK	DKSIL	S S MD
Am TCOPE164 P/1 20	TVM	Г А П	грр	1.1	VVOFS	KTKAA	ENDVKY	T S MD
1 ODD520D(1 00								GMD
Aav ORF378P/1-29	LYM	A 1	PR		FADKS	KTKAN	- E A D <mark>A V I</mark>	SMD
AorK20ORFBP/1-29	LYM	L A T	PR	IN	V D D T T	KARAG	QKNAL	ASMD
Ama2292000E197400/1 20	TVM	CA T	DD	τ.	CDVA	OFVAE	KECAL	V CMN
Apas 285 OICP 18740171-25	LIN				I GD V A	VERAE.	KE GAT	Givin
Asp180ORF1406P/1-29	LYM	A	I P R		FADKT	KNTAS	- EKD VI	SMD
Avi DJORF22890P/1-29	LVM	ГАТ	Γ P R	113	VGDNA	KIMAE	SGEVT	CSMD
Pag 1271 OPES6640P/1 20	MVO	C A 7	C D D		VADEA	VVNAV	DVCIL	SCMD
Bce12/10/AF50040F/1-29	MI Y Q				ADSA	KINAK	DESIL	5 MID
Bfr YORF 1980P/1-29	LYM	A 1	PR	L)	Y S D D S	K S K A A	- Q G D <mark>A I</mark> .	SMD
BøIBGRORF24100P/1-29	LYM	Γ A T	Γ P R	113	YAEAS	KTKAE	ESDIO	SMD
DmA (DE128200/1 20	TVM	CA T	DD		ESD NA	KKOAN	FIDAVI	SMD
Bg/#ORF12850171-29						K K Q A H		S MID
Bgr4ORF17060P/1-29	LYM	- A 1	L R		FSDNA	KKQAN	- E I D A V I	ASMD
Bgr 4 ORF 18960P/1-29	LYM	ГАТ	ΓPR		FGDNA	KSRAN	- EANVVI	ASMD
RmAORE7840P/1 20	TVM	Г А П	гри	111	FTDKI	KKKAD	VSDAVI	A S MD
Dg/+010-7840171-39	L I NI					TAXA D		GMD
Bgr4ORF8060P/1-29	LYM	I A I	РК		FIDDA	KKKAD	- EINAVI	ASMD
BheHORF15450P/1-29	LYM	$\Gamma A T$	ΓPR		FGDNA	KSRAN	- EANVVI	ASMD
Box EORE2337P/1 20	T VM	Г А П	C P R	тх	VCOSA	KIKAS	FKDATI	SMD
D00201033337171-33						T A A A		GNID
BscR1ORF40207P/1-29	LYM	- A 1	L R		FGDNV	KSQAN	- A V G <mark>A V I</mark>	ASMD
Btr CIPORF1006P/1-29	LYM	Γ A T	Γ P R	10	FSDTA	KRRAD	EINAVI	ASMD
Ph CIPOPEIO21P/1 20	TVM	C A 7	с в и		FADSA	KOAH	EMNCI	CMD
Bir CIF OKF102 IF/1-29	LIN	- A -			FADSA	K KQAH	- E MIN G I	A S MID
Btr CIPORF1035P/1-29	LYM	[A 1	ΓPR		FSNHA	KRRAD	- E V D <mark>A V 1</mark>	ASMD
Btr CIPORF1064P/1-29	LYM	Γ A T	ГРК		FADSA	KOAH	EMNGI	ASMD
DH CIDODE1090D/1 20	L VM	CA T	C D P		FTDKI	KKKAD	ASDAVI	SMD
Bil CII OIG 1080171-29	LIN				FIDKL	KKKAD.	- ASDAY	13 INID
Btr CIPORF1105P/1-29	LYM	- A 1	PR		FSDIA	K K K A D	- EINAVI	ASMD
Btr CIPORF14P/1-29	LYM	Γ A T	ГРК		FTDDA	KKNAD	EINAVI	ASMD
Btr CIPORF164P/1 20	LVM	14.5	PP		FADSA	KKOAH	EMNCL	SMD
Di CII OIL 1041/1-39	T T T			15		C D I I	TANK T	GMD
BITCIFORF2491F/1-29	LYM	A	R		F G D N A	K S R A N	EANAV	A SMD
Btr CIPORF455P/1-29	LYM	A T	PK		FSDKL	KRNAF	LSNNV	S MD
Btr CIPORESA 1P/1 20	LVM	C A T	T P P	10	ESNHA	KRRAD	FVDAV	SMD
G-1 ODE270ED(1 20	T XTX	22				D C O L L	E P P P	GMD
CCnORP3 /8BP/1-29	LYM	A	R	101	TIN V D A	K S Q A A	- KQAIP	SMD
Cdp ORF453 P/1-29	LYM	I A 1	P R	L	F D E A V	KGKAA	EHSAEI	ASMD
CalORF3009P/1-29	LVM	A T	PP		FDDSV	KGKAA	DHSAF	SMD
Church ODEADU 20	1 1/1				EDDTT	V C LC A T	FUG	CM
CHUS04ORFAP/1-29	LYM	A.	R	12		K S K A E	EHSAE.	SMD
Ops41ORF557P/1-29	LYM	A 1	P R		FDD <u>T</u> V	KGKAA	DHFAE	ASMD
Cps119ORF559P/1-29	LYM	L A T	PR	1.1	FDDTV	KGKAA	DHFAF	ASMD
Con BOREGRA 26	LVM	1.4.5	PP	V.V	VSDVI	KAK	MCKV	VSMD
Cm OPE1422/2 20	1 1 1		÷.		E C D V T	T IS TO BE	EVEL	CMD
CupOKF142F/1-29	LYL	A	R	V .	FSDKI	KEKIK.	EKELNI	SMD
DaeORF402P/1-29	IYM	' A 1	Γ P R	1.1	Y G D T A	ATAE.	- R D D I V I	SMD
DvnRCH1ORF2026P/1-29	LYM	ГАТ	Γ P R	1.3	VAEOS	KSKAK	ERDIAN	SMD
Eca PM2/1P/1 20	TVM	L A T	P P	Π.	TDEA	KSKAR	OSFEDI	VSMD
CI ODD0(420() 20						THE REAL	Y D L L Y	GMD
GDT ORF 2 64 2 P/1-29	LYM	A I	РК		FADIV	REKAE	E H S A E I	SMD
Geu188900RFHP/1-29	LYM	$\Gamma A T$	ΓPR	I	Y G D V A	REKAE	- KEGAIV	GMN
GsnSXCC1ORF365BP/1-29	LVM	ГАТ	Γ P R	1.1	VGDVA	REKAE	KEGAL	V GMN
U CODE1225D/1 20	TVM				E CID NIA	VEVAVI	ENTENE	CMD
HacsOKF1553F/1-50	LYNI	A 1			F S D INA	NOVAV		SMD
Hpy180ORF3395P/1-29	LYM	- A 1	I P K	IV Y	YSESS	KAKAK	- E S D <mark>N V</mark> .	SMD
Hpy2018ORF6581P/1-29	LYM	$\Gamma A T$	ГРК	V Y	YSESS	KAKAK	EKDNV	SMD
How200RF3615P/1-29	LVM	ГАТ	грк	vv	VSFSS	KAKAK	FSDNA	VSMD
Lbm 225 OPE675 P/1 20	TVM	C A 7	C D P		VCFCC	VAVAV	FCDNA	SMD
HPy225ORF075F71-29	LIN					KAKAK	LODNA	SMD
Hpy30ORF661P/1-29	LYM	- A 1	РК	IV Y	YSESS	KARAK	ESDNA.	SMD
Hpv464ORF3445P/1-29	LYM	L A J	ГРК	V V	YSESS	KAKAK	ESDNA	SMD
Hnv4ORF3450P/1-29	LVM	ГАТ	грк	vv	VSFSS	KAKAK	FSDNV	VSMD
IL. 5700E600D/1 20	TVM				U S E S S	VAVAV	ECDNA	CMD
Hpy570KF090F/1-29	LYM	A	L P K	- V 1	<u>รอ</u> ธออ	KAKAK	ESDNA.	S MD
Hpy75ORFBP/1-29	LYM	[A]	ГРК	V Y	YSESS	KAKAK	- EKD <u>NV</u>	S MD
Hpv83 ORF726P/1-29	LYM	L A J	ГРК	V V	YSESS	KARAK	ESDNV	SMD
Hm 008/08F680P/1 20	LVM	гат	грк	vv	Veree	KAKAK	FKDNV	VSMD
11,0400001000111-50	1 1 1 1				TOLOO	TO A TO A TO	EGDNU	GMD
Hpy94OKF5450F/1-29	LYM	A	L P K	- V 1	<u>รอ</u> ธออ	KAKAK	ESDNV	S MD
Hpy990RF612P/1-29	LYM	$\Gamma A T$	ГРК	V Y	YSESS	KAKAK	EKDNV	SMD
HnvAORF668P/1-29	LVM	Γ A T	грк	vv	VSESS	KAKAK	ESDNV	VSMD
LL. DOODE070D/1 20	TVM	- A 7	- B 2		UCECC	VAVAV	FCDNV	CMD
прувоокготогл-29	LYN	- A -		N	ISLSS	RAKAK	ESDINV.	SWID
HpyGORF629P/1-29	LYM		I P K	V 1	YSESS	KAKAK	EKDNV.	SMD
HpvHORF652P/1-29	LYM	Γ A T	ГРК	V Y	YSESS	KAKAK	ESDNV	SMD
How PORE680P/1-29	LVM	A T	гри	vv	VSFCC	KAKAK	FSDNV	VSMD
IL COPPEIER 20	T X Y Y					TA KAK	FCDN	GMD
HpySOKF3515P/1-29	LYM	A I	- K	- V 1	TSESS	KAKAK	ESDNA	SMD
Hso2336ORF1665P/1-26	LYM	A	P R		YTEDA	KK	SEGVEV	🔁 S MD
KrhP74ORFGP/1_29	LVM	LA 1	PP	v	FDFGT	RKKAE	ENSVV	ASMD
TH POPEZZP/1 20	I VM	1.	- P P		FCDLA	KASAF	KDNVT	SMD
201001055171-29			N N		GD TA	ASAL	KDIN VI	a MD
Lgd218810RFAP/1-29	ΓΥQ	A I	- K	V)	F G Q E A	KNIAN	FASAA	A SMD
LinCORF21P/1-29	MYQ	A	P K		YGESA	KNAK	DKSIL	S MD
Lio6026ORF338P/1-29	LYÓ	LA 1	РК		VDONA	KKKAK	ENSIV	SMD
LIASKORE6P/1 20	MVÒ	1.	- P P		VCECA	KKNAK	DKST	SMD
LuchODEAD() 20					LOL SA	KINAK	DEGIL	GND
LMODOKFAP/I-29	MYQ	A I	- K	10	TGESA	KNAK	DKSIL	SMD
MafGMORF20390P/1-29	LYM	A 1	P R		FTESI	KDRAD	QHSAEI	SMD S
MboBCGTORF2038P/1_29	LYM	LA 1	PR		FTFSI	KDRAD	OHSAFI	V SMD
Mag PMORELOOD/1 20	T VM				VCEAS	KTKAC	FREAT	SMD
mpermoner1021/1-29	LYNI	A.	K		FGEAS	A I KAG	EKEAVI	SMD
MspELB17ORFDP/1-26	IYM	- A 'I	PR		Y G E D A	KQ	TENVT	SMD
MtuFORF12055P/1-29	LYM	LA T	PR		FTESI	KDRAD.	OHSAFI	N SMD
Mx468334470REDP/1 20	LVM	C A 7	D P P		ECDAA	KATAF	RDNVA	SMD
N DKODDIGODIA	L X WI			15		TALAE.	R D N VA	S MD
MXADKORF 1808P/1-29	LYM	A	P R		F G D A A	KAIAE	K D N V A	SMD
NeuCORF2561P/1-26	LYM	T A T	P R		Y G D A A	KQ	TENVT	S MD
NFaORF2220P/1-29	LVM	LA 1	PP		FDFTV	KDKAA	FHSAF	SSMD
MLODE2026BU 20						PEKUE	FOCUE	TMD
NINORF 295 6P/1-29	LYM	A	R	V	FVPRL	KEKVE.	- FOGAE	IMD
Pati 8503 ORF 1520P/1-29	LYM	A	P R	YY	YND NA	KATAK	DKDLVI	- WS MN
Pfr CORF2950P/1-29	LYM	LA 1	PR	TN	YGEDV	KKKAD	EHSAL	SMD
Pma13220RE4P/1 20	LVM		P P		VTDHS	KOKAP	DONIC	VSMD
D TODE2701-29			T N			WYKAD.	DQN I G	S MD
PSyTORF37P/1-29	LYM	- A [R		Y GD N A	KIKAE	SGEVI	SMD
Pxy ORF2066P/1-29	LYM	A	PR	L	Y T D E A	R KKAE	ENDAL	SMD
Rso82 ORF2804P/1-29	LVM	LA 1	PP		YGDTA	KASAE	RDNVA	SMD
Ren VDOREA062 PUL 20	I VM		P P P		FCDNW	RSKAD	EVCAE	SMD
haphDORF#0031/1-39	LYNI	A.	K		FGD IN V	A S KAD	EVGAL	a s MD
KSpSKORF2032P/1-29	LYM	- A [R		FADTA	K K K A D	DHDAK	ASMD
Smu2025ORF1069P/1-29	LYO	[A]	ГРК	L	YGAEA	KKKAD	DLSVV	S S MD
StoBORF1737P/1_20	LVM	CA.T	PP	1.3	VDEKA	KGKAD	FHSAF	ASMD
Sen 19205 (DEDD/1 10	TVM				FCDDA	PPKAD	DANA	DWD
asp10595014BP/1-29	LYNI	A.	K	N.	F G D D A	K K K A D	DANAA	DMD
SSpBudORF1868P/1-29	LYM	A 1	PR	L	Y S E D S	QKKAK	DKEAII	SMD
TinORF2915P/1-29	LYM	A T	PR	IV	YGEVA	KSKAD	RENIVI	C S MD
Tw 748208F2024P/1 20	IVM	1 4 3	PP		VSECA	OKKAK	FADAL	SMD
Tmr 7482 ORFAD/1 20	I VM				VSECA	KKAK	FADAL	SMD

Supplementary figure 1: Amino acid sequence alignment of β -hairpin loop region in Type ISP R-M enzymes. The conserved lysine highlighted in red corresponds to LlaBIII-Lys385.

Supplementary figure 2: (A) Circular dichorism and **(B)** nanoDSF showing the conservation of secondary and tertiary structures of LIaBIII and its mutants.

Supplementary figure 3: Electrophoretic mobility shift assay comparing the DNA binding affinities of **(A)** LlaBIII and **(B)** LlaBIII^{ΔLoop} for a 28 bp non-specific DNA.

Supplementary figure 4: Concentration dependent DNA cleavage assay for LlaBIII^{Δ Loop} shows that this mutant is unable to cleave substrate DNA even at concentration of 4 μ M. Last lane shows DNA cleavage by LlaBIII wild type at 500 nM concentration.

Supplementary figure 5: A representative gel of the triplex displacement assay showing the displacement of TFO by β -hairpin loop mutants in 10 minutes (see Figure 3B).

Supplementary figure 6: A representative gel of the triplex displacement assay showing time dependent displacement of TFO by LlaBIII and LlaBIII^{Δ Loop}. (A) Triplex DNA control and LlaBIII^{Δ Loop} (B) LlaBIII. (See Figure 3C)

Supplementary figure 7: Comparison of the ATPase activity of LlaBIII^{T376A} with LlaBIII^{K385A} and LlaBIII^{Δ Loop} in presence of 46 bp specific DNA and 1 mM ATP carried out at 25^oC.

Supplementary figure 8: Concentration dependent DNA cleavage assay of LlaBIII^{R564A} shows that this mutant is unable to cleave substrate DNA even at concentration of 4 μ M. Last lane shows DNA cleavage by WT LlaBIII at 500 nM concentration.

Supplementary figure 9: A representative gel of the triplex displacement assay showing time dependent displacement of TFO by (**A**) LlaBIII^{T376A} and (**B**) LlaBIII^{R564A} (see Figure 4E).

Supplementary figure 10: DNA nicking by LIaBIII and LIaBIII^{R564A}. Densitometry of the urea-formamide PAGE showing faint nicking by LIaBIII^{R564A} whereas LIaBIII nicks DNA with high efficiency. Black arrow shows the single-stranded uncut DNA. The red brackets shows the nicked product by LIaBIII whereas the blue arrows shows the nicked product by LIaBIII^{R564A}.

Supplementary figure 11: Heterologous cooperation assay. (A) Schematic of the DNA substrate used with LlaBIII site in red and the LlaGI site in grey. **(B)** DNA cleavage by LlaBIII or its mutants in cooperation with LlaGI. 500 nM of each enzyme was incubated with 10 nM of DNA and 4 mM of ATP for 30 minutes at 25 °C.

Supplementary figure 12: Structural comparison of the ATPase domains of (A) DNA-bound LlaBIII, (B) DNA-bound Type III RM enzyme EcoP15I (32), (C) Type I RM enzyme EcoR124I (33), (D) EcoR124I with a modeled DNA indicating the possibility of the interaction of hairpin loop (magenta) with the DNA, (E) Type I RM enzyme TelBI modeled using I-TASSER (34) and (F) EcoKI modeled using I-TASSER. The position of the β -hairpin loop is colored magenta. Blue color represents motif III. The β -hairpin loop appears to be present in EcoR124I and TelBI, but is absent in EcoKI and EcoP15I. (G) Sequence alignment of a part of the helicase domain of Type ISP (LlaBIII and LlaGI), Type I and Type III (EcoP15I and EcoPI) indicating the possible presence of an equivalent loop in Type I RM enzymes.

Supplementary figure 13: Structure of LlaBIII-DNA complex highlighting the position of motif III (red) with respect to the DNA and β -hairpin loop.

Primer	Sequence
LB-pRSF-F	ACTTTAATAAGGAGATATACCATGGTGGCATTTTGGAAGGAA
LB-pRSF-R	CGCAGCAGCGGTTTCTTTACCAGACTCGAGTTATAGTCCCTGTACTACTCT
	TG
K385A-R	GATACTCTTGTCTTTGGCATTTTTTGCCGCACTTTCCCCATATATCTTTGG
ΔLoop-2G-F	CACCAAAGATATATGGGGAAGGTGGTAAGAGTATCTTAC
ΔLoop-2G-R	GATGAAAGTAAGATACTCTTACCACCTTCCCCATATATC
PolyALA-R	GATACTCTTGTCTGCGGCAGCTGCTGCCGCAGCTTCCCCATATATC
T376A-R	CTTTCCCCATATATCTTTGGTGCAGCCGTTTGGTACATTC
R564A-R	CGATTCCTTCCGTTAAGAAGGCGACATTAGAAACAATTCG
LB-1074-F	GCAACGGACGCTCGCTGATCCAG
LB-1074-R	CCATCGCTTGGGAGACGGGGTTTTG
LJ1HISF	GAAGGAGATATACATATGGGTAAAATCGTCCTGCC
LJ1HISR1	GATGATGATGATGGGATCCTTATTCTTCCGTGGAC
200bp_FP	CTGTATGAAGCCCTGCAGAAC
1439bp_RP	TCTATTAATTGTTGCCGGGAAGC
Oligo23-F	TTAGCTAATAGACTGAGCCGAGG
Oligo23-R	TCCTCGGCTCAGTCTATTAGCTA
Oligo28-F	GCTCTAGCTAATAGACTGAGCCGAGGTG
Oligo28-R	CACCTCGGCTCAGTCTATTAGCTAGAGC
Oligo32-F	GCCTGCTCTAGCTAATAGACTGAGCCGAGGTG
Oligo32-R	CACCTCGGCTCAGTCTATTAGCTAGAGCAGGC
Oligo33-F	GACCTGCTCTAGCTAATAGACTGAGCCGAGGTG
Oligo33-R	CACCTCGGCTCAGTCTATTAGCTAGAGCAGGTC
Oligo34-F	GTACCTGCTCTAGCTAATAGACTGAGCCGAGGTG
Oligo34-R	CACCTCGGCTCAGTCTATTAGCTAGAGCAGGTAC
Oligo35-F	GTCACCTGCTCTAGCTAATAGACTGAGCCGAGGTG
Oligo35-R	CACCTCGGCTCAGTCTATTAGCTAGAGCAGGTGAC
Oligo46-F	GTCTTATGCAGGTCACCTGCTCTAGCTAATAGACTGAGCCGAGGTG

Oligo46-R	CACCTCGGCTCAGTCTATTAGCTAGAGCAGGTGACCTGCATAAGAC
TFO_1	ттстттсттсттсттт
TFO_3	ттстттстттстттстт
NSP40-F	GTACTCAGCAGTATCCTGTATGCTACGTATTGCTATCGTG
NSP40-R	CACGATAGCAATACGTAGCATACAGGATACTGCTGAGTAC

Supplementary References:

- 32. Gupta, Y.K., Chan, S.H., Xu, S.Y. and Aggarwal, A.K. (2015) Structural basis of asymmetric DNA methylation and ATP-triggered long-range diffusion by EcoP15I. *Nature communications*, **6**, 7363.
- Lapkouski, M., Panjikar, S., Janscak, P., Smatanova, I.K., Carey, J., Ettrich, R. and Csefalvay, E. (2009) Structure of the motor subunit of type I restrictionmodification complex EcoR124I. *Nature structural & molecular biology*, **16**, 94-95.
- 34. Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J. and Zhang, Y. (2015) The I-TASSER Suite: protein structure and function prediction. *Nature methods*, **12**, 7-8.