Crystallographic analysis of Staphylococcus aureus LcpA, the primary wall teichoic acid ligase

Franco K. K. Li^{1,2}, Federico I. Rosell^{1,2}, Robert T. Gale³, Jean-Pierre Simorre⁴, Eric D. Brown³, Natalie C. J. Strynadka^{1,2*}

From the ¹Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada; ²Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; ³Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada; ⁴Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71 avenue des Martyrs, 38000, Grenoble, France.

Running Title: Crystallographic analysis of LytR-CpsA-Psr enzymes

*To whom correspondence should be addressed: Natalie C.J. Strynadka: Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; ncjs@mail.ubc.ca; Tel. (604) 822-7729; Fax. (604) 822-5227.

TABLE OF CONTENTS

Table S1	2
Table S2	3
Table S3	3
Table S4	5
Figure S1	6
Figure S2	7
Figure S3	8
Figure S4	9
Figure S5	
Figure S6	11
Figure S7	

PDB ID	Enzyme	Resolution (Å)	Ligands at substrate binding sites	Sequen comp	ce identity pared to s L cpA (%)	Ca RMSD compared to S. aureus LcpA		Year	Publication
				Overall	Structure	Structure	Active site ^a		
6UEX	S. aureus LcpA	1.90	C40-PP-GlcNAc	100	100	-	-	2019	This work
6UF5	B. subtilis TagT	2.80	-	25.9	31.5	3.40 Å over	0.85 Å over	1	
	-					214 residues	10 residues		
6UF6	B. subtilis TagU (SeMet)	2.20	-	26.2	28.8	5.60 Å over 222 residues	2.02 Å over 10 residues		
6UF3	B subtilis TagV	1.60	-	27.4	28.8	3 19 Å over	1 10 Å over		
0015	D. Subtrino Tug (1.00		2000	2010	235 residues	10 residues		
5V8C	Actinomyces oris	2.51	PEG4000 and PO43-	18.3	19.2	6.01 Å over	2.00 Å over	2019	Doi: 10.1128/mBio.01580-18
	LytR-Csp2A-Psr					216 residues	10 residues		(1)
6MPT	B. subtilis TagT	1.65	C ₃₀ -PP-GlcNAc	25.9	29.1	3.35 Å over	1.04 Å over	2018	Doi: 10.1021/jacs.7b13551
						215 residues	10 residues		(2)
6MPS	B. subtilis TagT	1.86	C ₃₀ -PP-GlcNAc-	25.9	29.1	3.22 Å over	0.85 Å over		
			ManNAc and Mg ²⁺			216 residues	10 residues		
40BM	Eubacterium siraeum DSM 15702 EUBSIR_01389	2.15	Tetraethylene glycol and PEG 400	14.7	15.8	5.94 A over 227 residues	2.54 A over 10 residues	2014	Joint Center for Structural Genomics (JCSG)
4DE9	B. subtilis TagT	1.79	C ₄₀ -PP	25.9	29.1	3.06 Å over 208 residues	0.97 Å over 9 residues	2012	Doi: 10.1089/mdr.2011.0232
4DE8	S. pneumoniae Cps2A	1.95	C40-P	23.8	22.5	5.66 Å over	1.07 Å over	1	(-)
	(R267A)					241 residues	10 residues		
2XXP	S. pneumoniae Cps2A	1.69	C50-P (mono-trans,	23.8	22.9	5.62 Å over	1.02 Å over	2011	Doi: 10.1038/emboj.2011.358
			octa-cis)			241 residues	10 residues		(4)
3TEP	S. pneumoniae Cps2A	2.03	C40-PP and Mg2+	23.8	22.9	5.73 Å over	0.95 Å over	1	
						241 residues	10 residues		
3TFL	S. pneumoniae Cps2A	2.05	C ₄₀ -PP	23.8	22.9	5.55 Å over	1.02 Å over		
awwo		1.77	(D D	22.0	22.5	240 residues	10 residues	-	
2XXQ	S. pneumoniae Cps2A	1.//	C40-PP	23.8	22.5	5.64 A over	1.01 A over		
3TEI	(K20/A) S programoniae Cps2A	1.80	Cue PP and Mn ²⁺	23.8	22.5	5.62 Å over	1 05 Å over	1	
JILL	5. pheumoniae Cps2A	1.00	C40-11 and Will	25.0	22.5	241 residues	10 residues		
30FI	Enterococcus faecalis	2 71	-	26.1	28.4	2 53 Å over	1 09 Å over	2011	Northeast Structural
5411	EF0465	2.71		2011	2011	227 residues	9 residues	2011	Genomics Consortium
3NXH	B. subtilis TagV	2.59	-	27.4	32.5	3.98 Å over	1.61 Å over	2010	(NESG)
	Ũ					201 residues	8 residues		
3PE5	Clostridium leptum	2.38	-	26.4	27.9	3.64 Å over	3.66 Å over	2010	
	A7VV38_9CLOT					241 residues	10 residues		
	-						(chain B)		
30WQ	Listeria innocua	2.61	Di(hydroxyethyl)ether	22.0	24.9	4.39 A over	2.85 A over	2010	
	Lin1025					228 residues	10 residues		
2NIRO	Lintonia	2.00		22.4	25.2	4.57 & avian	(chain A)	2010	-
SNRO	Listeria	2.90	-	22.4	25.5	4.5/ A over 210 residues	2.95 A over	2010	
	Lmo1026					21) Iosidues	(chain B)		
3MEJ	B. subtilis TagT	2.49	-	25.9	29.1	3.08 Å over	1.46 Å over	2010	1
0	S. Submits Tug1	2			1	218 residues	10 residues	2010	
30KZ	Streptococcus	2.70	-	25.7	25.9	3.42 Å over	0.89 Å over	2010	1
	algalactiae gbs0355					235 residues	10 residues		1
				1			(chain A)		1

Table S1. List of LCP enzyme structures

^a Active site RMSD values were calculated with 10 conserved active site residues (S. aureus LcpA D91, R99, D101, R122, D123, K135, R216, R218, D224, R227).

LcpAsa residue	Location/proposed role	Mutagenesis analysis
D91	Mg ²⁺ coordination	 LcpB_{SA} (31-405) D70A – No activity <i>in vitro</i> (2) TagT_{BS} (46-323) D82A – Significant decrease in activity <i>in vitro</i> (2) TagU_{BS} D75A – Unable to sustain growth in the absence of WT TagT, TagU and TagV (4) LcpA_{CG} D88A – Failed to complement growth when WT LcpA expression was suppressed. Recombinant enzyme has pyrophosphatase activity <i>in vitro</i> (5)
R99	PG binding	 TagU_{BS} R83A – Unable to sustain growth in the absence of WT TagT, TagU and TagV (4) LcpA_{AO} R128A – Glycosylation of GspA was unaffected (1)
D101	Mg ²⁺ coordination	 TagT_{BS} (46-323) D97A – No activity <i>in vitro</i> (2) TagU_{BS} D85A – Unable to sustain growth in the absence of WT TagT, TagU and TagV (4)
S102	Interior of lipid binding pocket	 TagU_{BS} T86F – Unable to sustain growth in the absence of WT TagT, TagU and TagV (4)
R122	General base	 TagT_{BS} (46-323) R118A – No activity <i>in vitro</i> (2) LcpA_{CG} R138A – Failed to complement growth when WT LcpA expression was suppressed. Recombinant enzyme has pyrophosphatase activity <i>in vitro</i> (5) LcpA_{AO} R149A – Glycosylation of GspA was defective (equivalent to the Δ<i>lcpA</i> mutant). Recombinant enzyme has no pyrophosphatase activity <i>in vitro</i> (1)
D123	Activation of general base	• TagT _{BS} (46-323) D119T – No activity <i>in vitro</i> (2)
K135	PG binding	• TagT _{RS} (46-323) K131A – No activity in vitro (2)
E146	Solvent exposed surface of helix 2	• LcpA _{SA} E146K – Increased resistance to vancomycin (6)
A215	Interior of lipid binding pocket	• TagU _{BS} T197F – Unable to sustain growth in the absence of WT TagT, TagU and TagV (4)
R216	General acid	 LcpA_{CG} R257A – Failed to complement growth when WT LcpA expression was suppressed. Recombinant enzyme has pyrophosphatase activity <i>in vitro</i> (5)
R218	Donor substrate binding	• TagT _{BS} (46-323) R219A – No activity <i>in vitro</i> (2)
D224	PG binding	 TagT_{BS} (46-323) D224A – Significant decrease in activity <i>in vitro</i> (2)
R227	Donor substrate binding	 TagT_{BS} (46-323) R227A – No activity <i>in vitro</i> (2) LcpA_{AO} R266A – Glycosylation of GspA was defective (equivalent to the Δ<i>lcpA</i> mutant) (1)
(LcpA _{AO} C179)	Helix 2; stability of actinobacterial LCP proteins	 LcpA_{AO} C179A/C365A – Glycosylation of GspA was reduced. Recombinant enzyme displays low thermostability and reduced pyrophosphatase activity <i>in vitro</i> (1)
(LcpA _{A0} C365)	C-terminus; stability of actinobacterial LCP proteins	 LcpA_{AO} C365A – Glycosylation of GspA was reduced (1) LcpA_{AO} C179A/C365A – Glycosylation of GspA was reduced. Recombinant enzyme displays low thermostability and reduced pyrophosphatase activity <i>in vitro</i> (1)

Table S2. Summary of mutagenesis analyses of LCP enzymes

Cluster number	1	3	5
HADDOCK score	-47.6 +/- 4.3	-43.0 +/- 1.6	-37.4 +/- 6.4
Cluster size	25	10	8
RMSD from the overall	1.4 +/- 0.8	1.9 +/- 0.1	1.7 +/- 0.1
lowest-energy structure			
(Å)			
Van der Waals energy	-21.0 +/- 4.2	-24.2 +/- 3.6	-16.7 +/- 3.7
(kcal/mol)			
Electrostatic energy	-21.6 +/- 18.1	-9.9 +/- 15.7	-29.8 +/- 4.6
(kcal/mol)			
Desolvation energy	-22.4 +/- 7.0	-17.0 +/- 3.6	-14.8 +/- 6.8
(kcal/mol)			
Restraints violation	1.6 +/- 0.76	2.2 +/- 1.36	1.2 +/- 1.03
energy (kcal/mol)			
Buried Surface Area	657.6 +/- 69.2	630.7 +/- 29.0	564.8 +/- 45.5
(Å ²)			
Z-Score	-2.1	-1.1	0.2

Table S3. Statistics of the top 3 triGlcNAc-bound LcpA $_{\rm SA}$ clusters generated with HADDOCK2.2

Cluster number	1	2	3
HADDOCK score	-48.5 +/- 3.0	-45.5 +/- 1.9	-43.6 +/- 2.8
Cluster size	25	16	9
RMSD from the overall	3.6 +/- 0.2	3.8 +/- 0.9	3.1 +/- 0.6
lowest-energy structure			
(Å)			
Van der Waals energy	-23.4 +/- 1.5	-23.2 +/- 2.1	-22.3 +/- 2.4
(kcal/mol)			
Electrostatic energy	-51.2 +/- 19.0	-38.9 +/- 16.9	-28.2 +/- 7.3
(kcal/mol)			
Desolvation energy	-15.0 +/- 7.1	-14.8 +/- 2.8	-16.0 +/- 2.4
(kcal/mol)			
Restraints violation	1.7 +/- 0.33	2.5 +/- 0.95	2.9 +/- 1.05
energy (kcal/mol)			
Buried Surface Area	689.9 +/- 27.3	669.9 +/- 46.9	660.7 +/- 44.8
(Å ²)			
Z-Score	-2.5	-1.2	-0.4

Table S4. Statistics of the top 3 triGlcNAc-bound TagT_{BS} clusters generated with HADDOCK2.2

Figure S1. Chemical structures of *S. aureus* LCP enzyme substrates and products. LCP enzymes catalyze the transfer of WTA (a) and other anionic polymers, such as capsular polysaccharide (b), from lipid carriers (commonly C_{55} -P) to the C6-hydroxyl group of PG MurNAc.

Figure S2. Domain organization and secondary structure of LCP enzymes. (a) Domain organization of *S. aureus* (strain N315) and *B. subtilis* (strain 168) LCP enzymes. Transmembrane helices and LCP domains are shown in red and cyan, respectively. (b) Secondary structure diagram of LcpA_{SA} (H, helix; B, β -strand; NH, non-conserved helix). (c) Crystal packing of two TagU_{BS} monomers. Select residues mediating hydrophobic interactions are depicted as sticks. (d) The lipid bound to LcpA_{SA} is shown in yellow with the 2Fo-Fc electron density map contoured to 1 σ in a gray mesh. Heteroatoms are coloured by type (O, red; P, orange; N, blue).

Figure S3. Pyrophosphate-binding site of LCP enzymes. Conserved residues surrounding the pyrophosphate moiety of the lipid substrate (yellow) depicted as sticks. Heteroatoms are coloured by type (O, red; P, orange; N, blue; Mg²⁺, green) and bonds are indicated by lines (salt bridges as thick dotted lines; hydrogen bonds and metal-coordinating bonds as thin dotted lines).

Figure S4. Structural features surrounding the entrance of the lipid-binding pocket. Regions A, B, C and D are shown as coloured ribbons, and lipids are depicted in yellow. Select residues are shown as sticks and heteroatoms are coloured by type (O, red; P, orange; N, blue; Mg²⁺, green). The putative PG binding site is highlighted in yellow.

Figure S5. Sequence alignment of *S. aureus* **and** *B. subtilis* **LCP enzymes**. Secondary structure of LcpA_{SA} is depicted.

Figure S6. TriGlcNAc docked onto LcpA_{SA} and TagT_{BS}. Ribbon structures of LcpA_{SA} (green) and TagT_{BS} (PDB ID: 6MPS; cyan) in the top 3 clusters are depicted complexed to triGlcNAc (purple). The highest scoring structure in each cluster is shown. The lipid is in yellow and heteroatoms are coloured by type (O, red; P, orange; N, blue).

Figure S7. Oligomerization of *S. aureus* and *B. subtilis* LCP enzymes. Representative SEC-MALS analyses of Δ TM LCP enzymes eluted from a Superdex200 10/300 GL column. The coloured lines represent the differential refractive index, and the black lines correspond to the molecular weight. The average molecular weight from 3 trials is reported.

References

- Siegel, S. D., Amer, B. R., Wu, C., Sawaya, M. R., Gosschalk, J. E., Clubb, R. T., and Ton-That, H. (2019) Structure and Mechanism of LcpA, a Phosphotransferase That Mediates Glycosylation of a Gram-Positive Bacterial Cell Wall-Anchored Protein. *MBio.* 10, 1–16
- 2. Schaefer, K., Owens, T. W., Kahne, D., and Walker, S. (2018) Substrate Preferences Establish the Order of Cell Wall Assembly in Staphylococcus aureus. *J. Am. Chem. Soc.* **140**, 2442–2445
- Eberhardt, A., Hoyland, C. N., Vollmer, D., Bisle, S., Cleverley, R. M., Johnsborg, O., Håvarstein, L. S., Lewis, R. J., and Vollmer, W. (2012) Attachment of capsular polysaccharide to the cell wall in Streptococcus pneumoniae. *Microb. Drug Resist.* 18, 240–55
- 4. Kawai, Y., Marles-Wright, J., Cleverley, R. M., Emmins, R., Ishikawa, S., Kuwano, M., Heinz, N., Bui, N. K., Hoyland, C. N., Ogasawara, N., Lewis, R. J., Vollmer, W., Daniel, R. a, and Errington, J. (2011) A widespread family of bacterial cell wall assembly proteins. *EMBO J.* **30**, 4931–41
- 5. Baumgart, M., Schubert, K., Bramkamp, M., and Frunzke, J. (2016) Impact of LytR-CpsA-Psr Proteins on Cell Wall Biosynthesis in Corynebacterium glutamicum. *J. Bacteriol.* **198**, 3045–3059
- Katayama, Y., Sekine, M., Hishinuma, T., Aiba, Y., and Hiramatsu, K. (2016) Complete Reconstitution of the Vancomycin-Intermediate Staphylococcus aureus Phenotype of Strain Mu50 in Vancomycin-Susceptible S. aureus. *Antimicrob. Agents Chemother.* 60, 3730–42