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Supplementary Methods 

Protein extracts, DNA substrates and DNA repair assays 

The DNA repair assays are based on DNA repair nicking assays, in which DNA repair enzymes 

present in protein extract nick a DNA substrate that contains a site-specific lesion. This converts 

the full-length substrate into a defined shorter oligonucleotide, and the ratio between the two 

represents the DNA repair activity (1-4). Protein extracts were prepared by a freeze-thaw 

protocol, from frozen PBMC that were isolated from blood samples by Ficoll fractionation.  

Protein concentration was determined using the BCA assay. DNA substrates were synthetic 

double-stranded DNA oligonucleotides, each carrying a site-specific DNA damage, which is a 

substrate for the DNA repair enzyme being assayed: 8-oxoguanine for OGG1, hypoxanthine for 

MPG, and a furanyl abasic site for APE1. Each substrate DNA was 3’-tagged with a Yakima 

Yellow fluorophore (see Fig. 1 in the manuscript for experimental outline of the panel of DNA 

repair assays). The enzyme activities of OGG1 and MPG were determined by following the 

elimination of the damaged base from the DNA, which yielded an abasic site that was further 

cleaved by the APE1 activity in the extract. Complete cleavage was ensured by treatment with 

NaOH. APE1 activity was measured by nicking of the substrate at the synthetic abasic site. All 

assays were conducted using the optimized reaction conditions previously published (1-4), 

except the APE1 assay, which we revised in this study by reducing the substrate concentration 

from 40 to 20nM, and shortening reaction time from 15 to 10 minutes. All assays are based on 

the nicking of the substrate DNA, representing the DNA repair activity. This converts the full-
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length substrate into a defined shorter oligonucleotide, and the ratio between the two represents 

the DNA repair activity. The assays were performed on a robotic platform (Tecan Freedom EVO 

200), and the reaction products analyzed by capillary gel electrophoresis, using the ABI3130XL 

genetic analyzer (Applied Biosystems), and the GeneMapper (Applied Biosystems) and 

PeakAnalyzer (Robiotec, Rehovot, Israel) software. 

 

Bronchial and nasal sample collection 

Bronchial brushings. During diagnostic bronchoscopy procedures three bronchial brushings, 

designed to gently remove epithelial cells with minimal bleeding, were performed using 

bronchial brushes (Olympus Medical, Southend, UK).  Brushings using disposable cytology 

brushes (BC-202D-5010 Olympus Japan) were taken from geographically different areas of 

macroscopically uninvolved main bronchus or lobar bronchi contralateral to the suspected lesion.  

Nasal curette samples. Samples of nasal airway epithelium were taken under direct vision from 

the inferior part of the inferior turbinate of each nostril using nasal curettes (ASI Rhino-Pro; 

Arlington Scientific Inc.). 

 

RNAseq 

Tissue samples from bronchial brushings and nasal curettes were stored in 500µl RNALater 

overnight at 4oC, and then at -80oC for longer-term storage. RNA was extracted using Qiagen 

MiRNeasy columns according to manufacturer’s protocols. Briefly, bronchial brushes were rinsed 

in PBS, brushes transferred into 700µl Qiazol and cells lysed by vortexing twice for 30 seconds. 

For nasal samples the RNALater containing nasal tissue (500µl) was diluted with 2ml of PBS and 

spun at 10,000 rpm for 10 min. The cell pellet was lysed by resuspension in 700µl Qiazol. For 
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both types of samples, the Qiazol lysate was applied to a QiaShredder tube (#217004) and spun at 

13,000 rpm for 2 mins. The homogenate was kept at room temperature for 5 mins, followed by 

chloroform extraction using PhaseLock tubes. Nucleic acids in the aqueous phase were 

precipitated using 1.5 volumes 100% ethanol and DNA was digested using DNAse I. Finally, RNA 

was isolated from the mixture using RNAeasy mini spin columns. RNA was quantified using a 

Qbit measurement and quality assessed using an Agilent Bioanalyzer. For samples with a RIN 

greater than 7, a total of 500ng of RNA was used for Illumina TruSeq Library generation.  

Sequencing was carried on a HiSeq 2500 Illumina sequencers. Sequencing was carried out in two 

separate multiplexed experiments. Alignment was carried out on the human genome version 

GRCh37 using the Tophat alignment tool. On average each library contained above 20 Million 

reads. Count matrices for cases and controls were processed using DESeq2 (5).   

 

Analysis of RNAseq data 

As described in the manuscript, analyzing the relationship between the DNA repair score and 

gene expression, as determined by RNAseq, uncovered that low DNA repair score correlates 

with upregulation of immune system pathways in lung cancer patients, but not in control 

subjects. The following sections describe the methods and results of quality control (QC) 

procedures, data cleaning and statistical analyses implemented in the main manuscript. The 

RNAseq dataset included read counts from 669 nasal and bronchial samples derived from 490 

subjects, out of which DNA repair score values were available for 213 subjects. The 669 

samples’ RNAseq dataset (sequencing batches: 494 samples in experiment 1 and 175 in 

experiment 2) was used in its entirety for the QC analysis.  
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Quality control analysis of the RNAseq data 

Number of detected genes. Gene transcripts were defined as detected if it had counts of more 

than 10 reads. Genes with <10 reads were filtered out. Samples with less than 13,000 detected 

genes were filtered out from the analysis. 97.8% of the samples analyzed in experiment 1 and 

98.3% in experiment 2 had >13,000 detected genes.  

Experimental batches. We used Principal Component Analysis (PCA) to detect the major 

sources of variation in the data. As expected, tissue type - nasal (NS) versus bronchial (BR), 

explains most of the variance followed by sequencing batches (experiment 1 versus experiment 

2; Supplementary Fig. 1). We did find a few samples that seem to reside in the wrong clusters 

and removed them from further analysis. 

Gender effect. A good quality RNAseq dataset should enable identifying gender differences in 

gene expression. Stratifying by sequencing batch and tissue type we observed the effect of 

gender in the PCA of ~100 most variable genes. Several mismatches that were found were 

removed from further analysis (not shown). 

Final number of samples for analysis.  Following data cleaning we ended up with 242 samples 

that had both RNAseq expression data and DNA repair score results: 150 samples from lung cancer 

patients, including 113 nasal samples (88 from experiment 1 and 25 from experiment 2) and 37 

bronchial samples (22 from experiment 1 and 15 from experiment 2), and a total of 92 nasal 

samples from control subjects (67 from experiment 1 and 25 from experiment 2). 

Differential expression analysis 

Analysis was performed on the combined dataset obtained from the two experimental batches 

(Experiments 1 & 2). Similar results were obtained when only the bigger dataset of Experiment 1 

was used. The RNAseq data was regressed on DNA repair scores using DESeq2 (5), a regression 
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tool optimized for RNAseq data. Analysis was performed separately on the different tissues 

(nasal/bronchial) and disease state (cases / controls), with experimental batch, age, gender, 

smoking status (never, former and current smokers) and cancer histology (in cases) as adjusting 

factors. With a False Discovery Rate (FDR) threshold of 0.01, we could find very few genes 

whose expression correlated with the DNA repair score, as follows: case bronchial samples, 0; 

case nasal samples, 8; control nasal samples, 1; Nevertheless, it is notable that in the cases group 

(but not in control subjects) there is an enrichment of genes whose expression increases with 

decreasing DNA repair OMA score values (left, negative values part of the Volcano plot in 

Supplementary Fig. 2D). Hypothesizing that the correlation signal might be distributed over 

many genes, with each gene having a small effect size, we employed gene set enrichment 

analysis (GSEA; (6)), testing for pathways enriched with genes that are correlated with the DNA 

repair OMA score. 

  

Gene set enrichment analysis  

The list of genes, ranked by their statistics (as reported in DESeq2) was analyzed by GSEA (GSEA 

3.0) in order to identify whether there is an over-representation of genes belonging to specific 

pathways (annotated by Gene Ontology; GO terms; pathway Gene Ontology downloaded from 

MSigDB (6),c5.all.v6.1). Supplementary Table 2 lists the thirty most significant pathways that 

were identified. For each pathway, the enrichment algorithm finds the maximum enrichment score, 

reflecting the degree to which the genes in the set are over-represented at either the top (positive 

correlation) or bottom (negative correlation) of the list, and calculates the FDR q-value (the false 

discovery rate), which is the estimated probability that the enrichment score represents a false 

positive finding. The pathways were manually curated and divided into 3 groups: Immune system-
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related pathways, Cell Cycle pathways and Other pathways (see legend to Supplementary Table 

3). Supplementary Table 3 summarize the pathways that were found to be significantly enriched 

in nasal samples by GSEA (q-value<0.001, a very strict value as explained in ref (6)), showing a 

strong negative association of Immune system-related pathways in the cases group, with 

essentially no signal in the control groups (see also Fig. 5 in the manuscript). Another set of 

pathways that exhibited negative correlation with the OMA score represents cell cycle pathways, 

which unlike the Immune system-related pathways seem to be enriched in both cases and controls 

(Supplementary Table 3).  

To visualize the differences in the correlations between DNA repair score and immune-

system pathways, versus DNA repair score and ‘Other’ pathways, we highlight in differential 

expression volcano plots two pathways, selected for being relative big and with roughly similar 

size (~350 genes): the inflammatory response pathway (GO_INFLAMMATORY_RESPONSE, 

which is an immune system pathway), and the skeletal system development pathway 

(GO_SKELETAL_SYSTEM_DEVELOPMENT, which belongs to ‘Other pathways’). 

Supplementary Fig. 2 shows Volcano plots, for all the available groups 

(Cases/Controls)x(Nasal/Bronchial) (in grey dots; Supplementary Fig. 2 A, D, G), highlighting 

the inflammatory response pathway (in red dots; Supplementary Fig. 2B, E, H) compared to the 

skeletal system development pathway (in blue dots; Supplementary Fig. 2 C, F, I). The 

inflammatory response pathway was found to be enriched in the cases both in nasal and in 

bronchial tissues (left Volcano lobe, Supplementary Fig. 2 E, H), but not in the controls 

(Supplementary Fig. 2B). The skeletal system development pathway was not enriched in any 

group/tissue (Supplementary Fig. 2C, F, I). 
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Simulations to test the robustness of the correlation between a low DNA repair OMA score 

and activity of immune system pathways 

Extreme OMA score trimming analysis. In this section we repeated the analysis for the nasal 

tissue samples sequenced in experiment 1, except that we excluded samples with OMA scores at 

the tails of the OMA distribution, removing 3.5% tail from each side of the OMA scores.  

The effect of extreme trimming is presented in Supplementary Fig. 3a, showing the upregulation 

of the immune pathways also with the trimmed OMA score (compare to Fig. 5 in manuscript). 

Sub-sampling analysis. To get an estimate for the robustness of the results to a more general 

sampling noise, we conducted 100 iterations of random sub-sampling of subjects and repeated 

the regression in each iteration. The RNAseq data of the selected random groups of subjects (at 

80% of the sample size) were regressed on OMA scores, followed by gene set enrichment 

analysis, and the number of significant immune system-related pathways (at a q-value<0.001) 

was determined. Supplementary Fig. 3b shows that 95% of the simulations have more than 117 

significant immune system-related pathways (with median value of 137). This analysis is an 

indication that the results are not sensitive to sampling noise. 

 

Methods and Tools for RNAseq analysis 

All Statistical analysis was conducted in R version 3.2.1 (7). All figures were generated with 

ggplot2 package (8). Data normalization and regression analysis was done with DESeq2 (5). 

GSEA and MSigDB (c5.all.v6.1) were used for GO enrichment (6). 
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Calculation of 5-year risk of lung cancer 
 

The basis of the calculation was the Liverpool Lung Project (LLP) risk model (9). The paper 

describes a linear logistic regression model for the probability of developing lung cancer within 5 

years that depends on several factors: age, sex, smoking duration, prior diagnosis of pneumonia, 

occupational exposure to asbestos, prior diagnosis of malignant tumor, and family history of lung 

cancer. To illustrate the effect of the DNA repair score (OMA score) on the risk of lung cancer 

we did the following: (a) We chose the profile of a male or female aged 65y who had one of the 

following smoking histories: never smoked, smoked for 10 years, smoked for 30 years or 

smoked for 50 years, and who had none of the other risk factors in the LP model (i.e. no prior 

diagnosis of pneumonia, no occupational exposure to asbestos, no prior diagnosis of a malignant 

tumor and no family history of lung cancer).  (b) We assumed that the distribution of OMA DNA 

repair scores was independent of the risk factors in the LLP model. This is supported by data 

from the current and previous studies that have shown that the OMA score has small statistically 

non-significant correlations with age, sex and smoking history. (c) We assumed also that none of 

the risk factors in the LLP model modify the effect of OMA score on lung cancer risk. This is 

also supported by data from the current and previous studies that have shown small statistically 

non-significant interactions between OMA and age, sex and smoking history. (d) Under these 

assumptions we adapted the LLP model to include the OMA score as an extra factor. The beta-

coefficient for the OMA score in this model was log(2.5), where 2.5 was the cross-validated odds 

ratio estimate for the DNA repair score (see Table 3 of the main paper). For a 65-year old male 

with the above-mentioned profile, the modified model was: 

logit (P) = -5.56 + beta-smok – log(2.5) × (OMA – 3.553).    (1) 
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In this equation, P is the probability of lung cancer diagnosis within the next 5 years, the value of 

-5.56 is taken from Table A1 of (9), the value of beta-smok is 0, 0.769, 1.452 or 2.507 

respectively for never-smoked, or smoked for 10y, 30y or 50y (taken from Table 2 of (9)), and 

the value of 3.553 was calculated by us so as to yield an average risk in our control group equal 

to the average risk in the Liverpool population of males aged 65y in the years 2002-4 (see Table 

A1 of (9)).  

The model for a 65-year old female was that given in Equation (A1) except that -5.56 was 

replaced by -5.99 (see Table A1 (9)) and 3.553 was replaced by 3.555 (our calculation).  

(e) Equation (1) enables the 5-year lung cancer risk to be calculated for a person resident in 

Liverpool with one of our profiles and a specific value of the OMA score (to be entered into the 

equation). To calculate the average risk for persons with that same profile but with OMA scores 

below or above a given percentile (5th, 10th or 75th, as given in Supplementary Table 4), we used 

numerical integration over the distribution of OMA scores, assuming the DNA repair score had a 

normal distribution with mean value of 4.00 (see the control group mean in Table 1 in the main 

manuscript) and standard deviation 0.98 (the control group’s SD).   
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Supplementary Tables 
 
  
 
Supplementary Table 1. Variation of the DNA repair score with disease staging* 

Lung cancer stage  T staging 

Stage n mean STD CI_lower CI_upper  T n Mean STD CI lower CI upper 
C† 140 4.00 0.98 3.84 4.16  C† 140 4.00 0.98 3.84 4.16 
1a 25 2.95 0.95 2.56 3.35  1a 22 2.80 1.02 2.35 3.25 
1b 20 3.26 0.97 2.80 3.71  1b 17 2.65 1.050 2.11 3.19 
2a 18 2.58 1.04 2.06 3.10  2a 49 2.84 1.03 2.54 3.13 
2b 9 2.07 0.71 1.53 2.61  2b 19 2.45 1.05 1.94 2.95 
3a 24 2.76 0.76 2.44 3.08  3 16 2.32 0.90 1.84 2.80 
3b 8 2.18 0.86 1.46 2.90  4 24 2.62 1.32 2.06 3.15 
4 44 2.44 1.28 2.06 2.83        
             

N staging  M staging 

N n mean STD CI_lower CI_upper  M n Mean STD CI lower CI upper 
C† 140 4.00 0.98 3.84 4.16  C† 140 4.00 0.98 3.84 4.16 
0 64 2.90 1.05 2.64 3.17  0 103 2.76 0.96 2.58 2.95 
1 17 2.67 1.39 1.96 3.39  1a 14 2.37 1.22 1.67 3.07 
2 51 2.50 0.95 2.23 2.77  1b 30 2.48 1.32 1.99 2.97 
3 15 2.22 1.00 1.67 2.77        

 
 
 Cases vs. controls‡  Linear regression§ 

  Difference P value  Estimate Std. Error t value Pr(>|t|) 
Stage Nonadjusted -1.05 <0.0001  -0.103 0.038 -2.721 0.0073 
 Adjusted -0.79 0.0009  -0.125 0.039 -3.253 0.0014 
T Nonadjusted -1.20 <0.0001  -0.065 0.055 -1.173 0.2426 
 Adjusted -0.67 0.011  -0.073 0.055 -1.329 0.1861 
N Nonadjusted -1.09 <0.0001  -0.215 0.080 -2.700 0.0078 
 Adjusted -0.84 <0.0001  -0.252 0.081 -3.124 0.0022 
M Nonadjusted -1.24 <0.0001  -0.160 0.108 -1.475 0.1425 
 Adjusted -1.05 <0.0001  -0.227 0.111 -2.047 0.0425 

* DNA repair score with the revised APE1 assay. 
† Control subjects 
‡ For disease stage - Controls vs stage 1a; for T staging - controls versus T1a; for N staging – controls vs. 
N0; for M staging, controls vs. M0. 
§ Test for a linear trend between staging categories in cases (control subjects not included).   
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Supplementary Table 2. Highest GSEA differentially expressed pathways in samples from lung cancer patients 
 
No. Pathway Size* 

 
ES† 
 

NES‡ 
 

FDR  
q-val§ 

1 GO_POSITIVE_REGULATION_OF_IMMUNE_RESPONSE 450 -0.59 -2.75 <10-5 
2 GO_ACTIVATION_OF_IMMUNE_RESPONSE 340 -0.60 -2.73 <10-5 
3 GO_CYTOKINE_MEDIATED_SIGNALING_PATHWAY 344 -0.59 -2.72 <10-5 
4 GO_ACTIVATION_OF_INNATE_IMMUNE_RESPONSE 180 -0.62 -2.68 <10-5 
5 GO_REGULATION_OF_INNATE_IMMUNE_RESPONSE 300 -0.59 -2.67 <10-5 
6 GO_POSITIVE_REGULATION_OF_DEFENSE_RESPONSE 296 -0.58 -2.65 <10-5 
7 GO_POSITIVE_REGULATION_OF_INNATE_IMMUNE_RESPONSE 216 -0.60 -2.65 <10-5 
8 GO_ANTIGEN_PROCESSING_AND_PRESENTATION_OF_ 

EXOGENOUS_PEPTIDE_ANTIGEN_VIA_MHC_CLASS_I 
60 -0.71 -2.65 <10-5 

9 GO_INFLAMMATORY_RESPONSE 336 -0.57 -2.64 <10-5 
10 GO_IMMUNE_RESPONSE_REGULATING_CELL_SURFACE_ 

RECEPTOR_SIGNALING_PATHWAY 
256 -0.59 -2.63 <10-5 

11 GO_ANTIGEN_RECEPTOR_MEDIATED_SIGNALING_PATHWAY 153 -0.61 -2.62 <10-5 
12 GO_ANAPHASE_PROMOTING_COMPLEX_DEPENDENT_ 

CATABOLIC_PROCESS 
72 -0.67 -2.60 <10-5 

13 GO_CELLULAR_RESPONSE_TO_CYTOKINE_STIMULUS 473 -0.55 -2.57 <10-5 
14 GO_GRANULOCYTE_MIGRATION 50 -0.71 -2.57 <10-5 
15 GO_RESPONSE_TO_INTERFERON_GAMMA 111 -0.63 -2.56 <10-5 
16 GO_INNATE_IMMUNE_RESPONSE 437 -0.55 -2.56 <10-5 
17 GO_LEUKOCYTE_CHEMOTAXIS 87 -0.64 -2.54 <10-5 
18 GO_CELL_CHEMOTAXIS 128 -0.60 -2.52 <10-5 
19 GO_INNATE_IMMUNE_RESPONSE_ACTIVATING_CELL_ 

SURFACE_RECEPTOR_SIGNALING_PATHWAY 
94 -0.63 -2.52 <10-5 

20 GO_TUMOR_NECROSIS_FACTOR_MEDIATED_ 
SIGNALING_PATHWAY 

99 -0.63 -2.52 <10-5 

21 GO_IMMUNE_EFFECTOR_PROCESS 374 -0.54 -2.51 <10-5 
22 GO_DEFENSE_RESPONSE_TO_BACTERIUM 124 -0.60 -2.51 <10-5 
23 GO_T_CELL_RECEPTOR_SIGNALING_PATHWAY 126 -0.61 -2.51 <10-5 
24 GO_ADAPTIVE_IMMUNE_RESPONSE 193 -0.57 -2.51 <10-5 
25 GO_LEUKOCYTE_MEDIATED_IMMUNITY 129 -0.60 -2.49 <10-5 
26 GO_REGULATION_OF_LEUKOCYTE_MEDIATED_IMMUNITY 131 -0.59 -2.49 <10-5 
27 GO_CELLULAR_RESPONSE_TO_INTERFERON_GAMMA 93 -0.62 -2.48 <10-5 
28 GO_POSITIVE_REGULATION_OF_IMMUNE_EFFECTOR_PROCESS 129 -0.59 -2.48 <10-5 
29 GO_MYELOID_LEUKOCYTE_MIGRATION 70 -0.64 -2.47 <10-5 
30 GO_PATTERN_RECOGNITION_RECEPTOR_SIGNALING_PATHWAY 96 -0.61 -2.45 <10-5 

*Number of genes in the pathway †Enrichment Score ‡Normalized enrichment score §False Discovery 
Rate q-value 
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Supplementary Table 3. Summary of biological pathways enrichment in nasal cells obtained for the 
DNA repair score using GSEA 

Subjects 
class 

Direction 
of 

correlation 

Number of  
pathways reported 

by GSEA 

Number of Biological pathways* 
with P value <0.001 

All Immune 
system* 

Cell 
cycle* 

Other 

Case Negative 3564 305 185† 23 97 
Control Negative 2638 92 1 40 51 

       
Case Positive 532 0 0 0 0 

Control Positive 1458 0 0 0 0 
*Immune related pathways were selected based on the following keywords: IMMUNE, IMMUNITY, 
CHEMOTAXIS, CHEMOKINE, TUMOR_NECROSIS, B_CELL, T_CELL, LEUKOCYTE, 
GRANULOCYTE, LYMPHOCYTE, INTERFERON, ANTIGEN, DEFENSE, CYTOKINE, INFLAMM, 
MYELOID, FC_#RECEPTOR, MHC_#, KAPPAB, INTERLEUKIN, TOLL_LIKE_RECEPTOR, 
RESPONSE_TO_#VIRUS, MACROPHAGE, WOUND, PHAGO, NEUTROPHIL, 
RESPONSE_TO_#BACTERI, RESPONSE_TO_#FUNGUS; According to these keywords 366 out of the 
4096 pathways reported by GSEA were defined as Immune related pathways. 

Cell Cycle related pathways were selected based on the following keywords: CHROMATID, 
CENTROMERIC, DIVISION, SPINDLE, CHROMOSOM, KINETOCHORE, CELL_CYCLE, 
CENTROMERE, ANAPHASE, DNA_REPLICATION, MITOTIC, CYCLI. According to these 
keywords 123 out of the 4096 pathways reported by GSEA were defined as Cell Cycle related pathways. 

The Symbol # is used to indicate the possible existence of several words with different endings. 
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Supplementary Table 4. Estimated projected 5-year risk of lung cancer for persons aged 65y 
with different smoking histories and different DNA repair scores   
    
Gender Duration of smoking Average 5-year 

risk to develop 
lung cancer (%)* 

5-year risk to develop lung cancer (%) 
for different DNA repair OMA scores†  

   ≤5th 
percentile 

≤10th 
percentile 

≥75th 
percentile 

Male  Never 0.4 1.7 1.3 0.1 
 10y 0.8 3.6 2.8 0.2 
 30y 1.6 6.9 5.4 0.4 
 50y 4.5 17.2 13.8 1.1 
Female  Never 0.2 1.1 0.9 0.1 
 10y 0.5 2.4 1.8 0.1 
 30y 1.1 4.6 3.6 0.2 
 50y 3.0 12.0 9.5 0.7 

 
* Average risk based on the Liverpool Lung Project Cancer Risk Model (Cassidy et al, Br. J. 
Cancer, 2008, 98(2):270-6).  
†DNA repair risk values calculated assuming that the DNA repair score is normally distributed in the 
population, independent of age, sex and smoking history and there is no interaction between DNA repair 
score and these factors. See Methods section above.  
Note that NLST participants had an approximate 5-year lung cancer risk of 3%. The table shows that, in 
the absence of DNA repair information, those aged 65y would have this risk or higher if they had smoked 
50y. However, with information on the DNA repair score, it can be seen that those who have smoked 30y 
would also have an average risk of 3% or more if they have a low OMA score (below 10th percentile), 
whereas those who have smoked 50y but have a high OMA score (above 75th percentile) would have an 
average risk far below 3%.   
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Supplementary Figures 
 
 
 
 
 
 
 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 1. Principle component analysis to detect the main sources of variation 
in the RNAseq data. NS, nasal samples; BR, bronchial samples; exp1, experiment 1, exp2, 
experiment 2. 
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Supplementary Figure 2. Differential expression analysis relative to DNA repair OMA score 
for all available groups (Cases/Controls)x(Nasal/Bronchial) is presented by volcano plots. Grey 
dots represent non-annotated genes; Red dots represent genes from the inflammatory response 
pathway; Blue dote represents genes from the skeletal system development pathway. 
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Supplementary Figure 3. Analysis of the robustness of the correlation between low DNA repair 
OMA score and upregulation of immune-system related pathways. A. Effect of extreme OMA 
score trimming on the enrichment of immune system pathways with low DNA repair score using 
gene set enrichment analysis (GSEA). Trimming was performed separately for nasal samples 
from cases and controls by removing samples with DNA repair OMA values in the 3.5% extreme 
OMA values from both sides. Genes from the trimmed sub-groups were ranked by the RNAseq2 
analysis according to their correlation to the DNA repair score, and analyzed by GSEA to 
identify pathways (using GO terms) which significantly correlate (negative or positive 
correlation) with the DNA repair score. The figure represents all Immune system related 
pathways (depicted by the list of keywords presented in Supplementary Table 3) found in the 
GSEA analysis, with Y axis value showing the FDR -Log(Q-Value) for the enrichment score. 
The pathways were colored according to their FDR values: gray dots Q-Value > 0.001, red dots 
Q-Value<0.001. B. Sub-sampling analysis of the GSEA results. Analysis was performed on each 
of 100 simulations of random sub-sampling of 80% of the sample size. The graph presents the 
distribution, among the 100 simulations, of immune system-related pathways which had a 
stringent P-value of <0.001. 
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Supplementary Figure 4. Comparison of association of low DNA repair score with lung cancer 
in the UK and Israeli (IL) studies. Results of logistic regression, in which odds ratios were 
estimated for the continuous DNA repair score variable and categorized into 3 groups.  IL, 
results taken from the Israeli study (2); UK, results were taken from Table 3 in the manuscript.  
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