1 SUPPLEMENTAL MATERIALS

- ² A. L. Dapper & B. A. Payseur. Molecular Evolution of the Meiotic Recombination Pathway in Mammals.
- 3
- ⁴ Table S1: Testes Expression Datasets (Barrett et al. 2012)

Species	GEO Accession	Reference
Bos taurus	GSM1020728 & GSM1020746	(Merkin et al. 2012)
Callithrix jacchus	GSM1227961, GSM1227962 & GSM1227963	(Cortez et al. 2014)
Canis lupus familiaris	GSM747469 & GSM1359286	(Derti et al. 2012; Vandewege et al. 2016)
Eptesicus fuscus	GSM1359287	(Vandewege et al. 2016)
$Equus \ caballus$	GSM1139276 & GSM1359288	(Coleman et al. 2013; Vandewege et al. 2016)
Gorilla gorilla	GSM752663	(Brawand et al. 2011)
Homo sapiens	GSM752707 & GSM752708	(Brawand et al. 2011)
Macaca mulatta	GSM752642 & GSM752643	(Brawand et al. 2011)
Mus musculus	GSM752629 & GSM752630	(Brawand et al. 2011)
Ovis aries	GSM1666944 & GSM1666936	(Guan et al. 2017)
Pan paniscus	GSM752690	(Brawand et al. 2011)
Pan troglodytes	GSM752678	(Brawand et al. 2011)
Pongo pygmaeus	GSM1858310 & GSM1858311	(Carelli et al. 2016)
Rattus norvegicus	GSM1278058	(Cortez et al. 2014)
Sus scrofa	GSM1902350, GSM2033157 & GSM2033163	(Li et al. 2016; Yang et al. 2017)
Tupaia chinensis	GSM957062	(Fan et al. 2013)

⁵ Table S2: NCBI Reference Genomes (O'Leary et al. 2015)

Species	Assembly	RefSeq Accession	WGS Project Reference
Bos taurus	Bos_taurus_UMD_3.1.1	$GCF_{-}000003055.6$	(Zimin et al. 2009)
Callithrix jacchus	Callithrix_jacchus-3.2	$GCF_{000004665.1}$	
Canis lupus familiaris	CanFam3.1	GCF_000002285.3	(Lindblad-Toh et al. 2005)
$Eptesicus\ fuscus$	${ m EptFus1.0}$	GCF_000308155.1	
$Equus\ caballus$	EquCab2.0	$GCF_{000002305.2}$	(Wade et al. 2009)
Gorilla gorilla	gorGor4	GCF_000151905.2	(Scally et al. 2012)
Homo sapiens	m GRCh38.p10	$GCF_{000001405.36}$	
Macaca mulatta	Mmul_8.0.1	GCF_000772875.2	(Zimin et al. 2014)
Mus musculus	m GRCm38.p5	GCF_000001635.25	
Ovis aries	Oar_v4.0	GCF_000298735.2	(International Sheep Genomics Consortium et al. 2010)
Pan paniscus	panpan1.1	$GCF_{-}000258655.2$	(Prüfer et al. 2012)
$Pan\ troglodytes$	Pan_tro_3.0	GCF_000001515.7	(The Chimpanzee Sequencing Analysis Consortium et al. 2005)
Pongo abelii	P_pygmaeus_2.0.2	$GCF_{000001545.4}$	(Locke et al. 2011)
Rattus norvegicus	Rnor_6.0	$GCF_{-}000001895.5$	(Rat Genome Sequencing Project Consortium et al. 2004)
Sus scrofa	Sscrofa11.1	$GCF_{00003025.6}$	
Tupaia chinensis	TupChi_1.0	GCF_000334495.1	(Fan et al. 2013)

1-1
0
61
÷
а
\mathbf{et}
0
ă
.5
H
્યુ
ĮŊ,
S
ă
Ξ
Ĕ
Ð
75
~
e
Я
Ð
Ч
ų
3
щ
H
E.
- e
Ĕ
Ē
. –
ŝ
ň
•1
e
٦,
Ë,
r .

 \sim

Species	Assembly	RefSeq Accession	WGS Project Reference
Bos taurus	Bos_taurus_UMD_3.1	GCF_000003055.3	(Zimin et al. 2009)
Callithrix jacchus	Callithrix_jacchus-3.2	$GCF_{000004665.1}$	
Canis lupus familiaris	CanFam3.1	$GCF_{-}000002285.3$	(Lindblad-Toh et al. 2005)
Eptesicus fuscus	ı	ı	
$Equus\ caballus$	EquCab2.0	$GCF_{-}000002305.2$	(Wade et al. 2009)
Gorilla gorilla	gorGor3.1	$GCF_{-000151905.1}$	
Homo sapiens	m GRCh38.p10	$GCF_{-}000001405.36$	
Macaca mulatta	Mmul_8.0.1	$GCF_{-}000772875.2$	(Zimin et al. 2014)
$Mus\ muscular$	GRCm38.p5	$GCF_{-}000001635.25$	
Ovis aries	Oar_v3.1	$GCF_{-}000298735.1$	(International Sheep Genomics Consortium et al. 2010)
Pan paniscus	panpan1.1	$GCF_{-}000258655.2$	(Prüfer et al. 2012)
Pan troglodytes	CHIMP2.1.4	$GCF_{-000001515.6}$	(The Chimpanzee Sequencing Analysis Consortium et al. 2005)
Pongo abelii	PPYG2	$GCF_{-000001545.4}$	(Locke et al. 2011)
Rattus norvegicus	Rnor_6.0	$GCF_{-}000001895.5$	(Rat Genome Sequencing Project Consortium et al. 2004)
Sus scrofa	Sscrofa11.1	$GCF_{-}000003025.6$	
$Tupaia\ chinensis$	ı	ı	

7 Table S4: Evolutionary rates and tests for positive selection across mammals at 32 recombination genes using the

⁸ gene tree. Genes are organized by step in the pathway, as labeled in Figure 3. (Yang 2007).

Gene	bp	N	ω	M	M1-M2	p-value	M7-M8	p-value	M8a-M8	p-value	
(A) DSB Fo	ormatio	on									
HORMAD1	1212	16	0.3037	7	0	1.000	3.135	0.2086	_		
MEI4	1170	16	0.4310	7	0	1.000	0.058	0.9715		_	
REC114	870	15	0.4237	7	0	1.000	4.1874	0.1232		_	
IHO1	1824	16	0.7099	8	13.384	0.0012	17.714	0.0001	14.707	0.0001	
SPO11	1188	15	0.1701	7	0	1.000	4.697	0.0955		—	
(B) DSB Pr	rocessi	ng									
HORMAD2	981	15	0.3290	1	0	1.000	3.881	0.1436			
MRE11	2136	16	0.1686	8	0.636	0.7277	12.014	0.0025	4.822	0.0281	
NBS1	2289	15	0.4185	8	0	1.000	12.899	0.0016	4.298	0.0382	
RAD50	3936	16	0.0322	1	0	1.000	0.5615	0.7552			
BRCC3	954	15	0.0601	7	0	1.000	0.573	0.7509			
(C) Homology Search & Strand Invasion											
DMC1	1020	15	0.0365	7	0	1.000	4.288	0.1172		—	
RAD51	1017	16	0.0322	1	0	1.000	0.562	0.7552			
SPATA22	1101	16	0.4932	7	0	1.000	0.200	0.9049			
MEIOB	1425	16	0.2340	7	0	1.000	0.221	0.8955			
MCMDC2	2052	16	0.2242	7	0	1.000	0.610	0.7370		_	
(D) Synaps	is										
REC8	1833	16	0.3698	8	0	1.000	14.690	0.0006	5.927	0.0149	
RAD21L	1686	15	0.503	8	12.124	0.0023	32.050	>0.0001	12.049	0.0005	
SYCP1	3015	16	0.4337	8	8.711	0.0128	26.860	>0.0001	9.243	0.0024	
SYCP2	4650	16	0.5572	8	11.584	0.0031	37.200	>0.0001	15.838	0.0001	
TEX12	369	14	0.2297	7	0.0565	0.9721	1.549	0.4610			

Gene	bp	N	ω	M	M1-M2	p-value	M7-M8	p-value	M8a-M8	p-value
(E) CO/N	ICO D	ecisi	on							
TEX11	2844	15	0.8483	8	60.872	>0.0001	82.665	>0.0001	61.141	>0.0001
SHOC1	4644	16	0.6113	8	12.447	0.0020	30.561	>0.0001	15.645	0.0001
RNF212	948	16	0.5014	8	0	1.000	16.366	0.0003	5.202	0.0226
RNF212B	906	14	0.4066	7	0	1.000	0.500	0.7788	—	_
MSH4	2814	16	0.2132	8	16.608	0.0002	39.447	>0.0001	23.238	>0.0001
MSH5	2565	15	0.1642	7	0	1.000	4.214	0.1216		
(F) Resol	ution									
MER3	4458	16	0.3633	8a	0	1.000	12.838	0.0016	3.109	0.0779
CNTD1	1026	15	0.2496	7	0	1.000	0.936	0.6263		_
HEI10	831	15	0.1226	7	0	1.000	0.250	0.8826		_
MLH1	2313	15	0.1652	8a	0	1.000	12.221	0.0022	0.280	0.5970
MLH3	4419	16	0.4444	7	0	1.000	3.757	0.1528		
MUS81	1665	16	0.2124	7	0	1.000	0.628	0.7304		_

¹⁰ Table S5: Comparisons of polymorphism within humans (African/African-Amercian) to divergence between human

¹¹ and macaque at recombination genes.

Gene	Pn	\mathbf{Ps}	Dn	Ds	MK Test	NI	DoS	Direction			
(A) DSB Fo	orma	tion									
HORMAD1	17	5	5	12	0.0040	8.16	-0.4786	Neg.			
MEI4	6	3	24	9	0.6987	0.75	0.0606				
<i>REC114</i>	17	8	11	14	0.1536	2.705	-0.2400				
IHO1	31	16	36	19	1.000	1.0226	-0.0050				
SPO11	22	9	11	22	0.0058	4.8889	-0.3763	Neg.			
(B) DSB P	roces	sing									
HORMAD2	24	5	7	9	0.0164	6.1714	-0.3901	Neg.			
MRE11	43	16	5	35	<0.0001	18.8125	-0.6038	Neg.			
NBS1	49	19	34	25	0.0963	1.8693	-0.1443	_			
RAD50	57	24	8	43	<0.0001	12.7656	-0.5468	Neg.			
BRCC3	6	4	2	6	0.1880	4.5000	-0.3500	_			
(C) Homolo	(C) Homology Search & Strand Invasion										
DMC1	11	8	0	11	0.0002		-0.5789	Neg.			
RAD51	9	8	0	13	0.0033		-0.5294	Neg.			
SPATA22	26	10	21	10	0.7900	1.2381	-0.0448	_			
MEIOB	23	11	20	22	0.1000	2.300	-0.2003	—.			
MCMDC2	44	16	16	26	<0.0001	4.4688	-0.3524	Neg.			
(D) Synaps	is										
REC8	38	10	38	31	0.0101	3.1000	-0.2409	Neg.			
RAD21L	18	9	27	13	1.000	0.9630	0.0083				
SYCP1	36	27	33	27	textit0.8570	1.0909	-0.0214	_			

Gene	Pn	\mathbf{Ps}	Dn	Ds	MK Test	NI	DoS	Direction
(D) Synap	osis C	ont.						
SYCP2	108	33	74	53	0.0016	2.3440	-0.1833	Neg.
TEX12	6	6	2	4	0.6380	2.0000	-0.1667	
(E) CO/N	ICO I	Decis	ion					
TEX11	26	14	55	25	0.6846	0.8442	0.0375	
SHOC1	79	39	85	37	0.6788	0.8817	0.0272	
RNF212B	4	0	8	12	0.0932	4.1830	-0.3418	
MSH4	44	23	24	29	0.0279	2.3116	-0.2039	Neg.
MSH5	49	22	19	33	0.0005	3.8684	-0.3248	Neg.
(F) Resolu	ution							
MER3	80	34	54	44	0.0319	1.9172	-0.1507	Neg.
CNTD1	18	9	12	8	0.7689	1.2308	-0.0476	
HEI10	17	13	4	5	0.7062	1.6346	-0.1222	
MLH1	53	12	9	29	<0.0001	14.2315	-0.5785	Neg.
MLH3	106	40	77	57	0.0085	1.9617	-0.1514	Neg.
MUS81	48	27	17	40	0.0001	4.1830	-0.3418	Neg.

¹³ Table S6: Sequence divergence between human (*Homo sapiens*) and macaque (*Macaca mulatta*) for 32 recombination

¹⁴ genes (Yang and Nielsen 2000; Yang 2007).

Gene	bp	ω	\boldsymbol{S}	N	t	κ	dN	dS	
(A) DSB Fo	ormatio	on							
HORMAD1	1182	0.0901	273.9	908.1	0.0443	3.8819	0.0044 + 0.0022	0.0490 + 0.0137	
MEI4	1167	0.7252	331	824	0.0822	4.6295	0.0247 +/- 0.0056	0.0341 +/- 0.0104	
REC114	864	0.3239	237.2	557.8	0.0974	2.9455	0.0200 +/- 0.0061	0.0618 +/- 0.0168	
IHO1	1797	0.6608	509	1273	0.0951	3.6035	0.0276 + 0.0047	0.0418 + 0.0094	
SPO11	1188	0.1434	291.2	896.8	0.0872	2.5317	0.0118 +/- 0.0036	0.0823 + - 0.0178	
(B) DSB P	rocessi	ng							
HORMAD2	921	0.295	256.7	664.3	0.0531	4.2164	0.0106 + 0.0040	0.0360 + 0.0121	
MRE11	2124	0.0392	479.4	1644.6	0.0597	2.6154	0.0030 + 0.0014	0.0778 + 0.0135	
NBS1	2265	0.4155	553.7	1705.3	0.0804	5.0955	0.0199 + 0.0035	0.0480 + 0.0097	
RAD50	3969	0.0714	1118.7	2817.3	0.0401	5.0903	0.0028 + 0.0010	0.0399 + 0.0062	
BRCC3	951	0.0979	264	609	0.028	4.6	0.0025 + 0.0020	0.0252 + 0.0100	
(C) Homology Search & Strand Invasion									
DMC1	1020	0.0000	273.7	746.3	0.0335	5.1279	0.0000 +- 0.0000	0.0416 + 0.0127	
RAD51	1017	0.0000	306.5	710.5	0.0398	6.7467	0.0000 +- 0.0000	0.0441 + 0.0124	
SPATA22	1089	0.4523	247.8	841.2	0.0879	3.6505	0.0230 + 0.0053	0.0508 + 0.0150	
MEIOB	1413	0.2462	348.9	1064.1	0.0927	4.3887	0.0176 + 0.0041	0.0715 + 0.0151	
MCMDC2	2043	0.2108	534	1509	0.0635	7.8547	0.0107 + 0.0027	0.0507 + 0.0101	
(D) Synaps	is								
REC8	1701	0.477	497	1138	0.1293	2.8869	0.0323 + 0.0054	0.0678 + 0.0122	
RAD21L	1680	0.6334	427.5	1237.5	0.0735	5.6876	0.0213 + 0.0042	0.0337 + 0.0091	
SYCP1	2928	0.3676	761.6	2166.4	0.0628	4.8307	0.0145 + 0.0026	0.0393 + 0.0074	
SYCP2	4590	0.3873	1070.7	3519.3	0.0854	5.994	0.0208 + 0.0025	0.0537 + 0.0074	
TEX12	369	0.1349	80.2	288.8	0.05	1.9678	0.0070 + 0.0049	0.0516 + 0.0260	

¹⁵ Table S6: Cont.

Gene	bp	ω	$oldsymbol{S}$	N	t	κ	dN	dS		
(E) CO/N	CO D	ecision								
TEX11	2775	0.9068	805.9	1933.1	0.0897	7.8022	0.0290 +- 0.0040	0.0320 + 0.0064		
SHOC1	4332	0.7225	1203	3129	0.0865	9.5737	0.0261 + 0.0029	0.0361 + 0.0057		
RNF212	816	0.387	243.2	572.8	0.1342	4.996	0.0304 + 0.0074	0.0785 + 0.0189		
RNF212B	900	0.2566	255.6	644.4	0.0685	3.4122	0.0125 + 0.0044	0.0488 + 0.0143		
MSH4	2808	0.2635	731.3	2073.7	0.058	7.5194	0.0112 + 0.0023	0.0425 + 0.0079		
MSH5	2502	0.2106	728.7	1770.3	0.0643	3.9993	0.0102 + 0.0024	0.0486 + 0.0085		
(F) Resolution										
MER3	4305	0.3247	987.6	3317.4	0.0703	7.0099	0.0159 + 0.0022	0.0488 + 0.0074		
CNTD1	990	0.6803	335.3	651.7	0.065	8.0721	0.0187 + 0.0054	0.0274 + 0.0092		
HEI10	1059	0.3235	241.5	589.5	0.0329	5.9591	0.0068 + 0.0034	0.0211 + 0.0095		
MLH1	2268	0.0924	602.3	1665.7	0.0522	2.4752	0.0048 + 0.0017	0.0521 + 0.0097		
MLH3	4368	0.4919	1209.8	3149.2	0.0949	6.4296	0.0246 + 0.0028	0.0500 + 0.0067		
MUS81	1653	0.1299	465.8	1187.2	0.1106	5.7915	0.0128 + 0.0033	0.0983 + 0.0158		

Table S7 – Recombination rate data used for comparative analysis, including: species, sex, autosomal fundamental
number (aFN), autosomal haploid chromosome number (aHCN), estimate of the average number of *MLH1* foci per
cell, and the reference.

Species	Sex	aFN	aHCN	MLH1 foci / cell	Reference
Bos taurus	М	58	29	47.53	(Fröhlich et al. 2015)
Canis lupus familiaris	М	76	38	38.89	(Fröhlich et al. 2015)
Equus caballus	М	88	31	50.12	(Al-Jaru et al. 2014)
Homo sapiens	М	78	22	49.8	(Hassold et al. 2004)
Macaca mulatta	М	80	20	39	(Hassold et al. 2009)
Mus musculus	М	38	19	28.5	(Dumont and Payseur 2011)
Ovis aries	М	58	26	62.9	(Fröhlich et al. 2015)
Rattus norvegicus	М	62	20	34.46	(Dumont and Payseur 2011)
Sus scrofa	М	60	18	32	(Mary et al. 2014)

Table S8: Correlations between substitution rate and recombination rate, measured as the average number of *MLH1* foci per cell divided by the autosomal haploid chromosome number (aHCN), across nine species of mammals for 31 recombination genes. The posterior probability (1 – posterior probability for negative correlations) is given in parentheses.

	Correlation C	coefficient		Partial Correlation Coefficient			
Gene	dS - ω	dS - MLH1	ω - MLH1	dS - ω	dS - MLH1	ω - MLH1	
(A) DSB Fo	ormation						
HORMAD1	$0.812 (\boldsymbol{0.95})$	0.492(0.85)	0.341(0.73)	0.804(0.96)	0.272(0.68)	-0.0849(0.56)	
MEI4	-0.828(0.97)	0.392(0.83)	-0.407(0.80)	-0.826(0.96)	-0.0236(0.52)	-0.184(0.62)	
REC114	-0.491(0.81)	-0.0628(0.52)	-0.125(0.58)	-0.499(0.80)	-0.148(0.61)	-0.186(0.62)	
IHO1	0.483(0.82)	0.094(0.59)	0.0451(0.53)	0.551(0.85)	-0.0291(0.53)	0.0124(0.50)	
SPO11	0.505(0.82)	-0.0492(0.54)	-0.0867(0.56)	0.592(0.86)	0.0144(0.51)	-0.0861(0.45)	
(B) DSB P	rocessing						
HORMAD2	0.187(0.63)	0.361(0.78)	0.308(0.69)	0.13(0.59)	0.197(0.65)	0.255(0.66)	
MRE11	-0.448(0.83)	0.431(0.85)	-0.292(0.71)	-0.346(0.78)	-0.272(0.74)	-0.129(0.60)	
NBS1	-0.727(0.94)	-0.198(0.65)	0.18(0.62)	-0.741(0.94)	-0.0171(0.56)	0.04(0.53)	
RAD50	-0.38(0.77)	-0.0902(0.58)	0.165(0.62)	-0.398(0.76)	0.0103(0.51)	0.146(0.60)	
BRCC3	0.0833(0.56)	0.196(0.70)	0.0644(0.55)	0.0795(0.55)	0.082(0.57)	0.0646(0.54)	
(C) Homolo	ogy Search &	Strand Invasi	on				
DMC1	0.302(0.69)	-0.0885(0.59)	-0.0647(0.55)	0.322(0.69)	-0.0377(0.54)	-0.0296(0.52)	
RAD51	-0.31(0.52)	-0.348(0.78)	0.00623(0.50)	-0.0216(0.51)	-0.17(0.64)	-0.0073(0.49)	
SPATA22	-0.17(0.61)	0.219(0.72)	-0.0861(0.57)	-0.151(0.60)	0.104(0.59)	-0.0585(0.54)	
MEIOB	0.147(0.59)	-0.402(0.85)	0.0146(0.49)	0.204(0.62)	-0.262(0.71)	0.105(0.57)	
MCMDC2	-0.469(0.83)	0.179(0.64)	-0.584(0.86)	-0.492(0.83)	-0.235(0.68)	-0.574(0.85)	

Table S8: Cont.

	Correlation Coefficient			Partial Correlation Coefficient		
Gene	dS - ω	dS - MLH1	ω - MLH1	dS - ω	dS - MLH1	ω - MLH1
(D) Synapsis						
REC8	-0.537(0.84)	-0.0298(0.51)	0.238(0.65)	-0.572(0.85)	0.136(0.61)	0.284(0.68)
RAD21L	-0.517(0.84)	-0.0528(0.55)	0.447(0.78)	-0.566(0.85)	0.279(0.71)	0.54(0.82)
SYCP1	-0.0366(0.53)	0.135(0.65)	0.152(0.60)	-0.0375(0.53)	0.0785(0.58)	0.178(0.61)
SYCP2	0.286(0.69)	-0.257(0.74)	-0.0292(0.52)	0.344(0.74)	-0.181(0.66)	0.0549(0.53)
TEX12	0.207(0.62)	0.263(0.67)	0.0829(0.54)	0.221(0.64)	0.156(0.62)	0.0158(0.50)
(E) CO/NCO Decision						
TEX11	0.168(0.64)	-0.449(0.90)	0.577(0.9)	0.736(0.97)	-0.752(0.97)	0.813(0.97)
SHOC1	-0.683(0.94)	0.0205(0.52)	0.19(0.64)	-0.748(0.95)	0.217(0.67)	0.287(0.70)
RNF212	0.0404(0.52)	0.0305(0.53)	-0.11(0.57)	0.0479(0.52)	0.0213(0.52)	-0.102(0.44)
MSH4	-0.792(0.97)	0.0886(0.60)	0.163(0.61)	-0.88(0.99)	0.336(0.74)	0.376(0.74)
MSH5	0.0407(0.53)	-0.176(0.69)	0.0243(0.51)	0.069(0.55)	-0.122(0.61)	0.0347(0.52)
(F) Resolution						
MER3	-0.493(0.82)	-0.133(0.64)	0.0393(0.54)	-0.542(0.85)	-0.0901(0.59)	-0.0296(0.52)
CNTD1	-0.836(0.97)	-0.401(0.78)	0.501(0.82)	-0.78(0.96)	0.0968(0.57)	0.334(0.72)
HEI10	-0.284(0.69)	-0.594(0.93)	0.326(0.69)	-0.164(0.60)	-0.27(0.70)	0.276(0.67)
MLH1	0.146(0.60)	0.00648(0.51)	0.14(0.59)	0.184(0.63)	-0.0267(0.52)	0.151(0.59)
MLH3	-0.108(0.58)	-0.0165(0.51)	-0.294(0.69)	-0.12(0.41)	-0.0762(0.57)	-0.319(0.70)
MUS81	0.307(0.72)	-0.167(0.65)	-0.0922(0.57)	0.343(0.72)	-0.097(0.58)	-0.0469(0.54)
Average	-0.137	-0.007	0.068	-0.115	-0.019	0.058
\mathbf{SD}	0.465	0.261	0.252	0.486	0.212	0.260

²⁴ Figure S1: High concordance in evolutionary rate compute across mammals and between humans and macaque.

27 References

- Al-Jaru, A., W. Goodwin, J. Skidmore, and K. Khazanehdari. 2014. Distribution of mlh1 foci in horse male synaptonemal complex. Cytogenetic and genome research 142(2):87–94.
- ³⁰ Barrett, T., S. E. Wilhite, P. Ledoux, C. Evangelista, I. F. Kim, M. Tomashevsky, K. A. Marshall, K. H. Phillippy,
- P. M. Sherman, M. Holko et al. 2012. Ncbi geo: archive for functional genomics data sets—update. Nucleic acids
 research 41(D1):D991–D995.
- 33 Brawand, D., M. Soumillon, A. Necsulea, P. Julien, G. Csárdi, P. Harrigan, M. Weier, A. Liechti, A. Aximu-Petri,
- M. Kircher et al. 2011. The evolution of gene expression levels in mammalian organs. Nature 478(7369):343.
- ³⁵ Carelli, F. N., T. Hayakawa, Y. Go, H. Imai, M. Warnefors, and H. Kaessmann. 2016. The life history of retrocopies

illuminates the evolution of new mammalian genes. Genome research :gr-198473.

- ³⁷ Coleman, S. J., Z. Zeng, M. S. Hestand, J. Liu, and J. N. Macleod. 2013. Analysis of unannotated equine transcripts
 ³⁸ identified by mRNA sequencing. PLoS One 8(7):e70125.
- ³⁹ Cortez, D., R. Marin, D. Toledo-Flores, L. Froidevaux, A. Liechti, P. D. Waters, F. Gruetzner, and H. Kaessmann.
 ⁴⁰ 2014. Origins and functional evolution of Y chromosomes across mammals. Nature 508(7497):488.
- ⁴¹ Derti, A., P. Garrett-Engele, K. D. MacIsaac, R. C. Stevens, S. Sriram, R. Chen, C. A. Rohl, J. M. Johnson, and
- T. Babak. 2012. A quantitative atlas of polyadenylation in five mammals. Genome research :gr-132563.
- ⁴³ Dumont, B. L. and B. A. Payseur. 2011. Evolution of the genomic recombination rate in murid rodents. Genetics
 ⁴⁴ 187(3):643-657.
- Fan, Y., Z.-Y. Huang, C.-C. Cao, C.-S. Chen, Y.-X. Chen, D.-D. Fan, J. He, H.-L. Hou, L. Hu, X.-T. Hu et al. 2013.
 Genome of the Chinese tree shrew. Nature communications 4:1426.
- Fröhlich, J., M. Vozdova, S. Kubickova, H. Cernohorska, H. Sebestova, and J. Rubes. 2015. Variation of meiotic
 recombination rates and mlh1 foci distribution in spermatocytes of cattle, sheep and goats. Cytogenetic and
 genome research 146(3):211–221.
- ⁵⁰ Guan, Y., G. Liang, G. B. Martin et al. 2017. Functional changes in mRNA expression and alternative pre-mRNA
- splicing associated with the effects of nutrition on apoptosis and spermatogenesis in the adult testis. BMC genomics
- 18(1):64.

- ⁵³ Hassold, T., T. Hansen, P. Hunt, and C. VandeVoort. 2009. Cytological studies of recombination in rhesus males.
- $_{54}$ Cytogenetic and genome research 124(2):132-138.
- Hassold, T., L. Judis, E. Chan, S. Schwartz, A. Seftel, and A. Lynn. 2004. Cytological studies of meiotic recombination
 in human males. Cytogenetic and genome research 107(3-4):249–255.
- 57 International Sheep Genomics Consortium, A. Archibald, N. Cockett, B. Dalrymple, T. Faraut, J. Kijas, J. Maddox,
- J. McEwan, V. Hutton Oddy, H. Raadsma et al. 2010. The sheep genome reference sequence: a work in progress.
 Animal genetics 41(5):449–453.
- ⁶⁰ Li, Y., J. Li, C. Fang, L. Shi, J. Tan, Y. Xiong, B. Fan, and C. Li. 2016. Genome-wide differential expression of ⁶¹ genes and small rnas in testis of two different porcine breeds and at two different ages. Scientific reports 6:26852.
- Lindblad-Toh, K., C. M. Wade, T. S. Mikkelsen, E. K. Karlsson, D. B. Jaffe, M. Kamal, M. Clamp, J. L. Chang,
 E. J. Kulbokas III, M. C. Zody et al. 2005. Genome sequence, comparative analysis and haplotype structure of
 the domestic dog. Nature 438(7069):803.
- Locke, D. P., L. W. Hillier, W. C. Warren, K. C. Worley, L. V. Nazareth, D. M. Muzny, S.-P. Yang, Z. Wang,
 A. T. Chinwalla, P. Minx et al. 2011. Comparative and demographic analysis of orang-utan genomes. Nature
 469(7331):529.
- Mary, N., H. Barasc, S. Ferchaud, Y. Billon, F. Meslier, D. Robelin, A. Calgaro, A.-M. Loustau-Dudez, N. Bonnet,
 M. Yerle et al. 2014. Meiotic recombination analyses of individual chromosomes in male domestic pigs (sus scrofa domestica). PLoS One 9(6):e99123.
- Merkin, J., C. Russell, P. Chen, and C. B. Burge. 2012. Evolutionary dynamics of gene and isoform regulation in
 mammalian tissues. Science 338(6114):1593–1599.
- O'Leary, N. A., M. W. Wright, J. R. Brister, S. Ciufo, D. Haddad, R. McVeigh, B. Rajput, B. Robbertse, B. SmithWhite, D. Ako-Adjei et al. 2015. Reference sequence (RefSeq) database at NCBI: current status, taxonomic
 expansion, and functional annotation. Nucleic acids research 44(D1):D733–D745.
- Prüfer, K., K. Munch, I. Hellmann, K. Akagi, J. R. Miller, B. Walenz, S. Koren, G. Sutton, C. Kodira, R. Winer
 et al. 2012. The bonobo genome compared with the chimpanzee and human genomes. Nature 486(7404):527.

- Rat Genome Sequencing Project Consortium et al. 2004. Genome sequence of the brown norway rat yields insights
 into mammalian evolution. Nature 428(6982):493.
- Scally, A., J. Y. Dutheil, L. W. Hillier, G. E. Jordan, I. Goodhead, J. Herrero, A. Hobolth, T. Lappalainen,
 T. Mailund, T. Marques-Bonet et al. 2012. Insights into hominid evolution from the gorilla genome sequence.
 Nature 483(7388):169.
- ⁸³ The Chimpanzee Sequencing Analysis Consortium, R. H. Waterson, E. S. Lander, and R. K. Wilson. 2005. Initial ⁸⁴ sequence of the chimpanzee genome and comparison with the human genome. Nature 437(7055):69.
- Vandewege, M. W., R. N. Platt, D. A. Ray, and F. G. Hoffmann. 2016. Transposable element targeting by piRNAs
 in Laurasiatherians with distinct transposable element histories. Genome biology and evolution 8(5):1327–1337.
- Wade, C., E. Giulotto, S. Sigurdsson, M. Zoli, S. Gnerre, F. Imsland, T. Lear, D. Adelson, E. Bailey, R. Bellone
 et al. 2009. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science
 326(5954):865–867.
- Yang, Y., G. Liang, G. Niu, Y. Zhang, R. Zhou, Y. Wang, Y. Mu, Z. Tang, and K. Li. 2017. Comparative analysis
 of dna methylome and transcriptome of skeletal muscle in lean-, obese-, and mini-type pigs. Scientific reports
 7:39883.
- Yang, Z. 2007. Paml 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24(8):1586–
 1591. doi:10.1093/molbev/msm088.
- Yang, Z. and R. Nielsen. 2000. Estimating synonymous and nonsynonymous substitution rates under realistic
 evolutionary models. Molecular Biology and Evolution 17(1):32–43.
- ⁹⁷ Zerbino, D. R., P. Achuthan, W. Akanni, M. R. Amode, D. Barrell, J. Bhai, K. Billis, C. Cummins, A. Gall, C. G.
 ⁹⁸ Girón et al. 2017. Ensembl 2018. Nucleic acids research 46(D1):D754–D761.
- ⁹⁹ Zimin, A. V., A. S. Cornish, M. D. Maudhoo, R. M. Gibbs, X. Zhang, S. Pandey, D. T. Meehan, K. Wipfler, S. E.
- Bosinger, Z. P. Johnson et al. 2014. A new rhesus macaque assembly and annotation for next-generation sequencing
 analyses. Biology direct 9(1):20.
- ¹⁰² Zimin, A. V., A. L. Delcher, L. Florea, D. R. Kelley, M. C. Schatz, D. Puiu, F. Hanrahan, G. Pertea, C. P. Van Tassell,
- T. S. Sonstegard et al. 2009. A whole-genome assembly of the domestic cow, Bos taurus. Genome biology 10(4):R42.