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node s is connected only to a set of nodes P , namely ”density peaks”, with a
negligible cost ε ∈ R+, ε → 0. Now, let us assume the existence of a shortest-
path Γ = {s, P1, a, P2, b, x} from s to x such that two density peaks P1 and
P2 are included. We encounter a contradiction since the cost of the sub-path
{s, P1, a, P2} is always greater than the cost of directly connecting {s, P2}.
Therefore, Γ is not a shortest path.
This proof is valid under the assumption that the cost of a generic path Γ ∈ G is
evaluated by means of a non-decreasing function ξ : G→ R, c = ξ(Γ), ξ(Γ1) ≤
ξ({Γ1,Γ2}) ∀Γ2 ∈ G.
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Fig. S1. Graph structure. Each density peak Pi is connected to a dummy
node s with a negligible cost ε. All the remaining points {a, b, ...} are con-
nected on a graph that guarantees their reachability from s. Despite in this
example we provide a fully connected graph, the proposed algorithm supports
sparse/pruned graphs guaranteeing this condition. Additionally, the algorithm
supports non-negative edge costs which can be derived from an arbitrary point-
to-point distance (i.e. Euclidean distance).

We want to demonstrate that only a single density peak is included in the
shortest path from the dummy node s to a generic point x. Let G be the set
of all the possible paths on the graph provided in ( ig. S1), where a starting

Proof S1. Unique cluster assignation. 
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Fig. S2. Results on the 12 synthetic datasets provided by ClustEval. 



Jaccard-index vs. num. of training paths
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Fig. S3. Performance degradation with respect to number of training
paths (A-B) and to the number of points in each fragment (path
length) (C-D) on the dataset 01 chang pathbased. Mean and standard devia-
tions using 5 different runs of the algorithms with the same parameters, but
with random paths are provided.
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Fig. S4. Benchmark on dimensional synthetic datasets (A-C) Re-
sults on a synthetic generated dataset of 2000 points and 100 dimensions with
two clusters. Three dimensions are shown. (D-F) F1-score varying the dimen-
sionality. For each dimension, 15 datasets with two clusters of different size
and position were generated. Bold lines refer to the mean F1-score, the shaded
areas the range of CDP (D), proposed method using a generic minimax path
cost function (E), and the proposed method trained with random paths (F).
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Fig. S5. Results on the bone marrow leukemia dataset (A-C) The
proposed method was evaluated on a high dimensional dataset containing the
expression of 999 genes on 38 samples from patients with three three different
types of leukemia (AML - Acute Myeloid Leukemia, B and T cell leukemia). A
Representation of two dimensions out of 999 with color coded points according
with the Ground Truth (GT) provided in [2, 25]. (B,C) Quantitative and qual-
itative results of CDP and the proposed methods using a minimax path cost
function. In this example and edge-cost derived from the Spearman correlation
is used.
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