Supplementary Information

Regulation of the linear ubiquitination of STAT1 controls antiviral interferon signaling

Zuo et al.

STAT1 has linear ubiquitination mediated by HOIP.

(a) Mass spectrometry analysis of the HOIP protein interacting with STAT1. (b) Immunoprecipitation (IP) and immunoblotting (IB) analysis of the interaction between Flag-HOIP and Myc-STAT1(WT) or its different deletion mutants ($\Delta 1$ -135, $\Delta 1$ -324, $\Delta 241$ -310, $\Delta 336$ -413, $\Delta 431$ -490, $\Delta 491$ -576, $\Delta 577$ -657, $\Delta 658$ -703, $\Delta 704$ -750) in HEK293T cells. (c) Immunoprecipitation analysis of the interaction between endogenous HOIP and STAT1 in 2fTGH and HEK293T cells. (d) Western blot analysis of Flag-HOIP protein levels in HEK293T cells cotransfected with shHOIP (#1, #2) and Flag-HOIP. (e) Immunoprecipitation analysis of ubiquitination of STAT1 in HEK293T cells cotransfected with Myc-STAT1, shHOIP and HA-Ub-K0 (HA-K0, all lysines on Ub are mutated to arginine). (f) Immunoprecipitation analysis of linear ubiquitination of STAT1 in HEK293T cells cotransfected with shHOIP and Myc-STAT1. (g) Immunoprecipitation analysis of ubiquitination of STAT1 in HEK293T cells transfected with or without Flag-LUBAC. Data are representative of three independent experiments (b-g).

Linear ubiquitination sustains STAT1 signaling homeostasis.

(a) RT-qPCR analysis of *Stat1* and *Stat2* mRNA in HEK293T cells transfected with control shRNAs (shCON) or shHOIP (#1, #2). (b) Western blot analysis of pY701-STAT1 (pY-STAT1) levels in HEK293T cells transfected with increasing amounts of Flag-LUBAC, and then treated with IFNB (1,000 IU/ml) for 30 min. (C) Western blot analysis of pY-STAT1 in HeLa cells transfected with shHOIP and then treated with IFNa (1,000 IU/ml) for the indicated times. (d) RT-qPCR analysis of *Isg54* mRNA in HEK293T cells transfected with either shCON or shHOIP (#1, #2) and then stimulated with IFN α (1,000 IU/ml) for 4 hrs. (e) Western blot analysis of the representative ISGs proteins (IFIT1 and PKR) in HEK293T cells transfected with shHOIP and then treated with IFN α (500 IU/ml) for 24 hrs. (f) RT-qPCR analysis of Ifit1 mRNA in HEK293T cells transfected with vectors (CON) or LUBAC-expressing constructs and then stimulated with IFNa (1,000 IU/ml) for 4 hrs. (g) RT-qPCR analysis of HSV viral *Icp27* and *Ul46* RNA in 2fTGH cells transfected with shHOIP and then treated with IFNa (60 IU/ml) for 20 hrs, followed by infection with HSV (MOI=1.0) for 24 hrs. (h) Fluorescence microscopy of VSV-GFP in A549 cells transfected with empty vectors (CON) or Flag-LUBAC and then infected by VSV-GFP (MOI=0.1) for 24 hrs. Scale bar: 100 μ m. (i) RT-qPCR analysis of a representative ISG (Mx1) mRNA in HEK293T cells transfected with shHOIP (#1, #2). (j, k) RT-qPCR analysis of viral RNA in 2fTGH cells transfected with either shHOIP (j) or Flag-LUBAC (k) and then infected by VSV (MOI=0.1), SeV (MOI=1.0) or HSV (MOI=1.0) for 1 hr to observe virus invasion. (I) RT-qPCR analysis of viral RNA in U3A cells transfected with shHOIP (#1, #2) and then infected by VSV (MOI=0.1) or SeV (MOI=1.0) for 1 hr. HOIP knockdown was analyzed by Western blot. N.S, not significant (p>0.05) and *p < 0.05, **p < 0.01, ***p < 0.001 (two-tailed unpaired Student's *t*-test). Data are shown as mean and s.d. of three biological replicates (a, d, f, g, i-l), or are representative of three independent experiments (b, c, e, h).

LUBAC induces STAT1 linear ubiquitination at Lys511/652.

(a) Western blot analysis of Flag-IFNAR1 levels in HEK293T cells cotransfected with Flag-IFNAR1, together with shCON (-) or shHOIP (#1, #2). (b,c) Western blot analysis of HA-IFNAR2 levels in HEK293T cells cotransfected with HA-IFNAR2 and either shHOIP (#1, #2) (b) or increasing amounts of Flag-LUBAC (c). (d) Western blot analysis of p-STAT2 in HEK293T cells transfected with shHOIP (#1, #2) and then treated with IFN α (1,000 IU/ml) for 30 min. (e) Putative ubiquitination sites of STAT1 obtained from the PhosphoSitePlus database. (f) Immunoprecipitation analysis of ubiquitination of Myc-STAT1 (WT, K511R, or K652R) in HeLa cells cotransfected with Myc-STAT1 (WT, K511R or K652R) and HA-K0 using a HA antibody. (g) Western blot analysis of pY-STAT1 in U3A cells transfected Flag-STAT1 (WT or DM) and then treated with IFNB (1,000 IU/ml) as indicated. (h) RT-qPCR analysis of the representative ISGs (*Ifit1*, Isg15 and Isg54) mRNA in U3A cells transfected with Myc-STAT1 (WT or DM). (i) RT-qPCR analysis of VSV viral RNA in U3A cells transfected with Flag-STAT1 (WT or DM) and then treated with IFNa (60 IU/ml) for 20 hrs, followed by infection with VSV (MOI=0.1) for 24 hrs. (j) Western blot analysis of pY-STAT1 levels in HEK293T cells transfected with increasing amounts of Flag-LUBAC, and then treated with IFNy (1,000 IU/ml) for 30 min. (k) Western blot analysis of pY-STAT1 in U3A cells transfected Myc-STAT1 (WT or DM) and then treated with IFN γ (1,000 IU/ml) as indicated. (I) RT-qPCR analysis of the representative ISG (Ifit1) mRNA in HEK293T cells transfected with shHOIP (#1, #2) and then stimulated with IFN γ (1,000 IU/ml) for 4 hrs. (m) RT-qPCR analysis of the representative ISG (Ifit1) mRNA in U3A cells transfected with Myc-STAT1 (WT or DM) and then treated with IFNy (1,000 IU/ml) for 4 hrs. N.S, not significant (p>0.05), **p<0.01 and ***p<0.001 (two-tailed unpaired Student's ttest). Data are shown as mean and s.d. of three biological replicates (h, i, l, m), or are representative of three independent experiments (a-d, f, g, j, k).

Linear ubiquitination blocks the binding of STAT1 to IFNAR2.

(a) Western blot analysis of pY701-STAT1 (pY-STAT1) in the cytoplasm and nucleus of HEK293T cells transfected with shHOIP and then treated with IFNa (1,000 IU/ml) for 30 min. (b) Immunoprecipitation analysis of the interaction between Flag-HOIP and Myc-STAT1 (WT, Y701F or S727A) in HEK293T cells. (c) Immunoprecipitation analysis of linear ubiquitination of Myc-STAT1 (WT or Y701F) in HEK293T cells transfected with Myc-STAT1 (WT or Y701F). (d) Immunoprecipitation analysis of the interaction between HA-IFNAR2 and STAT1 in HEK293T cells transfected with Flag-LUBAC and then treated with IFNa (1,000 IU/ml) for 15 min. (e) Immunoprecipitation analysis of the interaction between endogenous IFNAR2 and STAT1 in HEK293T cells treated as (d). (f) Immunoprecipitation analysis of the interaction between HA-IFNAR2 and Myc-STAT1 (WT or its mutants) in HEK293T cells cotransfected with HA-IFNAR2 and Myc-STAT1 (WT, K511R or K652R). (g) Immunoprecipitation analysis of the interaction between HA-IFNAR2 and Myc-STAT1 (WT and its mutants) in HEK293T cells cotransfected with HA-IFNAR2, Flag-LUBAC and Myc-STAT1 (WT, K511R or K652R) and then treated with IFNa (1,000 IU/ml) for 15 min. Data are representative of three independent experiments.

IFN-I removes STAT1 linear ubiquitination via OTULIN.

(a) Immunoprecipitation analysis of ubiquitination of STAT1 in HEK293T (left) or HT1080 (right) cells transfected with HA-K0 and then treated with IFNa (1,000 IU/ml) for 30 min. (b) Immunoprecipitation analysis of ubiquitination of STAT1 in 2fTGH cells transfected with HA-K0 and then treated with IFNα (1,000 IU/ml) for the indicated times. (c) Immunoprecipitation analysis of linear ubiquitination of STAT1 in HEK293T cells treated with IFNa (1,000 IU/ml) as indicated. (d) Immunoprecipitation analysis of the interaction between Flag-OTULIN and STAT1 in HEK293T cells transfected with Flag-OTULIN. (e) Immunoprecipitation analysis of ubiquitination of STAT1 in HEK293T cells cotransfected with HA-K0 and Flag-OTULIN using a HA antibody. (f) Immunoprecipitation analysis of linear ubiquitination of STAT1 transfected with Flag-OTULIN using a linear ubiquitination antibody. (g) Immunoprecipitation analysis of the interaction between Flag-OTULIN and Myc-STAT1 in HEK293T cells transfected with Flag-OTULIN and Myc-STAT1 and then treated with IFN α (1,000 IU/ml) for 15 min. (h) Immunoprecipitation analysis of the interaction between endogenous OTULIN and STAT1 in HEK293T cells treated with IFNa (1,000 IU/ml) for the indicated times. (i) Western blot analysis of pY-STAT1 in HEK293T cells transfected with shOTULIN (#1, #2) and then treated with IFNα (1,000 IU/ml) for 30 min. (j) RTqPCR analysis of VSV viral RNA in 2fTGH cells transfected with Flag-OTULIN and then stimulated with IFNa (60 IU/ml) for 20 hrs, followed by infection with VSV (MOI=0.1) for 24 hrs. **p<0.01 and ***p<0.001 (two-tailed unpaired Student's *t*-test). Data are shown as mean and s.d. of three biological replicates (j), or are representative of three independent experiments (a-i).

Viruses upregulate HOIP and STAT1 linear ubiquitination.

(a) Western blot analysis of HOIP proteins in A549 cells infected with SeV (MOI=1.0) for the indicated times. (b) Immunoprecipitation analysis of the interaction between HOIP and STAT1 in HEK293T cells infected with SeV (MOI=1.0) for the indicated times. (c) Immunoprecipitation analysis of ubiquitination of STAT1 in HT1080 cells infected with HA-K0 and then infected with VSV (MOI=0.5) as indicated. (d) Immunoprecipitation analysis of linear ubiquitination of STAT1 in A549 cells infected with VSV (MOI=0.5) for the indicated times. (e) Immunoprecipitation analysis of linear ubiquitination of STAT1 in HEK293T cells transfected with Myc-STAT1 (WT or YF) and then infected with SeV (MOI=1.0) as indicated. (f) Immunoprecipitation analysis of linear ubiquitination of STAT1 in U3A cells transfected with Myc-STAT1 (WT, DM, YF or YF/DM) and then infected with SeV (MOI=1.0) for 12 hrs. (g) RT-qPCR analysis of the representative ISG (Ifit1) mRNA in U3A cells transfected with Myc-STAT1 (WT, DM, YF or YF/DM) and then infected with SeV (MOI=1.0) for 12 hrs. (h) RT-qPCR analysis of SeV viral RNA in U3A cells transfected with Myc-STAT1 (WT, DM, YF or YF/DM) and then infected with SeV (MOI=1) for 12 hrs. N.S, not significant (p>0.05), **p<0.01 and ***p<0.001 (two-tailed unpaired Student's *t*-test). Data are representative of three independent experiments (a-f), or are shown as mean and s.d. of three biological replicates (g, h).

а

b

С

Lentiviral packaging GFP-STAT1

e

HOIL-1L deficiency enhances IFN-I antiviral activity.

(a) Western blot analysis of HOIL-1L proteins in the heart, liver and spleen tissues from $Rbck1^{+/+}$ or $Rbck1^{+/-}$ mice. (b) Immunoprecipitation analysis of linear ubiquitination of STAT1 in the heart tissues from $Rbck1^{+/+}$ or $Rbck1^{+/-}$ mice. (c) Immunoprecipitation analysis of pY-STAT1 in $Rbck1^{+/+}$ or $Rbck1^{+/-}$ MEF cells transfected with Myc-STAT1 (WT or DM) and then treated with mIFN β (1,000 IU/ml) as indicated. (d) RT-qPCR analysis of the representative ISG (*Ifit1*) mRNA in $Rbck1^{+/+}$ or $Rbck1^{+/-}$ MEF cells transfected with Myc-STAT1 (WT or DM) and then treated with mIFN β (1,000 IU/ml) as indicated. (d) RT-qPCR analysis of the representative ISG (*Ifit1*) mRNA in $Rbck1^{+/+}$ or $Rbck1^{+/-}$ MEF cells transfected with Myc-STAT1 (WT or DM) and then treated with mIFN β (1,000 IU/ml) for 4 hrs. (e) The lentiviruses containing GFP-STAT1 (WT or K511/652R) were made in HEK293T cells. GFP signaling in cells was observed by the fluorescence microscopy. Scale bar: 100 µm. N.S, not significant (p>0.05) and ***p<0.001 (two-tailed unpaired Student's *t*-test). Data are shown as mean and s.d. of three biological replicates (d), or are representative of three independent experiments (**a-c, e**).

Supplementary Figure 8: Original scans of immunblots.

Figure 3c

Figure 3e

Figure 5d

Figure 5e

95 95 still still strike to IB:Tubulin -55

Figure 5f

Figure S1b

Figure S2e

55

-180

- 130

- 95

Figure S7c

