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eAppendix 1: Challenge Timeline 

The Challenge timeline consisted of two periods: The Competitive Period, and the Collaboration Period 

(see eFigure 1). 

eFigure 1. The timeline of the DM Challenge. During the Competitive Period, teams were invited to train 

and evaluate their models in a public leaderboard (the leaderboard phase), followed by one final 

evaluation in a different test dataset (the validation phase). During the Collaboration Period, teams 

worked collaboratively towards a final submission to the test dataset. 

 
The Competitive period consisted of three phases: The Open Phase, the Leaderboard Phase and the 

Validation Phase, explained below: 

 

● Open Phase. Ensuring that teams could train on the KPW data without being able to download 

the data involved innovative IT infrastructure relying on cloud computing technologies. The role of 

the Open Phase was to beta test the infrastructure with the help of the teams. Dummy data were 

used to prevent the leakage of the Challenge data during the tests. Teams also benefited from 

this phase by getting familiar with the infrastructure and assessing runtime characteristics of their 

model prior to the official launch of the Challenge. 

● Leaderboard Phase. In this phase, teams submitted models for training and cross-validation on 

50% of the KPW data. Cumulative training time per team was limited to 336 hours per 

Leaderboard Round, due to limited computing resources. Teams could also submit up to 3 

models per round for evaluation on a hold-out leaderboard data set that represented 20% of the 

KPW data. Thus, teams could evaluate their models up to 9 times during the Leaderboard Phase. 

A total of $20,000 in cash prizes per Leaderboard Round was awarded to the top 3 performers 

during each of these rounds. System maintenance periods were planned between the 

Leaderboard Rounds and before the Validation Phase to accommodates updates and make fixes 

to the Challenge platform. 
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● Validation Phase. In this final phase of the Competitive Period, teams submitted their final model 

for scoring on a hold-out data set representing 30% of KPW data. Data from the leaderboard 

phase (70% of KPW data) was made available to teams to retrain their final model. 

The Competitive Period was followed by the Collaboration Period, in which participants worked as a 

community towards the final submission to the evaluation datasets.  

eAppendix 2. Challenge Questions 

The goal of the DM Challenge was to develop models that analyze screening mammography exams and 

interpret them as to whether the subject has breast cancer or not, and, if so, in which breast. For each 

breast, a screening mammography exam can be positive or negative, operationally defined as follows: 

 

● Positive breast. The cancer status of a given screening mammography exam was defined as 

positive in the left/right breast if the subject was diagnosed with breast cancer in the left/right 

breast (confirmed with tissue diagnosis) within 12 months of the given screening mammography 

exam. The tissue diagnosis may have been prompted by a call-back due to findings on the 

current screening mammography exam, a short-interval follow-up examination, or other clinical 

exams. 

 

● Negative breast. The cancer status of a given screening mammography exam was defined as 

negative in the left/right breast if the subject did not have a known diagnosis of cancer in the 

left/right breast on review of medical records one or more years after the screening exam. 

 

We also wanted to identify whether using clinical and/or longitudinal data in addition to the current 

mammography images could increase the performance of the models. This led to the creation of two Sub-

challenges, embodying the main questions asked in the Challenge: 

 

● Sub-challenge 1 

○ Definition. Determine the cancer status of each breast of a subject, given only a 

screening digital mammography exam (without access to previous exams or 

clinical/demographic information). 

○ Input. A screening mammography exam consisting of several images of both breasts. 

○ Output. Two scores (SL, SR), each between 0 and 1, indicating the likelihood that the 

subject was tissue-diagnosed with cancer within one year from the given screening 

exam, in the left (L) and right (R) breast respectively. 

● Sub-challenge 2 

○ Definition. Determine the cancer status of each breast of a subject, given a screening 

exam, a panel of clinical/demographic information, and if available, previous screening 

exam(s). 

○ Input. The given exam consisting of several images of both breasts and, if available, 

previous screening exams of the same subject, clinical/demographic information such as 

race, age and family history of breast cancer. 
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○ Output. Two scores (SL, SR), each between 0 and 1, indicating the likelihood that the 

subject was tissue-diagnosed with cancer within one year from the given screening 

exam, in the left (L) and right (R) breast respectively. 

Teams could choose to participate in either one or both Sub-challenges. In Sub-challenge 1, only one 

mammography exam was given for a subject. The inference of cancer/non-cancer in each breast had to 

be based on that mammography exam images only (without access to previous exams or 

clinical/demographic information). In Sub-challenge 2, one or more screening mammography exams were 

given for a subject along with metadata (clinical and demographic) information. If there was one exam, 

then the inference had to be made based on that exam and the metadata. If there was more than one 

exam in the longitudinal series, then the cancer status of each breast was asked for only the most recent 

exam. All previous exams correspond to negative exams both in left and right breasts. 

When submitted for evaluation, we asked that models process subjects individually and generate a 

confidence level in the interval [0,1] for both breasts. In other words, the confidence levels for a subject 

should be independent of the other subjects in the evaluation data set. However, for a given subject, it 

was fine to have the confidence level of one breast depending on the data from the other breast. 

eAppendix 3. Preparation of the Challenge datasets 

Here we describe the protocol that we have applied to refine the original data received by Kaiser 

Permanente Washington (KPW) to generate the training and evaluation sets for the DM Challenge. First, 

we explored the original data and fixed inconsistencies. Then, we undertook an analysis of potentially 

predictive variables and tailored the dataset to prevent data leakage, which can lead to poor 

generalization and over-estimation of a model’s performance1. Finally, we describe how we have split the 

training and evaluation sets for the DM Challenge Sub-challenge 1 and 2 so that each set was 

representative of the global population of subjects. 

Refinement of the Kaiser Permanente dataset 

KPW uploaded 640,905 de-identified mammogram images in DICOM format (14.1 TB) to an AWS S3 

bucket managed by Sage Bionetworks. The integrity of the images transferred was verified using MD5 

checksum. The images were also transferred to a secured cloud provided by IBM where the exploration 

and refinement of the data took place. KPW also provided two files that included information about 

146,371 mammography exams for 86,873 women. 

 

1. Exam metadata file. This file provided clinical/demographic information for each exam included 

in the dataset such as subject ID, exam index, time since last exam, subject age, and patient-

reported data on first degree family history of breast cancer, body mass index (BMI), etc. A 

comprehensive description of clinical/demographic information available to the algorithms during 

the Challenge is given in Table S1. 

2. Image crosswalk file. This file linked individual images to their respective exam. This file also 

provided information about laterality (left or right) and view (CC, MLO, etc.) used to image the 

breast (see Table S2). 

Before starting to explore the content of these files, we extracted the information available in the header 

of the DICOM images. The DICOM header includes information about the scanner (e.g. scanner 

manufacturer, model, software version, etc.) and the conditions in which the breast was imaged (radiation 

https://paperpile.com/c/5ZjHyr/Qja16
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dose, exposition time, compression force, etc.). While extracting the content of the DICOM header, we 

only found 3 corrupted images, which were subsequently removed from the dataset. 

 

The DICOM header also include deidentified clinical information. The content of the metadata files and 

DICOM headers had been previously obfuscated by KPW in order to prevent the identification of 

individual subjects in compliance with the Health Insurance Portability and Accountability Act (HIPAA), 

which sets the standard for protecting sensitive patient data in the US. 

 

Below we list the modifications applied to improve the consistency of the dataset. 

 

● Removing exams without images. There were a few exams listed in the exam metadata file for 

which no images were provided. We carefully removed these exams, as data from one exam 

depended on the data from the previous exam (exam index, number of days since the previous 

exam).  

● Fixing inconsistent laterality and views. We compared the breast laterality (left or right) and 

the view (CC, MLO, etc.) specified for each image in the image crosswalk file with the value 

specified in the DICOM headers. We found a dozen images for which either the laterality and/or 

view were not matching. The inconsistencies were fixed either in the image crosswalk file or in 

the DICOM header after visualizing the images. We keep both sources of laterality and view for 

two reasons. First, these two values were expected to be found in the DICOM header by existing 

software2. Second, opening all the image files to figure out this information is a time-consuming 

task considering the amount of images available during the DM Challenge. This is particularly 

true for methods that work only on CC images, for example. With more than 1000 registered 

participants before the launch of the Challenge and limited computational power, we decided to 

provide this information in the image crosswalk file to help teams saving their allotted 

computational time, which can then be used for more meaningful calculations. 

Preventing information leakage 

In Machine Learning, information leakage occurs when a predictive model is trained using information 

about the desired prediction that is, perhaps unintentionally, included in the training set but not available 

to the model when making predictions for unseen data. Models experiencing information leakage tend to 

be very accurate during development, but perform poorly when making predictions for de novo subjects 
1,3. 

 

To prevent leakage, we undertook a proactive analysis of potentially predictive variables and carefully 

considered which ones to make available to the training models. This analysis was performed using all 

the covariate available, including information from the DICOM header of the images. Here, we list below 

two potential sources of information leakage that we identified and that could have affected the 

performance of the predictive methods when applied to new datasets. 

 

● Removing clinical information from the DICOM header in Sub-challenge 1. The goal of Sub-

challenge 1 was to develop methods that make predictions based solely on the content of the 

images (pixel values and technical information from the DICOM header) without having access to 

clinical/demographic information.  

● Removing subjects who have at least one exam with one breast not imaged. There were 

1073 subjects (1.2% of all the subjects) who had at least one exam where there were no images 

https://paperpile.com/c/5ZjHyr/XRwbp
https://paperpile.com/c/5ZjHyr/Qja16+Kttyu
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for the left or right breast. The fraction of positive subjects with at least one exam “missing” (3% of 

positive subjects) was significantly larger than for negative subjects (Fisher's exact test: p<0.05). 

These subjects were removed to prevent predictive methods to associate the occurrence of 

missing breasts with breast cancers. 

● Removing XCCL images. A laterally exaggerated CC (XCCL) view is a supplementary 

mammographic view performed when tissue extends to the edge of the field of view on the CC 

view and tissue projects on the pectoral muscle on the MLO view. An XCCL view is also done 

when a lesion is suspected on a MLO view but cannot be seen on the CC view. We found that the 

fraction of positive exams with laterally exaggerated CC (XCCL) views (8.2% of positive exams) 

in KPW dataset was significantly larger than the fraction of negative exams with XCCL views 

(4.5% of negative exams, Fisher's exact test: p<0.05). In order to prevent methods to use the 

presence of XCCL images as a predictive feature while trying to conserve as many images as 

possible, we decided to randomly pick positive exams and remove their XCCL images until the 

difference is no longer significant when comparing to negative exams (p > 0.05). 

Selecting covariates for training and evaluation sets 

Here, we describe the covariates that we have included in the training set of the DM Challenge and in the 

evaluation sets of Sub-challenge 1 and 2. 

 

The exam metadata file provided by KPW included clinical and demographic information, radiologist 

assessment and biopsy results (when a breast biopsy occurred ≤12 months from screening 

mammogram). In order to enable a fair comparison of the performance of radiologists and predictive 

methods, we decided to not make available information generated by the interpreting radiologist (eTable 

1). Therefore, the recall assessment of the radiologist was not made available. For the same reason, we 

decided not to include the breast density estimated by the radiologist. Since breast cancer originates in 

epithelial cells from dense, fibroglandular tissue4, we hope that this decision helped make participants 

consider unsupervised alternatives to estimate breast density2. 

  

https://paperpile.com/c/5ZjHyr/w4zKO
https://paperpile.com/c/5ZjHyr/XRwbp
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eTable 1. This table describes the covariates included in the exam metadata file available for training and 

for evaluation in Sub-challenge 1 (SC1) and Sub-challenge 2 (SC2). Regarding the training set, we 

decided to provide a single dataset that included both longitudinal and clinical/demographic information 

about the training subjects. 
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Splitting KPW data into training and evaluation sets 

To maximize generalizability and minimize strata bias, models were trained and evaluated on data 

representative of the true population’s distribution. This was achieved by implementing a probability 

sampling technique known as proportionate stratified random sampling5 to partition the KPW dataset into 

50% training set, 20% evaluation for the Leaderboard Phase and 30% evaluation set for the Validation 

Phase. First, the dataset was multi-level sorted in ascending order of variable class variance (i.e. cancer 

> invasive > bilateral breast cancer > ethnicity > age > BMI). We then sequentially iterated over the sorted 

records and proportionally distributed them into three subsets using an ad hoc cup and bucket algorithm. 

Three cups of sizes 2, 3 and 5 records, corresponding to 20%, 30% and 50%, respectively, were 

initialized, and a token was placed in the first cup. For each record along the sequence, if the cup carrying 

the token was not full and the subject the record belonged to was not in other cups or buckets then the 

record was added to the cup. Otherwise, if the cup was full but the record belonged in this cup then the 

record was added straight to the corresponding bucket, before summoning the next cup to grab the next 

record. Once the largest cup (50%) was full, all cups were emptied into their respective buckets and the 

process was repeated until all records were exhausted. Consequently, this algorithm prevented subjects 

from appearing in multiple subsets, which was a Challenge requirement. We then compared statistics 

across the three subsets to assess distribution similarity. Finally, 10 sets of training, Leaderboard 

evaluation and Validation evaluation sets were generated with inter-set stochastic variance (random-

shuffled records within strata before sampling) to identify the median dataset that was eventually used in 

the Challenge. 

Pilot Set 

In the DM Challenge, participants were not allowed to download or directly access the Challenge training 

or validation datasets. For this reason, we developed an approach called Model to Data that we expect to 

pave the way for future competitions that will make use of datasets that cannot be made public (e.g. 

medical information, data from a company that want to crowdsource a problem, etc.). The details of the 

infrastructure is described in Section Training and evaluating models in the cloud. 

 

To provide insights into the data of this Challenge, we were authorized by KPW to release a small dataset 

called the DM Challenge Pilot Data. This set included 500 mammography images as well as the clinical 

information of 58 cancer positive and negative subjects. The goal was not to provide a small set that was 

representative of the population of the global dataset but rather to share the specifications of the images 

and show examples of exams correctly and incorrectly classified by radiologists. 

 

Moreover, subjects were selected to include examples of visible artifacts that we expected could distract 

predictive methods. Examples of artifacts included in the Pilot Set were skin markers to identify nipples, 

moles, scars, the edges of the compression paddle, surgical clips from prior excision, lumpectomy and 

central line/port for iv medication infusion, etc. 

DICOM images 

We received the DICOM images from Kaiser Permanente in compressed format (.dcm.gz) for a total of 

3.8 TB. Uncompressed, the DICOM images take 14.1 TB. We decided to provide the images 

uncompressed to the predictive methods because the time required to uncompress them can then be 

saved by the predictive methods for more meaningful calculation. This comes at the expense of higher 

cost to host the data, especially in a configuration where multiple copies of the dataset are instantiated in 

the cloud to ensure that methods can read the images with enough bandwidth. 

https://paperpile.com/c/5ZjHyr/X4TF3
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eTable 2. Mammography views listed in the KPW dataset. During a routine screening mammography, 

each breast is usually imaged on at least one CC and one MLO views (standard views). Additional 

CC/MLO views or other types of views are sometimes performed by the radiologist, for example when 

additional images are required to capture the entirety of the breast. 

 

View Description 

AT axillary tail 

CC craniocaudal 

CCID craniocaudal (implant displaced) 

CV cleavage 

FB from below 

LM 90° lateromedial 

LMO lateromedial oblique 

ML 90° mediolateral 

MLID 90° mediolateral (implant displaced) 

MLO mediolateral oblique 

MLOID mediolateral oblique (implant displaced) 

RL rolled lateral 

RM rolled medial 

SIO superior inferior oblique 

XCCL exaggerated craniocaudal lateral 

XCCM exaggerated craniocaudal medial 

eAppendix 4. Radiologist recall assessment 

Kaiser Permanente Washington 

KPWA breast cancer screening guidelines follow USPSTF recommendations, which include risk 

assessment and recommended shared decision making for women aged 40-49 and annual or biennial 

screening for women aged 50-74 years aligned with a woman’s personal risk factors6. All women can 

choose to undergo annual screening mammograms with no cost, regardless of their risk. 

 

All screening mammography exams are interpreted by a single radiologist, using ACR’s BI-RADS 

assessments7:  

0: incomplete (need additional imaging evaluation) 

1: negative 

2: benign findings  

3: probably benign 
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4: suspicious abnormality 

5: highly suspicious of malignancy 

6: known biopsy with proven malignancy 

 

Unlike in the Karolinska population, double reading is not standard in the US. Using standard US 

definitions8, we created an initial overall assessment for the screening examination, using the most 

serious BI-RADS Breast Imaging Reporting and Data System assessment according to the following 

hierarchy: negative, 1; benign, 2; probably benign, 3; needs additional evaluation, 0; suspicious, 4; and 

highly suggestive of malignancy, 5. Each screening examination was followed for 12 months after a 

screening mammogram (truncated at the next screening mammogram to ensure only one cancer was 

linked to each screening exam).We included all SEER and BCSC pathology endpoints with a diagnosis of 

invasive breast carcinoma or DCIS. 

 

Using BI-RADS definitions, women who receive an initial BI-RADS assessment of 0, 3, 4, 5, or 6 are 

considered to be recalled from screening (positive recalls)7. One-year cancer follow-up was determined 

by linkage with regional cancer registries to establish true-positive, true-negative, false-positive, and 

false-negative screening results (gold standard). 

 

Initial assessments were linked with cancer outcomes to define screen-detected vs. false-positive 

outcomes. Women that were not recalled but later had a clinically detected cancer before their next 

scheduled screening mammogram (an interval cancer) were classified as having false-negative screening 

exams. 

Karolinska Institute 

The current national recommendation in Sweden stipulates that women should be invited for screening 

starting at age 40 and ending at age 74. All women fulfilling the age criteria are invited to screening, and 

they will continue to receive invitations whether they choose to attend or not. The national 

recommendation further stipulates that the time interval between invitations for screening should be 

between 18 and 24 months, with the shorter time interval suggested for younger women. The 

participation rate in Stockholm exceeds 70%9. 
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eFigure 2. The screening process in Stockholm, Sweden. The process until recall decision is shown in 

the top row. Around 97% are assessed to lack signs of malignancy, while around 3% are recalled for 

further assessments according to the bottom row. Around 0.5% are diagnosed with breast cancer.

 
 

The screening process is described in eFigure 2. Double reading means that two radiologists 

independently assess each case and identify suspicious findings which are ‘flagged’ for consensus 

discussion. 

 

For each diagnosed breast cancer, the ‘detection mode’ was categorized as: screen-detected cancer 

(SDC), interval cancer (IC) or ‘non-attender’ (women who did not attend the prior screening). In a pooled 

analysis of six European countries, including Sweden, published in 2010, IC constituted 28% of 

cancers10. The IC rate for the first 12 months after screening was 5.9 per 10,000 women and another 12.6 

per 10,000 women the following 12 months. For Stockholm, the recall rate was 3.3% for initial screening 

and 1.8% for subsequent screenings; among screened women 69% of cancers were screen-detected and 

31% were interval cancers. According to a review of several interval cancer studies the proportions are 

generally between 17% and 30% for biannual screening11. In one study of annual screening it was 15%, 

and in a few studies of 3-year intervals it was 32% to 38%. 
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eAppendix 5. Challenge datasets 

Kaiser Permanente Washington (KPW) dataset 

The following tables summarize the number women, exams and images used during the Challenge 

Leaderboard Phase and Validation Phase (see Section Challenge Timeline). 

 

eTable 3. The DM Challenge dataset used during Leaderboard Phase. The training set included 50% of 

the women in the KP dataset. The subjects in Sub-challenge 1 and 2 were the same and represent 20% 

of the KP dataset. 

 LEADERBOARD PHASE 

 Training Sub-challenge 1 Sub-challenge 2 

 Positive Negative Total Positive Negative Total Positive Negative Total 

Women 481 42,336 42,817 188 16,918 17,106 188 16,918 17,106 

Exams 481 71,652 72,133 188 16,918 17,106 188 28,653 28,841 

Images 1,114 316,503 317,617 434 75,428 75,862 434 126,338 126,772 

 

 

eTable 4. The DM Challenge dataset used during the Validation Phase. The training set included the 

training and Sub-challenge 2 evaluation sets used during the Leaderboard Phase (70% of the KP 

dataset). The women in Sub-challenge 1 and 2 were the same and represent 30% of the KP dataset. 

 VALIDATION PHASE 

 Training Sub-challenge 1 Sub-challenge 2 

 Positive Negative Total Positive Negative Total Positive Negative Total 

Women 669 59,254 59,923 283 25,374 25,657 283 25,374 25,657 

Exams 669 100,305 100,974 283 25,374 25,657 283 42,974 43,257 

Images 1,548 442,841 444,389 646 113,470 114,116 646 189,894 190,540 
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We were eager to identify other datasets that could be used to provide independent validation from the 

KPW data. We collaborated with the Karolinska Institute, Sweden, which brought in a dataset similar in 

size of the one provided by Kaiser Permanente Washington (> 600k images). Here, we refer to this 

dataset as the Karolinska dataset. One condition set by the Karolinska Institute was that the dataset must 

only be used for the purpose of evaluating the performance of predictive models and not to train them. 

 

We applied the same protocol as described in Section Preparation of the Challenge datasets and 

Preventing information leakage to curate and format the Karolinska dataset in the same fashion as we 

prepare the Challenge (KPW) dataset. eTable 5 describes the content of the Karolinska dataset in Sub-

challenge 1 and 2 format. 

 

eTable 5. Content of the Karolinska set in Sub-challenge 1 and 2 formats. 

 KAROLINSKA SET 

 Sub-challenge 1 Sub-challenge 2 

 Positive Negative Total Positive Negative Total 

Women 784 67,242 68,026 784 67,242 68,026 

Exams 784 67,242 68,026 784 165,812 166,596 

Images 1,557 266,632 268,189 1,557 656,740 658,297 

 

The content of the Karolinska set differed from the KPW dataset on several points that will be introduced 

and discussed in the following sections. Besides a few covariates such as the age of the women and the 

time since the last mammography exam, which are described in the next section, the Karolinska dataset 

did not include extensive clinical/demographic information as was available in the KPW dataset. A second 

difference is that the Karolinska set provides only one CC and one MLO view per breast (standard views) 

while the KPW dataset provides a more diversified collection of views (see eTable 2) along with often 

multiple instances of the same view.  

 

Optimam dataset 

 

The location of lesions was not available for the Challenge dataset (weakly-labeled data). After discussing 

with the best performers of the DM Challenge in preparation for the community phase, it appeared that 

most of the teams had pre-trained their methods on either public or private strongly labeled (location of 

abnormalities available) data before training on the Challenge dataset. Examples of public, strongly 

labeled dataset include as the Digital Database for Screening Mammography (DDSM)12, the INBreast 

dataset13 and the Mammographic Imaging Analysis Society (MIAS)14. 

 

The team London Mammo offered to share with the other participants to the community phase the 

strongly-labeled dataset that they have used during the competitive phase. The Optimam Image 

database,15 which has images from the UK National Health Service Breast Screening Programme 

(NHSBSP). The NHSBSP offers screening mammography to women aged between 50 to 70. However, 

some women in the age ranges 47-49 and 71-73 had screening as part of a trial to evaluate the 

effectiveness of extending the UK screening age range. The database has collected prospectively since 

2011 screening mammograms of all breast cancers detected at three screening centers in the NHSBSP. 

Representative samples of screening mammograms of women who attended screening but were not 

recalled for further investigation are also included in the database. The subset of the Optimam image 

database provided for the DM DREAM Challenge contained 4,500 cases made up of 3,500 malignant and 

benign cases and 1,000 normal. Each case has from 1 to 52 screening and symptomatic images for a 

total of 78,377 images. Most images are Full Field Digital Mammograms while some are magnification 
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images used in diagnosis and generally centered on a suspected lesion which have an estimated 

radiographic magnification factor above 1 and up to 1.8 times. 52.7% of the images have been processed 

by the device manufacturer’s algorithms for presentation to radiologists, while 47.3% of images are raw 

device output. Associated metadata includes image-related information (DICOM header and expert 

annotations) as well as clinical observations. They were collected by three hospitals in the UK and 

Belgium mainly from Hologic and GE devices. Image sizes ranged from 512 x 512 to 4,915 x 5,355 

pixels. A subset of 7,500 images had annotated findings. Annotations are rectangular bounding boxes 

around anomalous tissue, making this dataset strongly labelled. 

eAppendix 6. Challenge baseline method and scoring 

Challenge baseline methods 

We developed the Challenge baseline methods for Sub-challenge 1 and 2 during the preparation of the 

Challenge. In order to be eligible for the cash prize, participants were requested to outperform the 

performance of the baseline method in the Sub-challenge of interest. The development of these baseline 

methods also helped to identify the computational resources (RAM and GPU memory, scratch space, 

etc.) that participants would need to answer the Challenge questions. Using popular deep learning 

frameworks such as Caffe and TensorFlow, we were also able to evaluate the runtime quota that we 

allotted to each participating team. 

Evaluation metrics 

In the competitive phase of the Challenge, participants were asked to determine the cancer status of each 

breast of a subject (see Challenge Questions section) and the performance was evaluated at the breast-

level. This means that for each woman, algorithms had to output two scores indicative of the likelihood 

that each breast was diagnosed with cancer within a year. Therefore, each breast was considered 

independently for scoring. The primary metric used for performance assessment was the area (AUC) 

under the receiver operating characteristic curve (ROC). The AUC can be thought of as the average 

value of sensitivity over all possible values of specificity and is a measure of how well the algorithm’s 

continuous score separates positive from negative breast cancer status. It is considered to be one of the 

major metrics for the assessment of computer-aided diagnosis algorithms16,17. In this first phase of the 

Challenge, we did not want to tie the evaluation of different algorithms with encouraging results to the 

performance at a fixed sensitivity or specificity (i.e., operating point), but we wanted to identify algorithms 

that perform well across a range of operating points that might be combined in a synergistic way in the 

collaborative phase. A secondary metric, used only for tie-breaking between algorithms, was the partial 

area under the ROC curve (pAUC) above a sensitivity of 0.82. Our protocol stipulated that after ranking 

submissions with respect to AUC, ranking robustness tests would be performed between the high-ranking 

algorithms.  If the highest-ranked algorithm was robustly better than the second highest, then the top 

algorithm was the winner of the Sub-challenge. Robustness was assessed using a bootstrapping-based 

calculation of the Bayes factor18, which is equivalent to inverting a bootstrap percentile confidence interval 

using a significance level equal to 0.05. If the top algorithm was not robustly better than the second, then 

the third, fourth, etc. algorithms would also be tested to define a group of algorithms that is tied in 

robustness, and within this group, the secondary metric (pAUC) would be used to re-rank the tied 

algorithms. 

 

In the collaborative phase and in all the results reported in the main paper, algorithms were required to 

output the risk that the woman had cancer independent of the breast affected; that is, algorithms were 
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scored at the woman-level, or given that there were women with more than one exam, at the exam-level. 

Interestingly, for the same algorithm, performance metrics such as AUC and specificity at the exam level 

were worse than at the breast level. Scoring at the exam level was necessary because we wanted to tie 

the Challenge assessment metric to the mean performance of radiologists interpreting digital screening 

mammograms, whose performance is evaluated at the exam level7. A recent study with over 1.5 million 

digital mammograms from 2007 to 2013 found that in screening, the mean sensitivity and specificity of 

radiologists, calculated following American College of Radiology BI-RADS definitions, were 0.87 and 

0.89, respectively19. The goal of the collaborative phase was to design an algorithm that approached this 

target performance, although, as discussed in more detail below, due to the asymmetry in the way 

radiologists and algorithm are evaluated, this might be a high target for the algorithm to achieve. To 

measure the closeness of the algorithm to the target performance, we set a target sensitivity of 0.87 for 

the algorithm and focused on the specificity achieved by the algorithm. The participants in the 

collaborative phase were rewarded based on the improvement upon the best specificity achieved in the 

Challenge phase (specificity=0.65) at this sensitivity, with the full prize awarded if they could reach the 

mean radiologist specificity of 0.89. 

eAppendix 7. Training and evaluating models in the cloud 

Technical constraints 

The compute set-up for the Challenge reflected several constraints, which we first describe. 

 

Isolation of Training Data: Typically, machine learning Challenges allow participants to download a 

training data set along with the input side of the inference data, to their own machine, then submit their 

predictions to be scored against withheld validation data.  However, in this Challenge the data donor 

required that sample dataset downloaded by participants not exceed a tiny sample set (500 images) and 

that the full dataset not be accessible via a participant managed endpoint (either locally or cloud-based) 

at all. Additional factors discouraged the practice of having participants download data. For example, the 

sheer size of the data (tens of terabytes) suggested that it would be better to move models to the location 

of the data rather than the reverse. We expected that models would require high-end GPU processors for 

effective training.  If we required participants to purchase or otherwise gain access to such compute 

power, it might have biased the Challenge in favor of those with greater resources.  Using a common 

compute environment, provided by the Challenge organizers, would help to create a level playing field. 

 

Incomplete information about participants and compute:  A primary goal for organizing an open 

Challenge is to attract a broad segment of the community.  This makes it hard to predict the actual 

number of participants. While we can use past participation as a guideline, the high profile and cash 

awards of this Challenge meant that there might be much greater participation than usual.  While past 

Challenges had 100 or so active participants, there were over 1000 pre-registered for this Challenge.  

This suggested a high level of interest but did not give a precise level of expected participation.  We 

needed a technical solution that would both allow us to control the level of resources consumed by each 

participating team and that would allow us to scale as participation grew. We had the benefit of two 

donors of cloud compute, IBM Cloud and Amazon Web Services, from which we could provision 

resources. We needed an architecture that was cloud agnostic and scalable, allowing us to quickly add 

more machines when required. 

 

Performance:  We needed to acquire high performance GPU servers and to mount the data such that it 

could quickly be moved into the GPU processors’ memory for model training. 
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Reuse:  We wished to ensure the models would be able to be rerun in the future, on commodity 

hardware, perhaps not identical to that used in the challenge. 

 

Early in the challenge two additional requirements became apparent: 

 

Reuse of preprocessed data:  Model training by participants typically included two phases: First, the 

data might be preprocessed in several ways; for example, conversion from the native DICOM medical 

image format to another (JPG, PNG), scaling, or cropping.  Training was subsequently performed on this 

preprocessed data.  The first step could take several days to complete but was generally not then 

changed.  The second step was frequently altered, as participants tried variations of parameters and 

algorithms.  To be productive there was a clear need to cache the preprocessed data and to use it for 

multiple machine learning iterations. 

 

Checking for errors:  Before opening the challenge, we had hoped that participants could try their 

models on the small pilot data set so that when they eventually submitted their model to train against the 

full data set all bugs would have been worked out.  In practice there were unforeseen problems, e.g., due 

to variations of data not in the pilot set, or due to the way that the challenge infrastructure merged the 

models and data for training.   The result was that models might run for days before an unrecoverable 

error was detected.  A mechanism was needed to quickly reveal problems with candidate models. 

Infrastructure Design 

The various constraints described above suggested the use of a batch submission system, with limits 

imposed on participants.  The items submitted would be models to be run.  The series of DREAM 

challenges has long made use of the Synapse web-based platform for scientific collaboration20.  Synapse 

provides data sharing, wiki-based project descriptions and discussion forums, among other features. It 

includes submission queues, originally intended for submitting predictions (files) for scoring.  For this 

challenge we used the submission queues to submit models for execution by the batch processing 

queue.  Participants were asked to structure their trainable model into two steps, (1) preprocessing and 

(2) training.  Moreover, each step was to be created in the form of a lightweight portable machine image 

called a Docker container21. Docker images are stored in what are called Docker registries.  Public 

registries include DockerHub22 and Quay23.  To support the challenge, we added a Docker registry to 

Synapse itself.  This ensured that participants would not encounter fees or other constraints when storing 

their models.  The entries in a Docker registry are called Docker repositories.  Each repository is a series 

of versions called commits and each commit is akin to an image of a Unix file system.  Commits are 

referenced by user defined tags (names) or by unique, system defined IDs.  A typical Docker repository 

name in Synapse is: 

 

docker.synapse.org/syn4224222/dm-caffe-training-example 

 

Where ‘docker.synapse.org’ refers to the Synapse Docker registry, ‘syn42224222’ refers to a Synapse 

project (in this case the Digital Mammography project) and ‘dm-caffe-training-example’ is a user defined 

name.  A specific version is referenced by its system generated commit, a SHA-256 hash, e.g., 

 

Sha256:eadc45274677cc12f1f61570bbac390cc4937e9c9f73782d40c84e89784a0cd5 

 

The submission to a challenge for training is a pair of such references: 

 

https://www.synapse.org/#!Synapse:syn7290939
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preprocessing=docker.synapse.org/syn4224222/dm-preprocess-caffe@sha256:84e9...6341 

training=docker.synapse.org/syn4224222/dm-train-caffe@sha256:c129...ff44 

Where the first in the pair is the image of the containerized code for doing preprocessing and the second 

is that for performing the subsequent machine learning.  If a later submission combined an existing 

preprocessing step with a modified training algorithm the first line would be the same while the second 

would either reference a new repository or a new version of an existing one.  The use of specific version 

references in submissions prevented race conditions, where otherwise a participant might modify a 

repository after submission, causing the executed submission to be different from the code at the time of 

submission.  Requiring the participants to specify the preprocessing algorithm rather than the 

preprocessing output had several advantages: 

 

● Freed us as challenge administrators from having to preserve preprocessed data created on 

ephemeral storage; 

● Ensured against loss of unrecoverable information if preprocessed data were lost; 

● Allowed organizers to freely reconfigure back end resources; 

● Provided reproducibility of each submission 

 

Several participants requested the ability to make quick, small modifications to existing preprocessed 

data rather than prolonged reprocessing from scratch to incorporate small preprocessing changes.  

These requests were denied since allowing them would negate the advantages described above. 

  

An alternative to using Docker would be to allow submission of a compiled executable.  A big advantage 

of the Docker-based approach is that a Docker image has its software dependencies bundled together 

and therefore is highly portable.  A participant can create and test out their container locally, then submit it 

for processing, confident that it will work the same on the challenge infrastructure as it does on their own 

system.  This approach not only allows automatic execution of submitted code but also helps with 

reproducibility, the latter being fundamental to ensuring the validity of any resulting scientific discovery.  

Each submission contains user applications, language runtimes, packages and libraries, as well as the 

machine learning framework used by the participant.  We found that the most popular framework used by 

participants was Caffe24. However, many participants also used other frameworks such as TensorFlow25, 

Theano26, and MXNet27. We provided sample Docker images for multiple frameworks. 

 

A feature of Docker is the ability to mount host volumes (folders) to be accessible within the running 

container.  The challenge instructions specified the location of the data as well as an empty folder into 

which the model under training would maintain its state.  At the end of training the contents of the model 

state folder were zipped and uploaded to the Synapse data sharing platform.  The flow is summarized in 

eFigure 3. 

 

eFigure 3.  A training submission comprises two Docker containers, a preprocessing step followed by a 

training step.  Preprocessing takes as input the raw image data and image metadata, writing output to 10 

TB ephemeral storage (the preprocessing cache).  The training step reads from the preprocessing cache 

and maintains its state in the model state folder.  500 GB of scratch space is also made available.  During 

preprocessing and training, logs are captured and returned to the submitter.  At the end of training, the 

model state is stored for retrieval by the submitter. 
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By tracking the submitting team and the preprocessing Docker image used to generate each set of 

cached preprocessed files, the system could reuse the cached intermediate result.  If a team chose to 

modify their preprocessing algorithm, their cache was overwritten with the new content. 

 

The overall flow of the Challenge is shown in eFigure 4.  Participants started by visiting the Synapse web 

site to learn about the Challenge and register.  Once registered, they had access to Challenge data, 

example models, and GitHub links to source code.  After developing a candidate model, participants 

pushed the Docker image to Synapse.  Once a model started running, an email was sent with a link for 

retrieving log files.  Participants could monitor progress on a personal dashboard showing all their 

submissions.  The users could also cancel a running submission if (based on the returned log file) they 

felt the model was not producing useful results and wished to limit the usage of their time quota 

(described below).   
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eFigure 4.  Participant submission workflow during the DM Challenge.   

 
After visiting the Synapse web site to learn about the Challenge and register, participants had access to 

Challenge data, example models, and GitHub links to source code.  After developing a candidate model, 

participants pushed the Docker image to Synapse, where a batch submission queue retrieved it, mounted 

the Challenge training data and executed it, returnied progress, logs and finally the trained model state. A 

similar process for inference submissions led to a score on the Challenge leaderboard.  Training and 

inference were iterative within each round. The Challenge culminated with a final round to determine the 

best performers. 

 

Once a training submission was completed, the model state (up to 20GB) was uploaded to Synapse and 

the submitter received an email notification, including the size of the captured model state file, any error 

information (if the model encountered an error) and a signed token, which could be used to retrieve the 

model state.  Additionally, log files from the running containers were archived to Synapse and shared with 

the participants.  After one or more training submissions, when a participant was satisfied with the 

performance of the trained model, they prepared an inference submission for evaluation, using (1) a 

chosen model state generated during training (specified by the ID of the Synapse file to which it was 

uploaded) and (2) the Docker image for the model itself. The file has the form: 

 

model_state=syn12345 

inference=docker.synapse.org/syn4224222/dm-train-caffe@sha256:c129...ff44 

 

Models sent to this queue were run against a validation set and wrote their predictions to a specified 

output file, as shown in eFigure 5.  The predictions were scored, and the scores posted to the Challenge 

leaderboard.  To ensure isolation of validation data, neither log files nor predictions were returned to the 

participant.  Only in the case that the model encounters an error are the last few lines of the log files 

returned, to assist in debugging.  Each participant was limited to three inference submissions (to each of 

two Sub-challenges) in each five-week round.  At the end of the round all scores were published to the 

leaderboard.  In the final round each team had just one chance to submit an inference submission and 

the results determined the Challenge top performers. 
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eFigure 5.  Execution of inference submissions.   

 
A participant’s Docker container was started on a GPU server, mounting the model state created during 

training and stored to Synapse.  Validation data were presented to the model and its predictions captured 

for scoring against the gold standard.  To protect the validation data, user feedback was minimized. The 

user could view their model’s progress and ultimately their score as well as the tail of their log file, should 

an error occur.  No other information was revealed. 

Express lanes 

A queue was established for submitting models for training and for submitting inference models for each 

of the two Sub-challenges.  At peak times (generally the final days of each round) queues could be 

backed up for days.  This caused a problem for erroneous models:  A participant might wait for days only 

to discover their submitted model had an error that prevented it from running.  To address this problem, 

we created so-called “express lane” versions of each submission queue in which both the data were small 

(the downloadable pilot data was used) and execution time was limited to thirty minutes.  Thus, a 

participant had some assurance that a long-enqueued submission would run to completion once 

execution began. 

Compute 

The compute servers used in the Challenge featured NVIDIA Tesla K80 GPUs.  We divided the physical 

resources of each server to give exclusive hardware to each of two models, running in parallel (with some 

resources reserved for our supervisory processes).  Each submitted model had exclusive access to the 

following: 

 

- One Tesla K80 GPU Card (2 Kepler GK210 GPUs, each having 2496 cores and 12 GB of 

memory) 

- 22 Intel CPUs 

- 200GB memory 

- 200GB of scratch space on local storage 
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- 20GB of local storage for the trained model state, to be returned to the participant 

 

The machines provisioned for training provided 10TB of local storage per team for preprocessed data, as 

explained earlier.  The machines provisioned for inference required no such local storage. 

 

Data hosting was different in the two clouds, though the difference was invisible to the participants. The 

IBM Cloud servers had considerable local storage per machine, and the Challenge data was replicated 

onto each physical server to maximize access of data by the GPUs.  On the Amazon cloud we used the 

Elastic File System (EFS) service, a virtual network share, mounted to the GPU servers, which scaled in 

bandwidth according to the amount of hosted data.  Both approaches achieved high performance transfer 

of the Challenge image data to the GPU-based models. 

Quotas 

To fairly share finite Challenge resources, we imposed use limits on participants:  Training submissions 

were limited to two weeks (336 hours) of cumulative wall time, while inference submissions, while 

unlimited in time, were limited in count to three submissions per team in each round to prevent overfitting.  

The submissions were serviced by a pool of the previously described GPU-servers.  To ensure that teams 

received their compute share, administrators monitored the backlog and added servers to the worker pool 

as the submission queue grew.  The architecture allowed us to fluidly scale, adding servers as demand 

grew and retiring servers when not needed. 

 

There was a requirement not to let participants download the Challenge data.  All models were run 

without network access to ensure submitted models did not upload Challenge data to remote systems 

across the internet.  All communication between the model and the outside world was through mounted 

disk volumes.  However, the use of a batch submission system meant that conduits for returning 

information to participants were required, specifically for returning log files and model state.  Though 

Challenge participants agreed not to retrieve data files, there was the chance that one might attempt to 

copy restricted Challenge data into one of the retrieved files.  A creative attacker could have further 

encrypted or otherwise disguised data files to avoid detection during inspection of data in transit.  The 

most straightforward approach to avoid data theft was to monitor the size of retrieved data; thus, we 

limited log file upload to 1GB/day.  We also implemented a strategy by which participants could 

selectively “spend” their data quota:  Rather than return model state to participants directly, we kept the 

data “locked” and sent a cryptographically signed token in the email notification that training was 

complete.  Participants could exchange the token for access to their model state, the size of which was 

decremented from their per-round quota. This meant that a participant could retrieve a model state well in 

excess of 1GB several times in a round, provided their total (along with retrieved log files) did not exceed 

their 35 GB per round quota.  In practice this worked very well, with a total data retrieval, across all teams, 

less than 100GB per round. 

 

Participants were able to view dashboards of their submissions to all queues (training, inference, regular 

and express lane).  The queues for training submission showed the run time and data retrieval quotas 

used and remaining.  All queues featured a cancel button.  Participants could monitor their log files and 

cancel poorly converging training submissions to preserve their time quota.  Although log files were not 

returned for inference submissions, users could cancel submissions not yet executed allowing them to 

apply their three-submission limit to improvements conceived after original model submission. 
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Model Reuse 

GPU processors were a key element of the compute infrastructure.  In Unix they appear as character 

devices that need to be mounted to the participant’s Docker container, much as are file shares.  The 

Docker mount parameter provisions GPUs for exclusive use by a model.  Moreover, NVIDIA user libraries 

installed on the host must be mounted to the model containers.  The libraries (which serve as the 

gateway to the GPUs) precisely match the version of the GPU but have a generic interface.  Thus, by 

keeping these libraries on the server (rather than installing them in model containers) the models could be 

reused in the future on servers having later versions of NVIDIA GPUs and libraries.  To help determine 

the correct Docker mount parameters, NVIDIA provides the NVIDIA Docker tool, which interrogates the 

server for its GPU device addresses and user library location, then generates the correct Docker mount 

parameters.  Using this tool allowed the Challenge system to correctly configure reusable models for 

server execution. 

eAppendix 8. Combining model predictions into ensembles 

Through various domains, it has been observed that an ensemble of diverse set of predictors perform 

more robustly than any of the individual predictor28,29. In social sciences this collaborative decision-

making process is known as WOC (Wisdom of the Crowds)30. In the machine learning literature, the 

process of combining multiple base classifiers is known as ensemble learning. An ensemble of classifiers 

is a set of base classifiers whose individual predictions are combined to predict labels of unseen 

examples. Ensemble learning has also been used in various DREAM Challenges with significant 

performances improvements over the best individual methods31-33. 

 

It has been observed that base classifier diversity has a significant effect on the performance of the 

ensemble classifier34,35. During DM Challenge, participants were asked to develop algorithms that took as 

input the data from a screening exam and provided as output a number between 0 and 1 (the confidence 

level) indicative of the likelihood predicted by the algorithm that the woman would develop breast cancer 

within a year from the screening test. Participants applied a variety of approaches, such as different 

network architectures, use of different public/private datasets or using strongly/weakly labeled data to 

train their models. This diversity in methodologies resulted in important differences between individual 

predictive algorithms. We hypothesized that an ensemble of predictors would significantly improve upon 

the performance of the best individual predictor, and even more so if the radiologist assessment 

(represented with a 1 if the woman was recalled or a 0 otherwise) was combined with the algorithmic 

predictions. For this purpose, we generated two ensemble classifiers: one using only the community 

phase eight top performing algorithms (the CEM ensemble) and the other using the same eight top 

performing algorithms and the radiologist assessment (the CEM+R ensemble). We used a meta-learning 

method called stacking to generate the ensemble classifiers36. The inputs to the ensemble learner were 

the confidence level of each of the eight algorithms for the CEM ensemble, and those same confidence 

levels plus the radiologist assessment for the CEM+R ensemble. To avoid overfitting, we used an elastic 

net regularized logistic regression37 as the meta-learner and ten-fold cross validation for parameter 

tuning. We trained the ensemble classifiers on the KPW training data and evaluated their performance on 

the KPW evaluation dataset as well as the Karolinska evaluation dataset, which served as an 

independent test set. We used the R package caret for ensemble construction38. 
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Running the ensemble model 

We provide a method for executing the ensemble model against a novel data set.  This is implemented as 

a workflow, written in the Common Workflow Language (CWL)39. The code and instructions for using it 

are provided through GitHub40. 

eAppendix 9. Participation in the Challenge 

The announcement of the Challenge was well received with 1000 pre-registrants.  Ultimately 1272 

individuals joined the Challenge.  Over the seven-month duration of the competitive phase of the 

Challenge people came and went, but there were about 400 highly active teams.  The total number of 

submitted models (across both Sub-challenges, both training and inference, both express lane and full 

data set) are detailed below. 

 

# registered teams = 124 

# participants who are not part of a team = 1017 

 

The participation in Sub-challenge 1 was higher than in Sub-challenge 2. Sub-challenge 1 was the entry 

point to the DM Challenge with data limited to the images of the last mammography exam of subjects for 

which predictions were requested. The dataset in Sub-challenge 2 was more complex with the addition of 

clinical and demographic information as well as information from past exams (if available). The second 

reason was related to the time quota allotted to each team to train models and the massive size of the 

training set. Because training models for Sub-challenge 1 already required a large amount of time, teams 

preferred to focus on this sub-challenge rather than spending their time quota on the second Sub-

challenge. While past exams did not have cancer in the Challenge dataset and thus could not provide a 

useful reference, it may be that participants considered that the most important predictive features were 

included in the images of the exams for which predictions were asked and less from the 

clinical/demographic information. 

 

Non-’express lane’ submissions (evaluation: SC1 and SC2 together): 
 

Number of submissions Training submissions Evaluation submissions 

Submitted (may have failed) 4554 709 

Completed 2013 305 

 
All submissions (express lane/non-express lane, evaluation: SC1 and SC2 together) 
 

Number of submissions Training submissions Evaluation submissions 

Submitted (may have failed or 
halted due to time) 

5182 2463 

Completed within the 
abbreviated time window 

N/A 650 
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eAppendix 10. Best-performing models submitted at the end of the Competitive Phase 

The following sections provide insights into the models developed by the best performers in the DM 

DREAM Challenge. Additional information about each model, including the submitted docker image and 

source code, is available on the Challenge website (https://www.synapse.org/ 

Digital_Mammography_DREAM_Challenge). 

Therapixel model (Best performer in Sub-challenge 1 and 2) 

Unlike most of the other teams, Therapixel’s team designed a custom deep learning architecture instead 

of reusing an existing model such as GoogLeNet41, VGG Net42 or AlexNet43. This decision was motivated 

by early experiments where the team trained existing models from scratch on mammography images that 

achieved relatively poor performance. The reason is because digital mammography images are 

intrinsically different from real-world images that are targeted by most of the available deep learning 

models. During the DM Challenge, the team identified and addressed the following issues: the need to 

work with high resolution images, propagate a very weak learning signal, adapt the architecture to detect 

objects of interest different from traditional, real-world objects (cars, animals, fruits, etc.), and address the 

huge class imbalance. 

 

For clearness of the following, we note that Therapixel’s model was trained at image (view) level, breast 

cancer probability was inferred as the average cancer probability of different views, and patient cancer 

probability was inferred as the max cancer probability of the two breasts. 

 

The size of the images of the DM Challenge ranged from 3328x2560 px (8.5 megapixels) to 5928x4728 

px (28 megapixels). In Therapixel’s approach the images were down-sampled to 1152x832 px (1 

megapixel). This significantly reduced the amount of information to process which; however, was still 

much larger than the size of the input layer of GoogLeNet and VGG Net (224x224 or 0.05 megapixels) or 

AlexNet (227x227). It was clearly not enough; for example, one of the two types of cancer that teams 

have been tasked to detect (DCIS cancer) is characterized by very small micro-calcifications located in 

the milk ducts. Resizing mammography images to match the size of the input layer of available deep 

learning models would then lead to a loss of information and the inability to detect DCIS cancer. To 

address this issue, the team deeply modified the VGG Net architecture main modifications being as 

follows: 

 

- Reducing the number of parameters, since the original architecture had too big memory footprint 

to train on high resolution images.  

- Using 6 pooling layers instead of 5 to better fit the (usually small) lesions. 

- Inserting a final (7th) pooling layer with large receptive field before the last three layers (which 

infer the cancer probability) of the network to be more robust with respect to lesion position. 
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eFigure 6. Architecture of the deep neural network implemented by the team Therapixel at the end of the 

competitive phase of the Challenge. 

 

 
 

For Sub-challenge 2 the team used patient metadata as an additional input vector concatenated with the 

feature map deep inside the network (see “metadata” on Fig S6). The previous exams of the same patient 

were not used due to lack of computational time.  

 

A second key component implemented by the team was to pre-train the first part of the network on 

strongly-labeled data; that is, where the location of lesions is specified. Because such information was not 

part of the Challenge data, the team pre-trained their model on patches (region of interest around the 

lesion) from the DDSM dataset12. Then, this network trained on patches was applied to entire images to 

produce a coarse heat map of different types of lesions (healthy, calcification benign, etc., see 

“Intermediate labels” on Fig S6). Finally, three more layers were added on top of this heat map and 

trained with image-wise labels to infer final cancer probability. This 2-step (patch-full image) training 

procedure enables to propagate a very weak learning signal through a relatively deep model that has 18 

processing layers in total. 

 

This DDSM-trained network when applied directly to DREAM images gives performance of about 60-65% 

in terms of breast-level AUC. We explain this poor performance by very different distributions of pixel 

intensities between DDSM and DREAM images. The difference in the distribution of pixel intensities 

originates from the fact that DDSM is a database of digitized mammograms (that is, they were originally 

film-screen mammograms) and are not intrinsically digital images like the ones DREAM used. Examples 

of images from the two datasets are given in eFigure 7. However, when fine-tuning on the DREAM 

images, the model quickly adjusts to the new image appearance, training much faster than from scratch 

and achieving a better generalization. 
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eFigure 7. Comparison between a scanned, film mammogram image from DDSM dataset (left) and a 

digital mammogram images from the DM Challenge dataset provided by KPW (right). 

 

 
 

Finally, the huge class imbalance was addressed by training on mini-batches containing the same 

number of positive and negative examples. Such a simple strategy permits to hide the true distribution 

and was empirically found to better optimize the AUC metric prioritizing it over the classification accuracy. 

 

The custom network architecture and training procedure described above, with the help of manual fine-

tuning steps such as appropriate learning rate, usage of exponential moving averages and model 

ensembling enabled the model of the Therapixel’s team to achieve an AUC score of 0.858 (exam level) 

and 66.3% specificity at sensitivity 85.9% on KPW Validation set (Sub-challenge 2). 

 

Even though the model suggested by Therapixel’s team is a classification network, the model can still be 

used to extract some information about the location of potential malignant lesions inside the breast. By 

applying the method described in44 to a deep learning network, a saliency map of the same size as the 

input image can be generated for each class. The intensity of a given pixel in a saliency map represents 

the predicted probability that this pixel is associated to the class of interest. 

Dezso Ribli’s model (2nd Best performer in Sub-challenge 1) 

Mammograms are huge images, while cancers only correspond to a relatively small area of the image (1-

2%); therefore, the team reformulated the task as object detection instead of the original image 

classification task of the Challenge. A high performing object detector model based on deep convolutional 

neural networks, Faster-RCNN45, was adapted to the problem and trained on mammogram images with 

cancer location annotation (bounding boxes, see eFigure 8). The main Challenge dataset had no location 

annotation; therefore, Faster-RCNN could only be trained on publicly available mammograms from 

DDSM12, INbreast13 and a very small set of DREAM pilot images which was annotated by hand. The main 

Challenge dataset was only used for validation and model selection. In the collaborative phase of the 

Challenge new datasets became available, and the models were trained on the DDSM and the Optimam 

dataset and a small dataset from a Hungarian university46. 
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eFigure 8. Outline of the Faster-RCNN approach for mammography. Reprinted with permission from46. 

 
 

 

The final score assigned to an image was the score of the most confident localized cancer detection. The 

score of a breast was an average score of all views, a score on an exam was the maximum of the scores 

of the laterality. When ensembling models, the scores of different models were averaged on the image 

level. Further details about this approach can be found in a separate paper46. 

 

At the end of the Challenge this solution was found to be highest performing approach. In the 

collaborative phase of the Challenge the method reached the highest AUC at breast level both on the 

Challenge dataset, and the Karolinska dataset, AUC = 0.893 and 0.928 respectively. In the competitive 

phase of the Challenge, the method reached the 2nd position in Sub-challenge 1 with AUC = 0.85. 

 

An important aspect of this approach is that Faster-RCNN is based on the precise localization of 

cancerous lesions, which enables the method to be directly used as a computer aided detection tool 

unlike any other best performing methods which are based on classifying whole images. 

Yuanfang Guan’s model (3rd Best performer in Sub-challenge 1) 

The color profiles between the DM data and the training data used by this team (INBreast and BCDR) 

were different; thus, this team first mapped the color profiles through sigmoid transformation and 

percentile fitting. Then they trained two types of models by segmentation networks. The first model 

predicted calcification and the number of calcifications in a small patch. This team trained full resolution 

model on calcification counts in a small region in the first model that allowed detection of DCIS. Then they 

trained a low-resolution mass model and used mass size as feature. 
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DeepHealth’s model (4th Best performer in Sub-challenge 1) 

To address the dependency of cancer/no-cancer status on highly localized regions, DeepHealth’s 

developed a two-stage training approach, consisting of first training patch-level classifiers, which were 

then used to initialize a fully-convolutional image-level classifier. For the patch-level training, the DDSM 

dataset was used to construct a training set of cropped image patches, using the available lesion 

segmentation masks and pathology results to generate labels. Variants of ResNet CNNs47, particularly 

the Wide ResNet formulation48 with custom hyperparameters, were used as the patch classifiers. Patch 

CNNs were trained at two scales to account for the wide range of scales of lesions-varying from small 

microcalcifications needing fine detail for diagnosis, to larger masses requiring bigger spatial extents. 

Specifically, 256x256 cropped patches were created from images originally resized to ~2750x1500 and 

~1100x600. Random size augmentation of 15% was used in the initial resizing of the image, i.e. images 

were randomly resized to 85-115% of the specified target size before patch cropping. Random rotations 

up to 30 degrees and horizontal mirroring were also used for data augmentation. The CNN trained on the 

larger image size was trained for calcification classification, whereas the CNN trained on the smaller 

image size was trained for mass classification. After patch-level training, the CNNs were used in a 

scanning-window (i.e. convolutional) fashion to initialize a full-image model that could then be trained in 

an end-to-end fashion using binary image-level labels. The full-image model consisted of global average 

pooling on the convolutional feature maps produced by each patch CNN, followed by concatenation of the 

two resulting feature vectors and a single, fully-connected classification layer. This model was again 

trained on the DDSM dataset, and then fine-tuned on the DREAM images. A schematic of the training 

procedure is shown in eFigure 9. 
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eFigure 9. For the DREAM Challenge, predictions were made on a single-image basis and averaged 

across views to generate breast-level scores.  

 

 
In the competitive phase, the DeepHealth model scored 0.843 AUC. In the post-competitive phase, the 

model reached 0.902 AUC following several modifications, including image background trimming, 1:1 

class balancing, a single input scale with height of 1750, and pre-training on the Optimam dataset. 

 

The DeepHealth image-level model was trained one image at a time (batch size of 1), with the positive 

images oversampled from their natural proportion at a rate of 1 positive image chosen for every 3 cancer-

negative images. To combat overfitting, data augmentation of random horizontal mirroring and resizing 

were again used at the image level. Predictions were made on a single-image basis and averaged across 

views to generate breast-level scores. In SC2, an adaboost classifier was independently trained on the 

exam metadata and combined with the image model via a weighted average of the model outputs. 

Strategies associated with high performance 

Among the 26 teams who responded to our survey, 14 teams (54%) reported using public or private 

datasets to pre-train their model on strongly labeled samples; that is, mammogram images that have 

annotation as to the precise location of abnormal lesions within the image. We observed that algorithms 

that included training on strongly labelled data reached a significantly higher performance in the KPW 

evaluation data than methods that use only weakly labelled data (P=0.017, see eFigure 10A). 

Additionally, these high performing teams used an ensemble learning strategy, representing 46% of all 

methods, achieved a significantly higher performance (P=0.012, see eFigure 10B). This is consistent with 

results from other DREAM Challenges: teams that use ensemble learning tend to reduce overall variance 

in performance metrics and stable and generalizable results 31. 
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eFigure 10. Area under the curve (AUC) of the methods that have been reported as A) having been 

trained on strongly labelled data (private or public datasets) and B) using an ensemble of models instead 

of a single model in the Validation Phase of the Challenge. Both approaches highlight a significant 

improvement in AUC (P<0.05). 

 

 
  



© 2020 Schaffter T et al. JAMA Network Open. 

eAppendix 11. DM DREAM Consortium 

The following participants are members of the DM DREAM Consortium: 

 

Christoph M. Friedrich, PhD. University of Applied Sciences and Arts Dortmund, Department of Computer 
Science, Emil-Figge-Str. 42, 44227 Dortmund, Germany 

Lester Mackey, Ph.D. Microsoft Research New England, 1 Memorial Drive, Cambridge, MA 02142. 

Hossein Azizpour, PhD. KTH, Division of Robotics, Perception, and Learning, Stockholm, Sweden. 

Joyce Cahoon, M.S. North Carolina State University, 2311 Stinson Dr, Raleigh, NC 27695 USA. 

Kevin Smith, Ph.D. 1) School of Electrical Engineering and Computer Science, KTH Royal Institute of 
Technology, Stockholm, Sweden, 2) Science for Life Laboratory, Solna, Sweden. 

Bibo Shi, Ph.D. Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University 
School of Medicine, Durham, NC 27705 USA. 

Li Shen, Ph.D. Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY 10029 USA. 

Jae Ho Sohn, MD, MS. University of California San Francisco, Radiology and Biomedical Imaging, 505 
Parnassus Ave, San Francisco, CA 94143 USA. 

Hari Trivedi, M.D. Emory University, 1364 Clifton Road Northeast, Atlanta, GA 30322 USA. 

Yiqiu Shen. New York University, 60 5th Ave, New York, NY 10011, USA. 

Ljubomir Buturovic, Ph.D. Clinical Persona Inc., 932 Mouton Circle, East Palo Alto, CA 94303, USA. 

Jose Costa Pereira, Ph.D. INESCTEC, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal. 

Jaime S. Cardoso, Ph.D. INESC TEC and University of Porto, Porto, Portugal. 

Michael Kawczynski, M.S. Bakar Computational Health Sciences Institute, University of California, San 
Francisco, 550 16th Street, San Francisco, CA 94158 USA. 

Eduardo Castro, MSc. INESC TEC, Rua Dr. Roberto Frias, Campus da Faculdade de Engenharia da 
Universidade do Porto, 4200-465 Porto Portugal. 

Karl Trygve Kalleberg, MD, PhD. KolibriFX AS, Gaustadalléen 23A, 0373 Oslo, Norway. 

Obioma Pelka, M.Sc. 1) Department of Computer Science, University of Applied Sciences and Arts 
Dortmund, Germany, 2) Department of Diagnostic and Interventional Radiology and Neuroradiology, 
University Hospital Essen, Germany. 

Imane Nedjar, M.Sc. Biomedical Engineering Laboratory Tlemcen University, 22 rue Abi Ayed Abdelkrim, 
Tlemcen 13000, Algeria. 

Kyunghyun Cho, Ph.D. New York University, 60 5th Ave., New York, NY 10012, USA. 

Krzysztof J. Geras, Ph.D. Department of Radiology, NYU School of Medicine, 660 1st Avenue, New York, 
NY 10016, USA. 

Felix Nensa, M.D. Department of Diagnostic and Interventional Radiology and Neuroradiology, University 
Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany. 

B.E. Ethan Goan, Ph.D. Queensland University of Technology, 2 George St, Brisbane, QLD, 4000 
Australia. 

Sven Koitka, M.Sc. 1) Department of Computer Science, University of Applied Sciences and Arts 
Dortmund, Dortmund, Germany, 2) Department of Diagnostic and Interventional Radiology and 
Neuroradiology, University Hospital Essen, Essen, Germany. 

Can Son Khoo, BSc. University College London, United Kingdom. 

Luis Caballero, Ph.D. Instituto de Fisica Corpuscular, C/ Catedratico Jose Beltran 2, 46980, Paterna, 
Valencia, Spain. 

Joseph Y. Lo, Ph.D. Department of Radiology, Duke University School of Medicine, Durham, NC 27705, 
USA. 

David D. Cox, Ph.D. MIT-IBM Watson AI Lab, IBM Research, Cambridge, MA 02142 USA. 

Pavitra Krishnaswamy, Ph.D. Institute for Infocomm Research, A*STAR, 1 Fusionopolis Way, #21-01 
Connexis (South Tower), Singapore 138632. 

A. Gregory Sorensen MD. DeepHealth, Inc., 1000 Massachusetts Avenue, Cambridge MA 02138. 

Hwejin Jung, Ph.D. Korea University, Seoul, Republic of Korea. 

Bibo Shi, Ph.D. Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University 

School of Medicine, Durham, NC 27705 USA.  
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Gerard Cardoso Negrie, M.Sc. Satalia, 40 Islington High Street, N1 8EQ London, UK.  
Michael Kawczynski, M.S. Bakar Computational Health Sciences Institute, University of California, San 

Francisco, 550 16th Street, San Francisco, CA 94158 USA.  
Kyunghyun Cho, Ph.D. New York University, 60 5th Ave., New York, NY 10012, USA.  

Can Son Khoo BSc. University College London, United Kingdom. can.khoo.10@ucl.ac.uk 

Joseph Y. Lo, Ph.D. Department of Radiology, Duke University School of Medicine, Durham, NC 27705, 

USA.  
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