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S1.1. GROWTH DYNAMICS OF RESOURCE

CONSUMPTION

In this appendix, we present additional technical de-

tails for the resource consumption dynamics to justify

the expressions stated in the main text. This is first done

by deriving a general framework for coupling the within-

deme dynamics to the cycle mapping. Specifically, this

is achieved with the introduction of an “expansion factor”

ξ, for which we derive approximations for each of the

within-deme dynamics. The extensions to the interac-

tions including either antibiotic reduction or enhanced

iron-availability from pyoverdine are treated in their

own appendices S1.2 and S1.3 below.

∗ l.geyrhofer@campus.technion.ac.il
† nbrenner@technion.ac.il

A. General framework

First, we restate the dynamics already disclosed in

the main text for reference: Within a single deme we

model the growth dynamics of multiple strains Ni(t)

and the decrease of the resource concentration S(t):

∂tNi = αiNi , (S1.1a)

∂tS = −
∑
i

αiNi
ϕi

, (S1.1b)

where ∂t is a time derivative, and different strains i

are characterized by their growth rates αi and yields

ϕi. These growth rates αi(t) and yields ϕi(t) will be

separated into three terms,

αi(t) = α
(
1 + δαi

)
A(t) , (S1.2a)

ϕi(t) = ϕ
(
1 + δϕi

)
Y (t) . (S1.2b)

Here, α is the average growth rate and ϕ the average

yield, computed as arithmetic mean over all strains.

The deviations from these average values for individual

strains are denoted by δαi and δϕi. With this definition,

the average growth rate α can be used as unit of time

αt, and the average yield acts as unit for substrate con-

centrations Sϕ, which then counts potentially growing

cells. In addition, we collect all time-dependencies in

the terms A(t) and Y (t). In the public good scenarios

treated later, these time-dependent terms are used to

couple to the public good dynamics. For this section

that only treats resource consumption, we assume they

are constant during the growth period, A(t) = Y (t) = 1.

However, we set A(t) = 0 when resources are depleted

within a deme, S(t) = 0 for t > Tdepl. Thus, the decreas-

ing resource concentration due to growing populations

in Eq. (S1.1b) acts as a timer to stop the dynamics.

We transform all population sizes Ni(t) to total pop-

ulation size N(t) =
∑
iN(t) and fractions Xi(t) =

Ni(t)/N(t) of different strains, which turns Eqs. (S1.1)

into

∂tN = αA(t)N
(
1 +

∑
i

δαiXi

)
, (S1.3a)

∂tXi = αA(t) δαiXi

(
1−

∑
j

δαj
δαi

Xj

)
, (S1.3b)

∂tS = −αN
ϕ

A(t)

Y (t)

∑
i

1 + δαi
1 + δϕi

Xi . (S1.3c)

Eq. (S1.3b) describes the frequency changes in a multi-

species Lotka-Volterra model, also known as replicator
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dynamics, which has been studied extensively [2–4]. For

us, however, the dynamics of the population size N is im-

portant as well, because interactions between microbial

strains do not only change the frequency dynamics, but

also how frequency dynamics couples to the population

size dynamics.

Throughout our work, we assume that different strains

are seeded into new demes by independent Poisson dis-

tributions, each with parameter ni which is its mean

size per deme in the pool:

P
[
n
∣∣n] =

∏
i

nnii
ni!

exp
(
−ni

)
. (S1.4)

Averages over all droplets using this Poisson distribu-

tion are written as angular brackets, such that average

population sizes N are〈
N
〉

=
∑
n

P
[
n
∣∣n]N(Tmix;n) . (S1.5)

These averages are always evaluated at the mixing time

Tmix, such that the global mixing step is represented

exactly in this averaging. In some cases we also want

to indicate the parameters of the seeding distribution

directly: Then, we write the variables that we average

over as arguments and the parameters after a verti-

cal line,
〈
N(n)

∣∣n(τ)
〉
, which indicates that the average

should be computed for the indicated variables with

these parameters of the distribution.

As already stated in the main text, the changes in

inoculum size and composition between cycles are given

by

∆n(τ+1) = d
〈
N
〉
− n(τ) , (S1.6a)

∆x(τ+1) =
〈
∆X

〉
+ Cov

[
X, N/

〈
N
〉]
, (S1.6b)

which is used here for reference within this appendix.

In the following, we present solutions to the within-

deme dynamics given by Eqs. (S1.3), insert them into

this cycle mapping in Eqs. (S1.6), and then evaluate

these expressions to obtain the isoclines, ∆n? = 0 and

∆x?i = 0.

B. Dynamics of a single strain

At first we solve the within-deme dynamics for a single

strain, with constant growth rate α and constant yield

ϕ, feeding on a single finite resource, and without any

other environmental interactions. This is the most basic

model that fits our framework, and has the advantage

that we can obtain analytic solutions that allow insight

about the behavior of the system. With only a single

train we can drop any index i for this section.

As long as cells are growing we find N(t;n) =

n exp
(
αt
)

as solution to Eq. (S1.1a). This expression

can be used in the resource dynamics Eq. (S1.1b), which

we integrate from S(0) = S0 to S(Tdepl) = 0: we obtain
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Figure S1.1. Dynamics of a single strain with only

resource consumption. (A) Trajectories over time for

two different inoculum sizes n and growth rates α1. The

population grows exponentially and then stays at constant

numbers. (B) The inoculum size for a single is averaged with

a Poisson distribution over all possible inoculum sizes. This

smears the sharp transition from starting with enough cells

that deplete all nutrients to inoculum sizes that are still in

the exponential growth phase at Tmix ( light colored thin

lines). As explained in the text, existence of a fixed point

depends on dN(Tmix; 1) > 1, and thus how many cells in the

inoculum. If this condition is not met, the population will

be washed out over multiple cycles.

S0 = n
ϕ

(
exp(αTdepl) − 1

)
, which can be transformed

to find the explicit depletion time Tdepl as a function

of n and the other parameters. Assuming that growth

ceases upon resource depletion, α(t > Tdepl) = 0, the

full solution for population size is

N(t;n) =

{
n exp

(
αt
)
, 0 < t < Tdepl(n) ,

S0ϕ+ n , Tdepl(n) < t .
(S1.7)

In the dynamics over multiple cycles, this population

sizes is evaluated at time Tmix. Thus, population size

becomes a function of inoculum size n only. Depending

on this number resources are either used up and final

population size is given by the second expression, or the

population is still in its growth phase and we need to

use the first expression. These time-dependent solutions

are shown in Fig. S1.1A, while panel B shows the map-

ping for inoculum sizes over cycles, and includes these

solutions as function of n as light colored lines.

Explicitly, the mapping for the average inoculum size

n(τ) takes the form

n(τ+1) = d

∞∑
n=0

P
[
n
∣∣n(τ)]N(Tmix;n) (S1.8)

= d

nthres(Tmix)∑
n=0

(n(τ))n

n!
e−n

(τ)

n exp(αTmix)

+d

∞∑
n=nthres(Tmix)+1

(n(τ))n

n!
e−n

(τ)(
S0ϕ+ n

)
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In these expressions, the Poisson distribution smoothly

interpolates the two branches of the population size in

Eq. (S1.7), which is shown in Fig. S1.1B as darker solid

lines.

This cycle mapping for a single strain has either one

or two fixed points, but only one of them is stable: One

fixed point always exists for empty inocula, n? = 0, as

cells cannot spontaneously grow out of nothing. If this

is the only fixed point, extinction is a stable state of

the dynamics. However, if a second fixed point exists, it

will occur on the branch of the solution that indicates

depleted resources, see Eq. (S1.7). This second fixed

point with n? > 0 is always stable when it exists, and

extinction, n? = 0, becomes an unstable fixed point

upon appearance of this non-zero fixed point.

Stability of a fixed point in this one-dimensional

mapping is determined by the slope of final popula-

tion sizes with respect to the average inoculum size,

∂n
〈
N
∣∣n〉|n=n? , evaluated at the fixed point n?. If the

absolute value of this expression is smaller than 1, the

fixed point is stable, otherwise it is unstable. Before

doing the calculation explicitly, however, we introduce

an auxiliary step: taking a derivative with respect to

the parameter of a Poisson distribution, we find

∂nP
[
n
∣∣n] =

nn−1

(n− 1)!
e−n − nn

n!
e−n ,

which simply leads to a shift in this summation index,

∂n
〈
F (n)

∣∣n〉 =

∞∑
n=0

P
[
n
∣∣n](F (n+ 1)− F (n)

)
, (S1.9)

because we are only concerned with functions that ex-

hibit the property F (0) = 0. This property just indi-

cates that nothing grows in an empty inoculum. The

expression (S1.9) generalizes straightforward to multidi-

mensional variables, ∂niP
[
n
∣∣n], where the shift occurs

only for strain i.

With this calculation in place, the slope of the cycle

mapping for a single strain at the origin, n? = 0, is

∂nd
〈
N
∣∣n〉|n?=0 = dN(Tmix; 1) , (S1.10)

where we used the Poisson distribution for parame-

ter n = 0 P
[
n
∣∣ 0] = δn0. When nutrients are not

yet depleted at mixing, the Eq. (S1.10) evaluates to

d exp
(
αTmix

)
. Thus, large dilution rates and/or long

mixing times enable a stable fixed point, which exists

when d exp
(
αTmix

)
> 1. On the other hand, if nutri-

ents are already depleted at mixing, the expression in

Eq. (S1.10) simply evaluates to dS0ϕ. Thus, depending

on parameters, this extinction fixed point can be either

stable or unstable.

Further analytic progress can be made with the as-

sumption that mixing time is large enough that even a

single cell uses up all nutrients. Then, the cycle mapping

in Eq. (S1.8) only contains terms in the second sum, as

nthres(Tmix) = 0. This sum can be computed, and we

find the mapping

n(τ+1) = d
〈
N
∣∣n(τ)〉

= d
((

1− e−n
(τ))

S0ϕ+ n(τ)
)
.

From this expression, we can compute the fixed point

n?,

n? =
dS0ϕ

1− d
+ W

(
−dS0ϕ

1− d
exp
(
−dS0ϕ

1− d

))
≈ dS0ϕ , (S1.11)

where W is the Lambert-W function. For larger dS0ϕ,

the argument in W becomes very small, and W becomes

linear in its argument, W (−y exp(y)) ≈ −y exp(−y).

This leads to an exponential correction for the single

strain fixed point, n? ≈ dS0ϕ
(
1− exp(−dS0ϕ)

)
, which

can explain, for instance, why the population size iso-

cline in Fig. 3 is shifted slightly off the value of the linear

approximation in Eq. (S1.11).

Stability of this non-zero fixed point can be checked

by

∂nd
〈
N
∣∣n〉|n? = d+ dS0ϕe

−n?

≈ d+ n?e−n
?

, (S1.12)

which is smaller than 1 for any realistic value of d, since

the term involving the exponential is bounded from

above by 1/e. Thus, the fixed point given by Eq. (S1.11)

will be stable. Its existence can be determined by the

instability of the extinction fixed point at the origin,

n? = 0, which occurs for dS0ϕ ' 1.

C. Dynamics of multiple strains

The main technical challenge for multiple strains is

to determine the depletion time Tdepl(n) for arbitrary

inoculum vector n. This was possible for a single strain,

as shown in the previous section. In this section we will

introduce the expansion factor ξ, that lets us circumvent

this problem and allows progress with approximations.

First, we define this average expansion factor of a

population as

ξ(t) ≡ exp
(
α

t∫
0

dt′A(t′)
)
. (S1.13)

In the special case of constant growth rate, α(t) = α,

this reduces to ξ(t) = exp(αt). Using ξ, the solutions to

total size N and population fractions Xi in Eqs. (S1.3)

are

N(t;n,x) = nξ(t)
(∑

j

xjξ(t)
δαj
)
, (S1.14a)

Xi(t;n,x) = xiξ(t)
δαi/

(∑
j

xjξ(t)
δαj
)
,(S1.14b)
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with n and x the initial conditions for total population

and fractions in a given deme. A time-dependence in

these solutions enters only via the integration limit in

ξ(t). In Eqs. (S1.14) we also see the justification for

the name “expansion factor”: populations expand from

initially n cells to the final numbers of roughly nξ cells,

with corrections due to different growth rates.

One step towards obtaining solutions is to com-

pute the expansion factor at the time of depletion,

ξ(Tdepl). Its derivation involves integrating resource

use, Eq. (S1.3c), from S(0) = S0 to S(Tdepl) = 0, which

gives

S0ϕY (0) + ϕ

Tdepl∫
0

dt S(t)
(
∂tY

)
(t)

= n
∑
i

xi
ξ(Tdepl)

1+δαi − 1

1 + δϕi
. (S1.15)

For time-constant yields, Y (t) = 1, and a sufficiently

large amount of resources, such that ξ � 1, this relation

simplifies: The integral with its explicit time-dependence

drops, and Tdepl only enters via the final value of the

expansion factor ξ(Tdepl). Consequently, Eq. (S1.15)

reduces to

S0ϕ

n
≈ ξ

∑
i

xiξ
δαi

1 + δϕi
,

which we can approximately solve as

ξ
(
Tdepl(n,x)

)
≈ S0ϕ

n
G(n,x) , (S1.16)

G(n,x) = 1 +
∑
i

xiδϕi − log
(
S0ϕ/n

)∑
i

xiδαi .

For small differences between the strains, δαi, δϕi � 1,

we have G ≈ 1 and thus the leading order is simply

ξ ≈ S0ϕ/n.

The expansion factor ξ(Tdepl) can be interpreted as

a (non-linear, but monotonic) transformation of the de-

pletion time Tdepl. With this viewpoint demes with an

increased yield relative to the average,
∑
i xiδϕi > 0,

strains will grow longer (larger ξ), while in demes with

growth faster than average,
∑
i xiδαi > 0, the time to

depletion decreases (smaller ξ). The weighted growth

rate differences also feature a coefficient log(S0ϕ/n),

which reflects the fact that growth rate differences usu-

ally have a larger impact on the dynamics and can be

easier (and faster) selected, compared to population

level traits like yield and its differences between strains.

Since we assume that growth stops when resources

are depleted, also the value of ξ stays constant after

the depletion time Tdepl. For the single strain case, we

showed that a strain that does not deplete all nutrients

when seeded alone, will ultimately go extinct. Thus, the

relevant case is faster depletion than mixing, Tdepl <

Tmix, such that ξ(Tmix) = ξ(Tdepl), and we will use the

Eq. (S1.16) as ξ(Tmix).

The expansion factor will also be used later to me-

diate the coupling to additional public good dynamics.

Influences of varying growth growth rates are already

contained in the definition (S1.13) itself. Any changes

in yield can be treated in the full resource-use equation

(S1.15). The two scenarios with collective antibiotic

resistance and iron-extraction via pyoverdine will be

examples for either of these extensions.

D. Computing isoclines

To develop approximate expressions for the isoclines,

we use the solutions of the within-deme dynamics,

Eq. (S1.14), and insert them into the changes over cy-

cles, Eq. (S1.6). Using a weak selection approximation

(δαi � 1), we expand to first order in growth rate

differences, O(δα). Specifically, this will involve the

approximation ξδαi ≈ 1 + δαi log ξ. For the change in

total inoculum size, we obtain

∆n(τ+1) = d
〈
nξ
∑
i

xiξ
δαi
〉
− n(τ) (S1.17)

≈ d
〈
nξ
〉

+ d
∑
i

δαi
〈
xinξ log ξ

〉
− n(τ) .

This is a general expression in terms of ξ that will also

hold for public goods dynamics below. Inserting the

approximation for ξ obtained specifically for resource

consumption, Eq. (S1.16), is exactly the next step. the

change in inoculum size is given by

∆n(τ+1) = dS0ϕ
(

1 +
∑
i

x
(τ)
i δϕi

)
− n(τ) . (S1.18)

Thus, ∆n(τ+1) becomes independent of growth rate

differences (up to first order), as all terms in δαi cancel

with the dependencies contained in ξ, see Eq. (S1.13).

To obtain the isocline equation, we set ∆n? = 0 in

(S1.18), and find

n? = dS0ϕ
(

1 +
∑
i

x
(τ)
i δϕi

)
, (S1.19)

which is Eq. (10) in the main text. We see that the

isocline position of the isocline is mostly determined by

dS0ϕ. It interpolates between the single strain fixed

points on the boundaries, given by Eq. (S1.11). The

difference in inoculum size between the two fixed points

is 2dS0ϕδϕ1; thus smaller differences in yield make it

actually more unlikely to find a stable fixed point. This

can be observed directly in Fig. 4, where the coexistence

regions for small δϕ1 becomes a narrow region where

δα1 and δϕ1 are almost proportional to each other.

The composition isocline is obtained by similar meth-

ods. The two terms in its change over cycles, ∆xi =



5〈
∆Xi

〉
+ Cov

[
Xi, N/

〈
N
〉]

, can be expanded as

〈
∆Xi

〉
=

〈
xiξ

δαi∑
j xjξ

δαj
− xi

〉
(S1.20a)

≈ δαi
〈
xi log ξ

〉
−
∑
j

δαj
〈
xixj log ξ

〉
,

Cov
[
Xi,

N

〈N〉

]
=

〈
nxiξ

1+δαi
〉〈

nξ
(∑

j xjξ
δαj
)〉 −〈 xiξ

δαi∑
j xjξ

δαj

〉
≈
〈
xi(W − 1)

〉
+ δαi

〈
xi(W − 1) log ξ

〉
−
∑
j

δαj
〈
xiW

〉〈
xjW log ξ

〉
+
∑
j

δαj
〈
xixj log ξ

〉
, (S1.20b)

with W = nξ/
〈
nξ
〉

denoting relative deviations from

expected total sizes. These general expression hold for

any interaction between strains encoded in the expansion

factor ξ, and we will also use them for the two public

good scenarios with antibiotics and pyoverdine.

After inserting ξ into the change of composition sur-

prisingly many terms cancel up to first order of strain

differences δαi and δϕi. The resulting expressions are〈
∆Xi

〉
≈ δαi

〈
xi log S0ϕ

n

〉
(S1.21a)

−
∑
j

δαj
〈
xixj log S0ϕ

n

〉
,

Cov
[
Xi, N/

〈
N
〉]
≈
∑
j

δϕjCov
[
xi, xj

]
. (S1.21b)

For two strains, they simplify to
〈
∆X1

〉
≈ 2δα1

〈
x1(1−

x1) log S0ϕ
n

〉
and Cov

[
X1, N/

〈
N
〉]
≈ 2δϕ1

(〈
x21
〉
−〈

x1
〉
2
)
. The two independent Poisson distributions for

inoculum sizes n1 and n2 can be transformed into a

Poisson distribution for the total size n = n1 + n2 and

a binomial distribution for n1 between 0 and n (with

parameter n1/n). Using this, we evaluate the averages

〈
x21
〉

=

∞∑
n=1

e−n
nn

n!

n∑
n1=0

(
n

n1

)
xn1
1 (1− x1)n−n1

(n1
n

)2
= x21 + x1(1− x1)

〈
1/n

〉
,〈

x1
〉

= x1 ,〈
x21 log n

〉
= x21

〈
log n

〉
+ x1(1− x1)

〈
(log n)/n

〉
,〈

x1 log n
〉

= x1
〈
log n

〉
.

The remaining averages indicated by angular brackets

only contain the total population size, while the average

over the binomial distribution for x1 has been carried

out exactly. With these expressions, the composition

isocline equation ∆x?1 = 0 is written as

0 ≈ δα1

〈(
1− 1/n

)
log S0ϕ

n

〉
+ δϕ1

〈
1/n

〉
,

from which we extract the first order approximation

reported in the main text,

n ≈ |δϕ1/δα1|
logS0ϕ

, (S1.22)

by neglecting the logarithmic dependence on n, and as-

suming inoculum sizes are large enough that
〈
1−1/n

〉
≈

1 and setting
〈
1/n

〉
≈ 1/n. Numerical observations sug-

gest that this scaling also contains a coefficient close

to 2, due to these neglected terms. However, we are

mostly interested in how this position of the compo-

sition isocline changes upon variation of the different

parameters in the model. A dependence on composition

x
(τ)
1 will only appear in higher orders of δα1 and δϕ1,

which is consistent with the very straight (orange) lines

depicted in Fig. 3 of the main text. We also see that

decreasing growth rate differences will push this isocline

to larger inoculum sizes. This strong dependence on

δαi of the composition isocline is in stark contrast to

the position of the population size isocline, which is

independent of δαi to first order. The dilution rate d

plays no role in the position of the composition isocline,

as it cancels already out when calculating the ratio in

the cycle mapping, Eq. (S1.6b).

E. Coexistence of multiple strains

This section presents an argument on how multiple

strains can coexist in the dynamics. These consider-

ations benefit from a description in absolute numbers

n = (n1, n2, . . . ) for each of the strains, and not use

the non-linear transformation of computing fractions

xi = ni/(n1 + n2 + . . . ).

One way to define coexistence in our model for mul-

tiple strains is when all single strain fixed points are

unstable with respect to invasion by every other strain.

This instability of all single strain fixed points implies

that the system will have an additional coexistence fixed

point. If only a subset of strains fulfill these pairwise

condition, such a subset can coexist over cycles. The

example for two strains shown in Fig. 3 depicts such

cases.

Formally, this occurs when the Jacobian evaluated

at these single strain fixed points features eigenvalues

larger than 1. Entries of the Jacobian J at these points

n?i ≡ (0, . . . , n?i , . . . , 0) can be computed by(
Jij
)
n?i

= d ∂ni
〈
Nj(Tmix;n)

∣∣n〉∣∣
n=n?i

. (S1.23)

For the following, we assume that the resident strain

has index 1. We already computed the first entry, J11 =

∂n1

〈
N1(n1, n2 . . . )

∣∣ (n?1, 0 . . . )〉 < 1, in Eq. (S1.12),

which just indicates that the resident strain is stable

on its own. Other entries in the diagonal indicate an

invading strain growing when each deme is seeded with

exactly one cell of this invading strain,

Jii = d ∂ni
〈
Ni
∣∣ (n?1, 0 . . . )〉

= d
〈
Ni(n1, . . . , 1, . . . )

∣∣ (n?1, 0 . . . )〉 , (S1.24)

for i ≥ 2, where we used the auxiliary calculations in

Eqs. (S1.9) and (S1.10). Apart from entries on the
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diagonal, the Jacobian is a very sparse matrix: Only the

first row contains other non-zero entries, which are final

population sizes of the resident strain 1 upon invasion of

each other strains (with one cell of the invading strain in

each deme). Every other entry indicates the change in

final population sizes for the other strains: These are all

zero and do not change – the Jacobian is evaluated at

the single strain fixed point of the resident strain. Thus,

the structure of the Jacobian implies that all entries on

the diagonal, Eq. (S1.24), are already the eigenvalues.

Assuming the system has k strains, each of the k single

strain fixed points needs to be unstable with respect to

invasion to all (k − 1) other strains, leading to k(k − 1)

(pairwise) conditions of the form Jii|n?j > 1.

The coexistence regions depicted in Fig. 4 are

obtained by numerically evaluating these conditions

for two strains. Then, only the two conditions〈
N2(n1, 1)

∣∣ (n?1, 0)
〉
> 1 and

〈
N1(1, n2)

∣∣ (0, n?2)
〉
> 1

need to be fulfilled.

This set of conditions in Eq. (S1.24) is not construc-

tive: it not indicate how to choose parameters to get

coexistence. Only when a set of strains is given by their

growth parameters αi and ϕi, one can check if such

a set can coexist. Numerical evaluations indicate the

the possible range of values for these two parameters

decreases with each additional strain. For example in

[1], where a related spatio-temporal model was studied,

values were chosen with fine-tuned relations along α and

ϕ to find coexistence between multiple strains.

S1.2. GROWTH DYNAMICS WITH

ANTIBIOTICS

In the presence of antibiotics an additional equation

for the dynamics of its concentration is coupled to the mi-

crobial strain growth and resource consumption dynam-

ics (see main text). This section presents the derivation

of the expansion factor ξ for these dynamical interactions

through collective antibiotic reduction by extracellular

enzymes. With ξ computed, we can use the general ex-

pressions for the changes in the inoculum, Eqs. (S1.17)

and (S1.20). The additional steps needed to derive the

approximations for isoclines reported in the main text

are found below.

A. From dynamical interactions within demes to

expansion factors

In the presence of antibiotics, the growth rate of

strains is given by

αi(t) = α
(
1 + δαi

) 1− (B(t)/µ)κ

1 + (B(t)/µ)κ/γ
. (S1.25)

Thus, growth rate is a sigmoidal, decreasing curve for

increasing antibiotic concentrations B(t). In this expres-

sion, the antibiotic concentration is always measured

in multiples of the minimal inhibitory concentration

(MIC) µ, which is the concentration where the popula-

tion switches from overall death to overall growth, such

that α(B = µ) = 0.

In the within-deme dynamics, the antibiotic concen-

tration B(t) is reduced by the different microbial strains

with rates ρi. Thus, the set of relevant equations is

given by

∂tNi = αi(B)Ni , (S1.26a)

∂tB = −
∑
i

ρiNiB . (S1.26b)

For the moment, we ignore the resource dynamics S(t),

and ask if the populations in Eq. (S1.26) will survive or

go extinct? In a different manuscript, we show that our

ensuing approximations are actually very robust against

any changes of molecular details, and the results hold

for several different dynamics of antibiotic resistance

(manuscript in preparation).

In order to solve the combined dynamics of micro-

bial death and antibiotic reduction, the first step in-

volves defining a logarithmic antibiotic concentration

K = log(B/µ). Often, only the magnitude of the con-

centration is important, and not its exact value. Us-

ing this logarithmic concentration, we can approximate

αi(B) ≈ αiκγ
1+γ log(B/µ) = −αiλK, where we defined the

compound parameter λ = κγ/(1 + γ). This allows to

write the dynamics in Eqs. (S1.26) as ∂tNi = −αiλKNi
and ∂tK = −

∑
i ρiNi. We assume that population

sizes decay with a rate determined by the initial an-

tibiotic concentration, Ni(t) = ni exp
(
− αiλK0t

)
, and

this death rate does no change significantly during the

relevant time. Numerical integration shows that this

approximation is sufficiently close to the actual solution.

Thus, with this exponential decay in population size we

can integrate the dynamics for K, which yields

K(t) = K0 +
∑
i

niρi
αiλK0

(
exp
(
− αiλK0t

)
− 1
)
.

Now we have both trajectories, N(t) and K(t), such that

we define a time T1 implicitly via N(T1) = 1 and thus

indicates when the exponential decay of the population

reaches a single cell, 1 = ni exp(−αiλK0T1). Solving

for t1 and inserting this expression into the dynamics

of the logarithmic antibiotic concentration, K(T1), we

can check if antibiotics have been reduced sufficiently,

K(T1) < 0 (population survived), or still exceeds this

value K(T1) > 0 (population will go extinct):

0 < K(T1) = K0 +
∑
i

niρi
αiλK0

(
1

ni
− 1

)
.

For large enough inoculum sizes, 1/ni � 1, we can

rearrange this inequality to find

0 <
(
log(B0/µ)

)2 − n∑
i

xiρi
αiλ

. (S1.27)
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Figure S1.2. Dynamics of antibiotic reduction for

only a single producer strain. (A) Within demes, the

initial population n1 either manages to reduce antibiotics

in time (purple trajectory), or fails and goes extinct (red

trajectory). (B) In the mapping of average inoculum sizes

over cycles, this threshold in inoculum size between survival

and extinction generates a step-like increase of the cycle

map. Dashed lines indicate the expected inoculum size if

the dynamics within demes would start with an inoculum

of n1, while solid lines indicate the mapping for the average

population size n1. The latter includes a range of possible

inoculum sizes sampled from a Poisson distribution, which

smears out the hard cut-off between survival and extinction.

Depending on dilution rate d, either two or no (non-zero)

fixed points exist. Parameters are S0ϕ = 105, ρ1/α = 5·10−3,

B0/µ = 1.25.

This condition in Eq. (S1.27) indicates that the micro-

bial population reduces the antibiotic concentration fast

enough before going extinct. If the population survives,

the growing populations it will degrade any remaining

antibiotic fast, and B(t)/µ drops from 1 to 0. We as-

sume that the mixing time Tmix is long enough, such

that any surviving population will use up all remaining

nutrients. The number of dying cells during this initial

phase of population death is likely small compared to

final population sizes. Thus, these final sizes will be

close to the population sizes obtained from the simple

resource consumption model, N ≈ S0ϕ. Consequently,

the expansion factor can be approximated as

ξ(Tmix;n,x) ≈ S0ϕ

n
Θ

[
n
∑
i

xiρi
αiλ
−
(
log(B0/µ)

)2]
.

(S1.28)

The Heaviside-Theta function Θ in this expression indi-

cates the survival condition (S1.27) above: the expan-

sion factor evaluates to zero, if all cells die, and is given

by the first order term S0ϕ/n of Eq. (S1.16) when they

survive.

B. Isoclines of the cycle mapping

In order to fully understand the isoclines for antibiotic

reduction in Fig. 5, it helps to investigate the dynamics

of single strain first. Fig. S1.2 illustrates this map of

inoculum sizes, using a single producing strain. The

depicted sigmoidal curve emerges from smearing out the

sharp cut-off between surviving and extinct populations

in the expansion factor ξ, Eq. (S1.28), due to the Pois-

son distribution in the seeding step. This shape implies

that either one or three fixed points occur in the map-

ping. Similar to the resource consumption dynamics,

extinction is always one of these fixed points, n? = 0.

In contrast to before, however, it is usually stable. The

other two fixed points are close to the survival thresh-

old, n?1 ≈ (α1λ/ρ)
(
log(B0/µ)

)
2, and the already known

fixed point where all resources are used up, n?1 ≈ dS0ϕ1.

The latter fixed point is always stable, if it exists, and

the former is always unstable and acts as barrier be-

tween the basins of attraction to either extinction or

survival, see Fig. S1.2B. These two fixed points only

exists, if their expressions assume values such that the

survival threshold is smaller than the fixed point where

resources are used up. Otherwise, extinction is the only

possible long-term outcome in the dynamics.

For two strains, the two single strain fixed points

indicate the intersections of the population size isocline

with the boundary at x1 = 1, see Fig. 5. From the

stable fixed point (for resource depletion, with larger

inoculum sizes) the isocline extends down to lower x1
values along the condition derived before for resource

consumption, Eq. (S1.19). Without any differences in

yield, δϕ1 = 0, it is a straight line. The other condition,

limited by the antibiotic threat, extends along constant

producer inoculum sizes, n1 = const, and is given by

the expression computed above for survival of the pop-

ulation. Thus, this part of the isocline will scale with

n ∼ x−11 , where the proportionality factor is determined

by the threshold population size. Both parts of the

isocline will meet, when x1 becomes small enough, and

the isoclines connects these two descriptions.

The population composition isocline, 0 = ∆x?1, is

determined by the balance of the local losses in fre-

quency and the coupling to population size changes,

0 =
〈
∆X1

〉
+ Cov

[
X1, N/

〈
N
〉]

. As we assume δα1 < 0

for the producing strain, the first term is usually nega-

tive. Inspecting the expansion in growth rate differences,

see Eq. (S1.20), we observe that only a single term does

not depend on δα1 – contrary to the resource consump-

tion before, factors of δαi and δϕi in ξ are negligible

for antibiotic reduction. This term,
〈
x1(W − 1)

〉
, where

W = nξ/
〈
nξ
〉
, is responsible for large values in the

covariance, that lead to positive values in the overall

change ∆x1, required for coexistence. Inserting ξ for

antibiotics the condition for the isocline, 0 = ∆x?1, can

be written as

0 =
(〈
x1Θ

〉
/
〈
Θ
〉
−
〈
x1
〉)
−O

(
|δα1|

)
, (S1.29)

where Θ abbreviates the full expression of the threshold

in ξ. The first bracket indicates the difference between

the average inoculum fraction of the producing strain

in surviving populations and its average fraction in the

inoculum. Such an expression is expected to be positive,
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as surviving populations likely have a larger fraction

of the producing strain. However, with increasing in-

oculum sizes this term will become smaller, as then

more populations survive, and the two averages become

closer.

When evaluating this first term in Eq. (S1.29) numer-

ically, we find two regimes: For small values of n1, it is

an exponential decay in n1, until n1 reaches its thresh-

old value in the argument of Θ. For n1 larger than this

threshold, the difference decays algebraically with an

exponent close to −1. In contrast, the dependence on

the non-producer inoculum size n2 is weak. Thus, n1
already specifies the shape of

〈
x1(W − 1)

〉
across the

whole phase plane, given by
〈
x1Θ

〉
/
〈
Θ
〉
−
〈
x1
〉
∼ 1/n1

in the relevant region. For the isocline, the decay of

this (positive) expression needs to be balanced by all

the other terms, which are of order O(δα1); this co-

efficient δα1 already determines the magnitude, other

dependencies only add minor variations to this value.

Hence, for the isocline we seek curves where the first

term in Eq. (S1.29) is small and almost constant, which

occurs along n1 ≈ const, which is the main dependency

of the first term. Thus, we approximate the scaling of

the isocline as

∆x? = 0 ⇔ n ∼ 1

δα1x
1+ε
1

, (S1.30)

which holds as long as enough cells of both strains are

in the inoculum. Here, we introduced the small positive

constant ε� 1, which we only observe numerically. It

is needed, however, in order to explain that the com-

position isocline is typically steeper than the inoculum

size isocline in phase plane, which also scales as ∼ 1/x1.

C. Stability of the coexistence fixed point

The two curved isoclines will in general have multiple

intersections, which are all fixed points of the cycle

mapping. However, we find that at most two of them

are stable: A population of only producing strains can

survive, as shown for the single strain case above. Such

a fixed point appears on the boundary of the phase

space, x1 = 1.

Coexistence can occur, if the two isoclines intersect

in a specific way: on the inoculum size isocline, the

intersection has to be on the (vertical) part described

by resource limitation. On the composition isocline,

the intersection needs to occur on the part following

the extinction threshold. Only for an intersection on

these parts of the isocline, we find a stable fixed point.

In Fig. 6 we showed how these isoclines change when

changing either the dilution rate d or the growth rate

differences δα1. Fig. S1.3 extends these results and

shows the stability of this potential coexistence fixed

point for a much larger range of parameters. The color

encodes the result of a linear stability analysis, obtained
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Figure S1.3. Stability of fixed points within-deme

dynamics involving antibiotic hazards. Displayed are

color-coded stability properties of the coexistence fixed point,

as long as it exists (gray symbols indicate it does not). Specif-

ically, the colors indicate stable (•), stable with complex

eigenvalues (•), unstable with complex eigenvalues (◦) and

unstable (◦) fixed points. In the complex unstable regime,

close to the boundary to stability, we also find stable limit

cycles, which are not captured in the linear stability analysis

of computing eigenvalues of the Jacobian. These limit cy-

cles appear through a Neimark-Sacker bifurcation [5]. The

change in shape and position for the two isoclines of in-

oculum size and inoculum composition are shown in more

detail in Fig. 6, where purple and brown boxes in panel (C)

correspond to the similar colored borders.

by computing eigenvalues of the cycle map evaluated

at the fixed point: for constant dilution rate d and

increasing the growth rate difference δα1 the fixed point

goes from stable (green solid), to stable complex (purple

solid), to unstable complex (purple circle), and finally

to unstable (red circle). Clearly, the actual position

in phase plane of these fixed point will change as well,

but this information is not displayed in Fig. S1.3. The

purple and brown boxes enclose the parameter range

shown in more detail already in the main text in Fig. 6.

Numerically, we also found stable limit cycles in the

unstable complex regime, close to the transition between

stable and unstable, from a Neimark-Sacker bifurcation

[5]. This transition occurs when the intersection of the

two isoclines moves on the inoculum size isocline from

the description by resource limitation to the description

by antibiotic reduction (at its smallest x1 values).
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Figure S1.4. Influence of other parameters on the

shape of isoclines in the dynamics with antibiotics.

Panels show the isoclines for (A) average inoculum size n

and (B) average inoculum composition x1, when varying

the initial antibiotic concentration B0/µ. In (A), from top

to bottom these initial values are B0/µ = 1.25, 1.00, 0.75.

In (B), the innermost curve indicates the highest antibiotic

concentration, while the outermost curve the lowest concen-

tration. Panels (C) and (D) show the effect of changing the

production rate ρ1 of the enzyme. Parameters dS0ϕ = 60

and δα1 = −10−2 are constant in all panels.

D. Additional parameter dependence of the cycle

mapping

In the main text, we focused on how isoclines change

upon varying the two parameters δα1 and d. Each of

them changes one of the two isoclines (population size

or population composition, respectively), while leav-

ing the other isocline almost unaffected. However, the

models for antibiotic reduction also features additional

parameters, which we explore here.

The dynamics of antibiotic reduction clearly depends

on the antibiotic concentration B0/µ present at the

beginning of the growth phase, and how fast antibiotics

is reduced. From the threshold between growth/no-

growth, as stated in Eq. (S1.27),

n
∑
i

xiρi
αiλ

>
(
log(B0/µ)

)2
, (S1.31)

we see that both ρi/αiλ and B0/µ give additional impor-

tant parameter combinations. Fig. S1.4 illustrates the

effects of changing either of those. In general, as long

as B0/µ > 1, the effect of changing either production

rate or initial antibiotic concentration only changes the

threshold inoculum size for producing strains that would

survive. Changing this threshold only shifts the position

of the isoclines, but does not significantly change their

shapes. However, when B0/µ < 1 the non-producing

strain will be able to survive on its own, although it

might grow significantly slower in demes where antibiotic

concentration is not reduced. Due to this survival of the

non-producing strain, the part of the composition iso-

cline that indicated the extinction of the non-producing

strain (asymptotic approach towards the x1 = 1 axis)

disappears, and the composition isocline directly inter-

sects with the pure-producer axis of the phase plane, as

shown in Fig. S1.4AB.

S1.3. GROWTH DYNAMICS WITH

PYOVERDINE

Similar to the public good dynamics with antibiotics,

we compute here an expansion factor ξ that takes the

effect of pyoverdine production into account. This allows

to use the same approximations employed in previous

sections to derive the isoclines. Here, we provide the

steps in the derivation of these approximations. In

contrast to before, however, we mostly focus on the

effect of the public good, and neglect several corrections

due to the strain differences in δαi and δϕi.

A. From dynamical interactions within demes to

expansion factors

Pyoverdine changes yield ϕ on a population level due

to enhanced availability of iron. We assumed its effect

is given by,

ϕi(t) = ϕ(1 + δϕi)
(
σ − (σ − 1)e−P (t)

)
, (S1.32)

where the latter term in brackets is the time-dependent

Y (t) in Eq. (S1.2b). The production of pyoverdine P is

given by ∂tP =
∑
i ρiNi. In order to compute the effects

on the expansion factor ξ, we need to evaluate the full

resource-use Eq. (S1.15), which contains an integral over

these time-dependent changes in yield,
∫
dtS(t)(∂tY )(t).

To this end, we combine the two ODEs for S(t) and

P (t), which are both linear in N(t). First, we rearrange

both to bring N(t) to one side of the respective equation,

and then equate both expressions, which leads to

∂tS = −

α∑j
1+δαj
1+δϕj

Xj∑
k ρkXk


︸ ︷︷ ︸

≡R

∂tP

ϕY (P )
. (S1.33)

In anticipation of the result we wrote the dynamics

of the pyoverdine concentration P together with yield

ϕY (P ), which is influenced by this concentration. The

population composition Xi(t) changes only slowly in

time, thus we assume that Xi(t) ≈ xi for the purpose

of the ensuing approximations, and collect all these

dependencies in the term R, which we assume to be

roughly constant over time. Then, we can integrate this

equation from initial conditions S(0) = S0 and P (0) = 0

up to a time t to get the relation between S(t) and P (t),

S(t) = S0 −
R

ϕσ
log
(

1 + σ
(
eP (t) − 1

))
, (S1.34)
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which is an almost linear expression of the form S(P ) ≈
S0 − R

ϕσP . As a next step, we take a derivative with

respect to time on ϕ(P ), Eq. (S1.32), to obtain

∂tϕ(t) = ϕ(σ − 1)(∂tP ) exp
(
−P (t)

)
. (S1.35)

With these two expressions, we transform the integration

variable, dt(∂tP ) = dP , together with adjusting the

integration bounds, in the full resource-use dynamics,

Eq. (S1.15). Then, we can evaluate this equation to

obtain

S0ϕ+

Tdepl∫
0

dt (∂tϕ)S

≈ S0ϕ+ ϕ(σ − 1)

P (Tdepl)∫
0

dP
(
S0 −

R

ϕσ
P
)
e−P

= S0ϕ
(
σ − (σ − 1)e−P (Tdepl)

)
+R

σ − 1

σ

(
1− e−P (Tdepl)

(
1 + P (Tdepl)

))
.

The first line in this solution indicates the expected

yield at the end of growth phase. The expression of the

second line denotes an correction due to the fact that

the concentration of P is increasing during this growth

phase, and did not yet start at its final value.

Having this expression, we can simplify further, and

neglect the second line to obtain the main scaling of

the expansion factor. To this end, we define the ab-

breviations ξ0 = S0ϕσ/n and H =
∑
i
xiξ

δαi

1+δϕi
. The full

resource use equation can then be written as

ξ0

(
1− σ − 1

σ
exp

(
− n
R
ξH
))

= ξH ,

which we need to solve for ξ. Note that R also contains

a logarithmic dependency on ξ, which does not influence

the overall scaling. The term H generates the correc-

tions in δαi and δϕi, leading to the term G reported in

Eq. (S1.16). this generates only multiplicative factors,

which is the reason that we solve for ξH first. We obtain

ξH = ξ0 +
R

n
W

(
−σ − 1

σ
(nξ0/R)e−nξ0/R

)
.

For small enough arguments, the negative branch of

the Lambert-W function W is linear in this argument,

which is the case here: nξ0/R is usually large. Thus,

we can simply leave out W to obtain a scaling of the

expansion factor for pyoverdine production,

ξ(Tdepl;n,x) ≈ S0ϕ

n

(
σ − (σ − 1) exp

(
−S0ϕσ

R

))
,

(S1.36)

which assumes H ≈ 1. In order to include larger devia-

tions from unity in H, we will obtain terms similar to

the corrections G, as in Eq. (S1.16) For the following,

we define A(x) = S0ϕσ
∑
i xiρi/αi, which is the full

argument in the exponential.

B. Computing the shape of isoclines

The approximation for the expansion factor ξ in

Eq. (S1.36) can be inserted in the general expressions for

the population size in Eq. (S1.17) and for the population

composition in Eq. (S1.20). At first, we observe that

saturation of the public goods dynamics occurs as long

as A(x)� 1. Then, the exponential term in Eq. (S1.36)

is small and negligible and we have ξ ≈ S0ϕσ/n. Ac-

cordingly, the single strain fixed point of a producer

strain is n?1 ≈ dS0ϕσ. Since we assume that pyoverdine

is not essential for growth, we also find a fixed point

for the non-producer strain at n?2 ≈ dS0ϕ. For only two

strains, the population size isocline then connects these

two single strain fixed points: From the producer fixed

point it extends to lower producer fractions along a line

given by Eq. (S1.19), with the replacement ϕ 7→ ϕσ to

indicate saturated public good effects. At a fraction

given by A(x1) ≈ O(100), saturation ceases and final

population sizes drop to their base level in absence of

pyoverdine. Illustrations in Fig. 7 clearly show this be-

havior, where the (blue) population size isocline exhibits

a sharp bend at small producer fractions.

For the composition isocline, we insert the expression

for ξ into Eq. (S1.20). Similar to the case with antibi-

otics, the main term contributing to a large positive

covariance term is
〈
x1(W − 1)

〉
, which evaluates to

〈
x1(W − 1)

〉
≈ −

Cov
[
x1, exp(−A(x1)

]
σ
σ−1 −

〈
exp(−A(x1))

〉 . (S1.37)

Interestingly, when numerically computing these aver-

ages over the Poisson distribution, we find that this ex-

pression decays exponentially close to exp(−n1), when

A(1) � 1. The factor σ only plays a role in the co-

efficient of this scaling. If A(1) � 1, the dynamics

effectively describes the original resource consumption,

as then the pyoverdine production does not influence the

dynamics. For intermediate values, A(1) ≈ O(100), this

expression starts to decay much slower. We focus on the

simplest case with a significant effect of the public good,

where we can use a similar reasoning as with antibiotic

reduction: Eq. (S1.37) needs to be balanced by terms of

order O(δα1), and thus we again seek curves in phase

space where this expression is small and almost con-

stant. Thus, with the exponential decay ∼ exp(−n1),

such curves are given by n1 = const, where the position

is strongly determined by the growth rate difference δα1.

For smaller δα1 the condition 0 = ∆x1 is met further

out the tail of the exponential decay. Approximately,

this balance is given by exp(−n1) ∼ δα1. Thus, the

scaling of the composition isocline can be approximated

by

∆x?1 = 0 ⇔ n ∼ log |δα1|+ C

x1
, (S1.38)

with a logarithmic dependence of δα1 on its position,

and C the coefficient between terms in the balance.
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Figure S1.5. Influence of other parameters on the iso-

clines in the dynamics with pyoverdine. Panels show

the isoclines for (A) average inoculum size n and (B) average

inoculum composition x1, upon variation of the factor σ

that increases yield due to presence of pyoverdine. In panel

(A) we additionally illustrate the influence of the production

rate ρ1 as different shades of blue. This production rate

does not significantly change the isoclines in (B). Parameters

dS0ϕ = 10, δα1 = −10−2 are constant for all plots.

C. Other parameter dependence

The main text only explored the effects of chang-

ing growth rate differences δα1 and the dilution rate

d, which are the main parameters for the position of

isoclines. Fig. S1.5 explores the effects on isoclines if

either of the production rate ρ1 or the increase in yield

σ.

S1.4. NUMERICAL METHODS

Several results in our manuscript have only been ob-

tained numerically, although we tried to explain these

results with scaling arguments. Here, we briefly present

numerical methods used throughout our work.

In general, the two levels of selection of growth within

demes and the mixing cycles are also reflected in our

code. We first solve the within-deme dynamics, on a grid

of all possible initial conditions (n1, n2). These initial

conditions are chosen up to values ni,max, such that the

probability of finding this combination in the Poisson

distribution are tiny and negligible. Often, we use the

condition P
[
ni,max

∣∣ni]/P[ni∣∣ni] . 10−5 to determine

these maximal inoculum sizes. For most of the results

shown in Figs. 5 and 7 this maximal inoculum size is

roughly ni,max = 200, which is the value we use in our

figures. Solutions to within-deme dynamics are obtained

by a standard Runge-Kutta 4th order integration scheme

up to the time Tmix.

After final population sizes Ni(Tmix;n1, n2) are com-

puted, they are stored as lookup-table. Cycles of growth,

mixing and reseeding are realized by computing the sums

ni,max∑
n1,n2=0

P
[
n1
∣∣n1]P[n2∣∣n2]Ni(Tmix;n1, n2) .

Fixed points of the mapping (e.g. Fig. S1.3) are obtained

via iteration of a multi-dimensional Newton-Raphson

scheme, which requires usually only a few steps.

Code is available at https://github.com/

lukasgeyrhofer/mixingcycles under the CC0

license.
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