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Our model is a noisy leaky integrate-and-fire model, with two additional factors: each neuron has 1) an intrinsic
after-spike current, and 2) an intrinsic after-spike threshold. We will first demonstrate a model reduction where these
two factors can be combined into a single, effective after-spike threshold. We then demonstrate how this effective
intrinsic threshold is measured through in vitro experiments, and then how this intrinsic threshold predicts firing rates
and burst scores for in vivo recordings. We then compare predictions of the model with in vivo neural data collected
as mice freely forage open arenas (Materials and Methods).

I. MATHEMATICAL MODEL

Consider a neuron with some dimensionless synaptic activation s(t) and a certain input I(t). The integrate and fire
dynamics are:

ds

dt
= I(t)− ωs(t) + η(t) + IInt(t− t0), (1)

where ω is the “leaking rate” of the neuron, η(t) is white input noise, and IInt(t− t0) is the intrinsic post-spike signal,
where t0 is the time since the last spike.

Spiking Rule: To add spiking dynamics to Eq. 1, we add a rule that whenever s(t) rises above the intrinsic
after-spike threshold sThr(t − t0), the neuron fires. After firing, the synaptic activation goes down to zero. As a
convention, we say that the sThr(∆t) becomes 1 as ∆t→∞.

A. Equivalence between recent-spike-dependent input and recent-spike-dependent threshold

Above, we have characterized the intrinsic spiking dynamics of a neuron with two separate functions: 1) The
intrinsic after-spike current IInt(t − t0), and 2) The intrinsic after-spike threshold sThr(t − t0). We can simplify the
model by observing that the spiking dynamics, both in vivo and in vitro, depend only on a combination of these two
functions; every modification of the intrinsic after-spike current is equivalent to some modification of the intrinsic
after-spike threshold, and vice versa.

Solving Eq. 1, we can show that at any given time, the synaptic activation will be:

s(t) =

∫ t

t′=t0

e−ω(t−t0) (I(t) + η(t′) + IInt(t
′ − t0)) .

We can divide the synaptic activation into two components, one which depends on the refractory input, and one which
depends only on the base signal plus noise:

s(t) = sInt(t− t0) +

∫ t

t′=t0

e−ω(t−t′) (I(t) + η(t′)) , where sInt(t− t0) =

∫ t−t0

t′=0

e−ω(t−t0−t′)IInt(t
′).

The distance between the synaptic activation and the threshold is:

sThr(t− t0)− s(t) = (sThr(t− t0)− sInt(t− t0))︸ ︷︷ ︸
Intrinsic threshold and current

−
∫ t

t′=t0

(
e−ω(t−t0) (I(t) + η(t′))

)

︸ ︷︷ ︸
Extrinsic input and noise

.

Therefore, the firing rate and interspike interval distribution depend only on the combination of the input and threshold
of the firing rule sThr(t− t0)− sInt(t− t0) (Table I). Because of this, it is mathematically convenient to combine these
two effecting into an effective threshold function sEff

Thr(t− t0) = sThr(t− t0)− sInt(t− t0).
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Convention Synaptic Input Spiking Rule

Synaptic Input ds

dt
= −ωs+ I(t) + η(t)+IInt(t− t0) Spike if s(t) > sThr(t− t0)

Spike Threshold ds

dt
= −ωs+ I(t) + η(t) Spike if s(t) > sEff

Thr(t− t0)

TABLE I: Two sets of dynamics. In the first set of dynamics, there are both intrinsic after-spike dynamics as well as
an intrinsic after-spike current. In the second, the intrinsic after-spike dynamics are rolled into an effective intrinsic

after-spike threshold. When sEff
Thr(t− t0) = sThr(t− t0)− sInt(t− t0) these two sets of dynamics are equivalent.

II. MODEL APPLIED TO IN VITRO EXPERIMENTS

The in vitro experiments consist of two inputs 1) A pulse of magnitude I0 at t = 0, where I0 is chosen to be the
minimum size to elicit a response. 2) A second, scaled pulse of magnitude γI0 after a delay of ∆t. Other than that,
there is no input signal or noise. Choosing a convention where the threshold activation at t = 0 is 1, Eq. 1 reduces to:

ds

dt
= δ(t− 0) + γδ(t−∆t)︸ ︷︷ ︸

I(t)

−ωs(t). (2)

Where δ(t) is the delta function (impulse function), which is infinitely thin, infinitely tall, and has an area under the
curve of 1 at t = 0. We can solve for Eq. 2 to show that a second spike is elicited when γ > sEff

Thr(∆t). Therefore,
the experimentally normalized second spike threshold, i.e. the minimum γ required to elicit a second spike at ∆t, is
exactly the the model’s threshold function sEff

Thr(∆t) (Fig. 1).
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FIG. 1: Schematic of mathematical model applied to in vitro experiments (Eq. 2). The current profile I(t) consists
of two pulses separated by time ∆t and with ratio γ, which effects the synaptic activation s(t) (red). The first pulse
is set to barely make the neuron spike, and then γ and ∆t are varied. When the second impulse pushes the synaptic
activation above the spiking threshold sEff

Thr(t− t0) (green), a second spike is elicited; otherwise, it is not. Therefore,
the experimentally measured threshold function γThr(∆t) is the exactly the model’s effective intrinsic post-spike

threshold sEff
Thr(∆t).
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FIG. 2: Leak rate vs. dorsoventral distance for in vitro recorded cells.

III. MODEL APPLIED TO IN VITRO EXPERIMENTS

Because the timescale at which an animal changes its speed, direction, or position is much slower than that of the
average interspike interval, we can consider the average input signal I(t) to be independent of time. The dynamics of
Eq. 1 reduce to

ds

dt
= I− ωs(t) + η(t) (3)

with the same spiking threshold of sEff
Thr(t− t0). We simulated Eq. 3 combined with experimentally measured values

of ω (Fig. 2, measured using the decay of sub-threshold responses), along with the spiking rule using experimentally
measured sEff

Thr(∆t) to yield both a mean firing rate as well as a burst score as a function of the mean input signal I;
because we do not know the input signal for in vivo recordings, we instead plot the burst score as a function of mean
firing rate.

Fitting the magnitude of noise to be σ2
η = .02/ms [1], we simulate Eq. 3 for each individual neuron recorded in vivo,

and find a qualitative agreement between experiment and simulations about the relative burst scores of dorsal and
ventral neurons. We have not considered the effects of variable noise and input statistics or any higher-order network
effects in our model; while these will change the burst-firing curve, the dominant effect can be explained by NSST
and leak rate alone.

Performing a Pearson test of burst slope vs. dorsal ventral distance, we find that dorsal cells are predicted by the
model to have a significantly higher bursting score than ventral cells (R = -.35, P = .026).

[1] Magnitude of white noise has units of synaptic activation squared/time, but here we have chosen a dimensionless synaptic
activation.
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Convention Synaptic Input Spiking Rule

Synaptic Input ds

dt
= �!s + I(t) + ⌘(t)+IInt(t � t0) Spike if s(t) > sThr(t � t0)

Spike Threshold ds

dt
= �!s + I(t) + ⌘(t) Spike if s(t) > sE↵

Thr(t � t0)

TABLE I: Two sets of dynamics. In the first set of dynamics, there are both intrinsic after-spike dynamics as well as
an intrinsic after-spike current. In the second, the intrinsic after-spike dynamics are rolled into an e↵ective intrinsic

after-spike threshold. When sE↵
Thr(t � t0) = sThr(t � t0) � sInt(t � t0) these two sets of dynamics are equivalent.

II. MODEL APPLIED TO IN VITRO EXPERIMENTS

The in vitro experiments consist of two inputs 1) A pulse of magnitude I0 at t = 0, where I0 is chosen to be the
minimum size to elicit a response. 2) A second, scaled pulse of magnitude �I0 after a delay of �t. Other than that,
there is no input signal or noise. Choosing a convention where the threshold activation at t = 0 is 1, Eq. 1 reduces to:

ds

dt
= �(t � 0) + ��(t ��t)| {z }

I(t)

�!s(t). (2)

Where �(t) is the delta function (impulse function), which is infinitely thin, infinitely tall, and has an area under the
curve of 1 at t = 0. We can solve for Eq. 2 to show that a second spike is elicited when � > sE↵

Thr(�t). Therefore, the
normalized second spike threshold, the minimum � required to elicit a second spike at �t, is exactly the threshold
function sE↵

Thr(�t) (Fig. 1).
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FIG. 1: Schematic of mathematical model applied to in vitro experiments (Eq. 2). The current profile I(t) consists
of two pulses separated by time �t and with ratio �, which e↵ects the synaptic activation s(t) (red). The first pulse

is set to barely make the neuron spike, and then �, �t are varied. When the second impulse pushes the synaptic
activation above the spiking threshold sE↵

Thr(t � t0) (green), a second spike is elicited; otherwise, it is not. Therefore,
the experimentally measured threshold function �Thr(�t) is the exactly the model’s e↵ective intrinsic post-spike

threshold sE↵
Thr(�t).
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FIG. 1: Schematic of mathematical model applied to in vitro experiments (Eq. 2). The current profile I(t) consists
of two pulses separated by time �t and with ratio �, which e↵ects the synaptic activation s(t) (red). The first pulse

is set to barely make the neuron spike, and then �, �t are varied. When the second impulse pushes the synaptic
activation above the spiking threshold sE↵

Thr(t � t0) (green), a second spike is elicited; otherwise, it is not. Therefore,
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FIG. 3: Top) We performed delayed pulse experiments along the dorsal ventral axis. We then used experimentally
recorded normalized second spike thresholds (NSSTs) and decay rates to calculate the intrinsic post spike thresholds
sEff

Thr(∆t). These values were then used to model the effect of NSST and decay rate on bursting by simulating Eq. 1
with the spiking rule for a range of mean inputs (simulated s(t) in red, spikes visualized as red dots, spiking

threshold sEff
Thr(t− t0) in green). Using these simulation results we plot burst score vs. mean firing rate. Bottom)

To compare our simulations to cells recorded in vivo, we took the firing rate data and divide it into 500ms bins; for
each bin we calculated the mean firing rate and burst score, and then grouped these bins to plot burst score vs.

mean firing rate.
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