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SUMMARY

Medial entorhinal cortex contains neural substrates
for representing space. These substrates include
grid cells that fire in repeating locations and increase
in scale progressively along the dorsal-to-ventral en-
torhinal axis, with the physical distance between grid
firing nodes increasing from tens of centimeters to
several meters in rodents. Whether the temporal
scale of grid cell spiking dynamics shows a similar
dorsal-to-ventral organization remains unknown.
Here, we report the presence of a dorsal-to-ventral
gradient in the temporal spiking dynamics of grid
cells in behaving mice. This gradient in bursting sup-
ports the emergence of a dorsal grid cell population
with a high signal-to-noise ratio. In vitro recordings
combined with a computational model point to a
role for gradients in non-inactivating sodium conduc-
tances in supporting the bursting gradient in vivo.
Taken together, these results reveal a complemen-
tary organization in the temporal and intrinsic
properties of entorhinal cells.
INTRODUCTION

Neurons in themedial entorhinal cortex (MEC) provide signals for

building an internal map of space that supports navigation (Gil

et al., 2018; Hafting et al., 2005; Mallory et al., 2018; Sargolini

et al., 2006; Solstad et al., 2008). These neurons include func-

tionally defined grid cells that fire in multiple place-specific loca-

tions, border cells that fire maximally near boundaries, cells with

stable but non-geometric spatial firing patterns, and cells that

encode the head direction and running speed of the animal (Diehl

et al., 2017; Hafting et al., 2005; Kropff et al., 2015; Solstad et al.,

2008). Although these classifications reflect changes in firing

rates (FRs) as a function of position, head direction, or speed,

MEC cells can also be classified along the lines of their spike pat-

terns at a millisecond timescale, with cells that fire bursts of

action potentials (125–500 Hz) more often expressing grid cell

firing patterns (Latuske et al., 2015). What these bursting dy-

namics contribute to MEC computation and the potential mech-

anisms contributing to such bursting dynamics, however, remain

incompletely understood.
Cell Rep
This is an open access article under the CC BY-N
Previous work in other brain regions has indicated that

bursting can provide unique computational benefits (Lisman,

1997). First, bursting may facilitate the reliability of information

transfer (Kepecs et al., 2002; Lisman, 1997). Bursts of spikes,

as well as the duration of the burst, increase the chance of a

response in postsynaptic neurons in striate cortex and the hip-

pocampus (Csicsvari et al., 1998; Snider et al., 1998). Second,

bursting has been proposed to improve the signal-to-noise ratio.

This feature of bursting has been observed in cortical regions,

including visual and auditory cortex (Cattaneo et al., 1981; Eg-

germont and Smith, 1996; Livingstone et al., 1996), and in re-

gions associated with navigation. In the hippocampus, bursts

provide a more accurate estimate regarding the animal’s posi-

tion compared with single spikes, and cells that burst are more

likely to exhibit spatially tuned firing patterns (Epsztein et al.,

2011; Mizuseki et al., 2011; Muller et al., 1987; Otto et al.,

1991). Correspondence between bursting and spatial coding is

also observed in the subiculum, the primary output structure of

the hippocampus, where bursts encode position significantly

better than isolated spikes and the propensity to burst can be

used to classify cells (Simonnet and Brecht, 2019). The presence

of neural populations in the subiculum classifiable by their

bursting dynamics may support the formation of parallel streams

of information, as the propensity to burst is highly associated

with a cells efferent target area (Cembrowski et al., 2018; Graves

et al., 2012; Kim and Spruston, 2012). Subiculum neurons that

project to the amygdala, lateral entorhinal cortex, nucleus

accumbens, and orbitofrontal cortex consist primarily of non-

bursting neurons, while those that project to the MEC, retrosple-

nial cortex and presubiculum primarily consist of bursting

neurons (Kim and Spruston, 2012). Finally, bursts have been pro-

posed to form a parallel code, in which they code for different

stimulus features in the same spike train (Oswald et al., 2004).

Although burst dynamics could arise from large transient in-

puts, several lines of evidence in the hippocampus point to the

possibility that bursts reflect an interaction between two factors:

synaptic inputs and intrinsic conductances (Bittner et al., 2015;

Carette et al., 1992; Wong et al., 1979). In MEC, both of these

factors progressively change along the dorsal-to-ventral (DV)

MEC axis. For example, multiple ion channel expression patterns

change and the number of synaptic contacts from GABAergic

inhibitory neurons to layer II excitatory MEC cells decreases

along the DV MEC axis (Beed et al., 2013; Garden et al., 2008;

Giocomo and Hasselmo, 2008; Hafting et al., 2005; Ramsden

et al., 2012). These changes correlate with DV gradients in the
orts 30, 2349–2359, February 18, 2020 ª 2020 The Author(s). 2349
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Figure 1. In Vivo Bursting Dynamics Are Graded along the MEC DV Axis

(A) Histogram of BS for 821 MEC cells.

(B) Average spikes per burst increased with BS.

(C) BS decreases in a DV fashion among the top 25% of bursting scores (top dotted red line). Bottom red line indicates the linear fit for all cells.

(D) Average BS ± SEM for grid (G), non-grid spatial (n-gS), border (B), head direction (H), and speed (S) cells. Grid cells showed higher BSs compared with other

cell types (BS ± SEM: G = 0.15 ± 0.01, n-gS = 0.11 ± 0.01, B = 0.08 ± 0.01, H = 0.10 ± 0.01, S = 0.07 ± 0.01; one-way ANOVA: F[4, 856] = 10.9, p < 0.001; G versus

n-gS, t[417] = 3.5, p < 0.001; B, t[251] = 4.3, p < 0.001; H, t[377] = 3.8, p < 0.001; S, t[309] = 5.7, p < 0.001). ***p < 0.001.

(E and F) For grid cells, BS decreasedwith DV location (E) (BS3 depth: R2 = 0.056, p < 0.01), and grid score increasedwith BS (F) (BS3 grid score: R2 = 0.075, p <

0.01). Best-fit lines to data are in red. BS was significantly predicted by grid score even when depth and average firing rate were taken into account (significant

coefficient in linear model predicting BS from grid score, depth, average FR: t[163] = 3.55, p < 0.001). BS was not significantly predicted by grid score in a model

for which BSwas predicted from grid score, spatial information, spatial coherence, depth, and average firing rate (‘‘full model’’: grid score, t[163] = 1.08, p = 0.28).

However, grid score correlated strongly with spatial information (p < 0.001) and spatial coherence (p < 0.001), which were significant in this same model.

(legend continued on next page)
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tuning features of functionally definedMEC neurons, such as the

spatial distance between grid cell firing fields and the width of

head direction tuning curves (Giocomo et al., 2014; Hafting

et al., 2005; Stensola et al., 2012). Whether bursting shows DV

topography, as well as the impact of such topography on MEC

coding in behaving animals, is not known.

Here, we examined the relationship between bursting, func-

tionally defined coding and intrinsic conductances along the

DV axis of MEC. We first considered whether a graded organiza-

tion in the spike patterns of MEC cells in behaving animals exists.

We report that the propensity for neurons to burst decreased

along the DV axis and that bursting occurred predominately in

grid cells. Moreover, both the propensity to burst and fidelity of

grid coding increased at fast running speeds, raising the possi-

bility that spiking dynamics in dorsal MEC are ideally suited to

support spatial navigation. We then used whole-cell in vitro re-

cordings and computational modeling to demonstrate that the

organization in bursting relies, at least in part, on non-inactivating

Na conductances. Together, these results reveal a DV organiza-

tion in the temporal spiking dynamics of MEC cells that could

complement the DV organization in the scale of spatial tuning

of MEC cells.

RESULTS

Dorsal-Ventral Gradient in Bursting In Vivo

We first considered the spiking activity of 821 superficial putative

principal MEC cells recorded as mice foraged in open arenas

(STAR Methods; Figure S1). We labeled spikes that occurred

within 10 ms of each other ‘‘burst spikes’’ and used this to define

a bursting score (BS; number of burst spikes/total number of

spikes) (STAR Methods). Bursts typically occurred as doublets

(mean spikes per burst ± SD = 2.22 ± 0.59), with spikes per burst

and a neuron’s average FR positively correlating with the BS

(Pearson’s correlation: spikes per burst 3 BS, R2 = 0.87, p <

0.001; FR 3 BS, R2 = 0.021, p < 0.001) (Figures 1A and 1B; Fig-

ures S2 and S3). BSswere stable across recording sessions, and

jittering the bursting threshold of 10 ms resulted in similar BSs

across the population (Figures S3 and S4). Interestingly, the pro-

pensity for cells to burst was organized along the dorsal-ventral

MEC axis, and the BS of cells progressively decreased from dor-

sal to ventral MEC (R2 = �0.017, p < 0.001, n = 821) (Figure 1C).

This effect was preserved even when normalizing the BS to

bursting expected via Poisson firing (Figure S4). However,

bursting also varied across the MEC population (BS range

0–0.65, mean BS ± SD = 0.093 ± 0.11), and many cells in dorsal

MEC had low BSs (Figure 1C). Thus, the DV gradient in the BS of

cells represented a progressive decrease in the proportion of
(G) Each box shows trajectory (left) and rate maps (right) for two co-recorded grid

above plots showing the animal’s trajectory (black) overlaid with spikes (red dots)

map, color-coded for minimum (blue) and maximum (red) values.

(H and I) For grid cells, spatial information (H) and spatial coherence (I) increased w

R2 = 0.19, p < 0.001). Best-fit lines to data are in red. BS was significantly predicte

rate were taken into account (spatial information, t[163] = 10.5, p < 0.001; spatia

information, but not spatial coherence, in the full joint model (‘‘full model’’: spatial in

although spatial information and spatial coherence were strongly correlated (p <

(J) Grid score, spatial information, and coherence computed from burst spikes a

See also Figures S1–S4.
cells with a high BS, as indicated by a significant DV decrease

in the top 25th percentile of BS (R2 = �0.97, p < 0.02, for four

bins; Figure 1C).

Bursting in Functionally Defined Entorhinal Cells
Given the variation in bursting across the MEC population (Fig-

ure 1C), we next examined whether the gradient in the BS of cells

was associated with specific functionally defined MEC cell clas-

ses (cell numbers: grid, n = 167; non-grid/border spatial, n = 252;

border, n = 86; head direction, n = 212; speed, n = 144) (STAR

Methods). Grid cells had significantly higher bursting values

compared with all other MEC cell classes, consistent with previ-

ous work (Figure 1D; Figures S3 and S4; Latuske et al., 2015).

Moreover, the DV gradient was evident in only two classes of

functionally defined MEC cells: grid cells and non-grid, non-

border spatially tuned cells (Figures 1E–1G; Figure S3; STAR

Methods). Because grid cells showed the highest bursting

values compared with other MEC cell classes, as well as a signif-

icant dorsal-ventral gradient in BS, we focused our analyses on

this cell population. We found that the BSs of grid cells positively

correlated with spatial information, spatial coherence, and grid

score, a measure of the 60� symmetry present in the grid firing

pattern (Figures 1F–1I; Figure S3; all correlations performed

separately). However, BSs did not appear to correlate with theta

modulation or theta locking (Figure S2).

Why did the propensity to burst correlate with grid coding fea-

tures? One possibility is that burst spikes convey high spatial

symmetry and coherence and thus, cells with bursts will be

more informative. To test this idea, we enforced a refractory

period in each cell by deleting the spikes that followed the first

spike in the burst, in essence converting burst spikes to tonic

spikes. We then re-computed the grid score for each cell.

Enforcing a refractory period decreased the correlation between

the newly computed grid score and the original BS (Figure 2A).

Increasing the enforced refractory period further decreased the

correlation between newly computed grid scores and the original

BS (slope < 0: F statistic versus constant model = 49.6, p < 0.01,

F test). However, one possibility is that any decrease in the num-

ber of spikes will reduce the correlation between grid score and

BS. To rule out this possibility, we performed a control analysis in

which we randomly rejected the number of spikes to match the

number of spikes deleted in the enforced refractory period anal-

ysis.We then re-computed the grid score for each cell. This anal-

ysis revealed a decrease in the correlation between the newly

computed grid scores and the original BS, but importantly, this

decrease was significantly less than what was observed when

burst spikes were preferentially deleted (slope < 0: F statistic

versus constant model = 55.6, p < 0.01, F-test; analysis of
cells. Cells on the left exhibited higher BSs than cells on the right. BSs denoted

. The grid score (left) and maximum firing rate (right) are denoted above the rate

ith BS (BS3 spatial information, R2 = 0.15, p < 0.001; BS3 spatial coherence,

d by spatial information and spatial coherence, when depth and average firing

l coherence, t[163] = 6.1, p < 0.001). BS was significantly predicted by spatial

formation, t[163] = 5.61, p < 0.001; spatial coherence, t[163] =�1.08, p = 0.28),

0.001).

re larger than those computed from the same number of tonic spikes.
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Figure 2. Bursting In Vivo Likely Reflects

Large or High-Frequency Inputs

(A) The correlation between grid score and BS

decreases when bursts are replaced by single

tonic spikes and continues to decrease as the

minimum refractory period used to define a burst is

increased (black line, red dots). Transparent dots

correspond to values for which the correlation is

not significant. Random rejection of spikes does

not decrease the correlation (gray line, blue dots).

(B) The BS increased during fast speeds.

(C) The increase in BS during fast- compared with

slow-speed epochs increases with the BS of a cell.

Best-fit line to data is in red.

(D) Firing rate maps of grid cell firing during fast

(left) and slow (right) epochs color-coded for min-

imum (blue) and maximum (red) values. Grid score

(top left) and BS (top right).

(E and F) Grid score (E) and spatial coherence (F)

increase during fast epochs.

See also Figures S1–S4.
covariance [ANCOVA] slopes different with F = 8.88, p < 0.05)

(Figure 2A). This demonstrates that burst spikes are more accu-

rate than tonic spikes and raises the possibility that bursts could

act as an error correction code to improve downstream decod-

ing of position signals (Hsu et al., 2018).

We next considered why burst spikes might be more accurate

than tonic spikes. As suggested by previous work (Lisman,

1997), bursts can result from large or high-frequency excitatory

inputs. If this is the case, we could expect that an increase in

the magnitude or frequency of excitatory inputs would increase

the amount of bursting. One condition under which the magni-

tude or frequency of inputs to grid cells likely increases is at

high running speeds (Burak and Fiete, 2009; Burgess et al.,

2007; Kropff et al., 2015). To investigate whether running speed

is associated with the propensity to burst, we re-computed the

grid cell BS after splitting each session into slow and fast running

speed epochs, on the basis of the average running speed across

sessions (slow, 2.5–10 cm/s; fast, 10–50 cm/s; Figure S4). We

found that the propensity to burst increased during fast speeds

(sign test z = 3.58, p < 0.001) and that this increase in bursting

correlated with the BS of a cell (R2 = 0.03, p < 0.05) (Figures

2B and 2C). Consistent with the idea that the spatial coding of

grid cells improves as the propensity to burst increases, the

score and spatial coherence of grid cells also increased during

fast running speeds (n = 126, down-sampled to match position

coverage and time points; grid score, p < 0.05; spatial coher-

ence, p < 0.01; sign test) (STARMethods) (Figures 2D–2F). These

results point to a framework in which bursts occur more often

when large or high-frequency inputs are received, driving higher

coherence and symmetry in the grid code.

Dorsal-Ventral Gradient in Temporally Specific Input
Integration
Bursting can reflect both the temporal dynamics of inputs and

intrinsic conductances (Bittner et al., 2015; Carette et al., 1992;

Wong et al., 1979). To next examine how these two factors influ-
2352 Cell Reports 30, 2349–2359, February 18, 2020
ence bursting in MEC, we conducted a series of whole-cell

patch-clamp recordings of MEC layer II/III cells. We began by

considering how the integration of temporally precise inputs by

single cells varied along the DV axis. We leveraged a current-

clamp protocol that takes into consideration how the timing of in-

puts influences the propensity of cells to burst. In this protocol,

the threshold for evoking an action potential was first assayed

with a 1 ms current injection. Consistent with the known DV

gradient in input resistance, the threshold for evoking an action

potential varied along the DV axis (threshold range 800–

3,400 pA; mean ± SEM = 1,820 ± 102 pA; DV position 3 pA,

R2 = 0.38, p < 0.0001; n = 42) (Garden et al., 2008). We then

examined the ease with which we could evoke a second action

potential (Metz et al., 2005). We injected a second 1ms step cur-

rent at varying latencies (2–64 ms after the first spike), increasing

the amplitude of the second current until it produced a second

spike (Figures 3A and 3B). This second spike threshold (SST)

was then normalized to the first spike threshold. The SST will

be smaller in cells that require less current to produce a second

spike and represents the amount of input required to generate a

spike in a temporally precise manner.

Using the SST assay, we found a significant effect of DV posi-

tion and interval duration, with cells showing smaller SST values

at short latencies and larger SST values at longer latencies

(repeated-measures ANOVA, Huynh-Feldt correction: latency

effect, F[7, 189] = 69.53, p < 0.001; DV 3 latency interaction, F

[14, 189] = 4.40, p < 0.001; n = 30; no between-subjects effect

of DV position, F[1, 27] = 0.10, p = 0.91) (Figure 3C). Moreover,

the latency at which the minimum SST value occurred progres-

sively increased along the DV axis (R2 = 0.28, p < 0.001, n =

41) (Figure 3D). Consistent with this, dorsal cells had smaller

SST values for short latencies and larger SST values for longer

latencies compared with ventral cells (2 ms, R2 = 0.09, p =

0.05, n = 41; 4 ms, R2 = 0.10, p < 0.05, n = 41; 16 ms, R2 =

0.16, p < 0.01, n = 41; 32 ms, R2 = 0.20, p < 0.01, n = 35) (Fig-

ure 3E). Together, these data demonstrate that a spike in dorsal
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Figure 3. In Vitro Bursting Dynamics Vary

along the DV Axis of MEC

(A) Illustration of the current-clamp assay used to

quantify the propensity to burst. The current

required to evoke a spike is empirically determined

and used as the first stimulus. The second 1 ms

pulse (shown for two of eight latencies) is then

increased in 100 pA increments until the cell reli-

ably fires a second action potential.

(B) Examples of the dual-pulse protocol at three

latencies in three cells located along the DV axis

(DV depth noted to the left and SST values at the

top of each trace).

(C) SST values for different latencies (log axis).

Mean ± SEM plotted. The DV axis is binned into

thirds (range 254–1,885 mm). Only cells in which all

eight latencies were tested were included in this

analysis.

(D) For each cell, the latency at which the lowest

SST value was measured is plotted relative to the

cell’s position along the DV axis. Best-fit line to

data is shown.

(E) SST values for individual cells at different DV

depths at four latencies. Best-fit lines to data are

shown.

See also Figure S5.
cells opens a narrow temporal window (4–10 ms) in which the

input required to elicit a second spike is lower than in ventral

cells, after which the input required to elicit a spike is higher in

dorsal compared with ventral cells. These temporal dynamics

(Figure 3C) indicate that dorsal cells are more likely to burst in

response to high-frequency (>�166 Hz) compared with low-fre-

quency (�62 Hz) inputs.

A Mathematical Model of Bursting Derived from
Experimentally Measured Dynamics
Next, to consider whether the observed in vitro differences in

temporal dynamics across the DV axis could influence the in vivo

dorsal-ventral differences in bursting, we implemented a ‘‘spike-

response model,’’ an integrate-and-fire model incorporating

intrinsic after-spike dynamics (Brette and Gerstner, 2005;
Cell Repo
Figure 4). This model simulates spike

trains by modeling a neuron’s membrane

voltage over time, according to external

inputs and intrinsic dynamics, recording

the times at which this voltage surpasses

a spiking threshold, and then immediately

re-setting the voltage to the resting

potential. Single-cell voltage dynamics

over time are governed by a fixed

external input I, a leak term, and a noise

term, while after-spike dynamics are

captured by a spiking threshold that

varies with the time since the last

spike (see Data S1). Critically, this

threshold is defined to be precisely what

is measured by the normalized SST in

our in vitro experiments and thus allows
us to simulate spike trains with a firing threshold rule that is taken

directly from the experimentally measured SSTs.

Using this framework, we simulated spike trains on the ba-

sis of dorsal and ventral neurons recorded in vitro by inserting

their experimentally measured normalized SSTs into the spike

response model. By sweeping over different values of the

external input I, we then computed the BS for different

mean FRs for each neuron. The model reveals that dorsal neu-

rons will have a higher BS for a given FR than ventral neurons,

which agrees with our experimental observations in vivo

(model: R2 = 0.12, p < 0.05, n = 42; data: R2 = 0.01, p <

0.05, n = 509) (Figures 4A–4C). Importantly, the variability in

the SST responses we observed in individual neurons

in vitro creates a distribution of BSs similar to what we

observe in vivo (Figures 4C and 4F) and points to the presence
rts 30, 2349–2359, February 18, 2020 2353
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Figure 4. Model Captures In Vivo Bursting Using Measured In Vitro Temporal Dynamics

(A) Bursting score versus firing for modeled cells on the basis of in vitro SST recordings and slow exponential decay times (simulations based on values frommost

dorsal third of axis in gray and most ventral third of axis in blue).

(B) Summary data for dorsal and ventral thirds of modeled cells.

(C) Slope of linear fit to all modeled single-cell curves in (A) as a function of dorsal border distance.

(D) Bursting score versus firing rate for a random sample of in vivo cells (gray, most dorsal third; blue, most ventral third of axis).

(E) Summary bursting score versus firing rate tuning curves for dorsal and ventral thirds of all in vivo cells (dorsal, n = 122; ventral, n = 90). Mean ± SEM plotted.

(F) Slope of linear fit to all single-cell curves in (D) as a function of dorsal border distance.

See also Figure S5.
of heterogeneity in the temporal coding features of MEC

neurons.

Whole-Cell Recordings Reveal a DV Gradient in Na
Currents
We then considered how intrinsic conductances might influence

the DV MEC gradient in bursting. We focused on Na conduc-

tances, as in the hippocampus, cerebellum, and neocortex,

sub- or peri-threshold Na conductances play a critical role in

driving bursts (Azouz et al., 1996; Brumberg et al., 2000; Traub

et al., 2003; Khaliq et al., 2003). In a subset of whole-cell

patch-clamp recordings, we washed in 10 mM riluzole (2-

amino-6-triffluoromethoxy benzothiazole) after the baseline

SST assay (Urbani and Belluzzi, 2000; Figure 5A). Riluzole is a

pharmacological compound that blocks sodium currents (He-

bert et al., 1994; Song et al., 1997) and preferentially targets

the persistent sodium current in cortical neurons (Sheroziya

et al., 2009; Urbani and Belluzzi, 2000). After washing in riluzole,

we repeated the SST assay in the same neuron. We then post
2354 Cell Reports 30, 2349–2359, February 18, 2020
hoc quantified the amount of additional current needed to rescue

the SST observed in the control condition. The larger the amount

of additional current needed, the more the SST observed in the

control condition depends on persistent sodium currents. We

found that riluzole had a significantly larger effect in dorsal cells,

with the current required to evoke a second spike decreasing as

a function of DV position (R2 = 0.33, p < 0.05, n = 17) (Figure 5B).

This effect was most pronounced for shorter SST latencies

(repeated-measures ANOVA: between-subjects dorsal versus

ventral, F[1, 13] = 7.01, p < 0.05; dorsal, n = 8; ventral, n = 9;

post hoc comparisons, p < 0.05 at 2, 4, and 8 ms). The threshold

for a second spike then returned after washout of the drug (F[1,

18] = 0.045, p = 0.835, n = 10) (Figure 5C). This suggests that the

DV gradient in SST responses could be indicative of a DV

gradient in Na currents.

Superficial MEC neurons show high expression levels of two

components of the Na current active at sub- or peri-threshold

membrane potentials: persistent Na current (I[NaP]) and resur-

gent Na(+) current (I[NaR]) (Alonso and Llinás, 1989; Azouz
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Figure 5. Na Current Components Are Graded along the MEC DV Axis

(A) A representative SST protocol recording in control (black) and riluzole (gray). Inset depicts the decrease in depolarization following a spike in the presence of

riluzole.

(B) Largest change (across all latencies) in the SST value in riluzole as a function of the cell’s position along the DV axis. Current plotted (pA) indicates the

additional current required to rescue a second spike at a given latency. Best-fit line to data is shown.

(C) Increase in picoamperes required to rescue control SST values at various latencies (log axis). Mean ± SEM plotted. The DV axis is binned into halves (dorsal,

315–1,139 mm; ventral, 1,140–1,885 mm). Only cells for which data on all eight latencies were obtained were included in this analysis.

(D) Voltage-clamp protocol used to assay Na current components. The transient current is measured as the peak current elicited at 10 mV. I(NaR) is measured as

the peak current elicited by any voltage repolarization. I(NaP) is measured as the average of the last 10 ms of the step.

(E) Representative voltage-clamp recordings of stellate (blue) and pyramidal (red) neurons (DV location listed to the right of each trace).

(F) Normalized Boltzman equation-derived steady-state inactivation curves plotted for average values from individual fits. Top shows stellate (blue) versus

pyramidal (red) neurons and bottom shows dorsal (black) and ventral (gray) neurons. Four cells with insufficient traces were not included in this analysis. Na

gradients did not show significant differences in inactivation parameters between stellate and pyramidal cells (mean ± SEM; V1/2, stellate = �42.7 ± 1.1 mV,

pyramidal =�44.7 ± 1.2 mV, t[39] = 1.17, p = 0.25; slope factor (k), stellate = 6.41 ± 0.17 mV, pyramidal = 6.87 ± 0.15 mV, t[39] =�1.46, p = 0.15; Imax, stellate =

�5.84 ± 0.33 nA, pyramidal = �4.67 ± 0.33 nA, t[39] = �0.99, p = 0.33). Inactivation parameters also did not differ between dorsal (0–1,000 mm) and ventral

(>1,000 mm) cells (mean ± SEM; V1/2, dorsal =�43.4 ± 1.1 mV, ventral =�43.7 ± 1.2 mV, t[39] = 0.13, p = 0.90; slope factor (k), dorsal = 6.45 ± 0.16 mV, ventral =

6.80 ± 0.29 mV, t[39] = �1.14, p = 0.26; Imax, dorsal = �4.92 ± 0.40 nA, ventral = �5.30 ± 0.48 nA, t[39] = 0.61, p = 0.54).

(G) Normalized I(NaP) density in stellate (blue) and pyramidal (red) neurons decreases along the DV axis. Best-fit lines to data are shown.

(legend continued on next page)
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et al., 1996; Castelli et al., 2007;Magistretti et al., 1999). Because

the current-clamp data pointed to a potential role for Na currents

in bursting, we examined whether I(NaP) and I(NaR) were graded

along the DVMEC axis. We performed whole-cell voltage-clamp

recordings of MEC cells and assayed I(NaP) and I(NaR) as fea-

tures of the whole-cell Na current (Aman et al., 2009; Bant and

Raman, 2010). Cells were held in voltage clamp at�90mV, step-

ped to 10 mV for 20 ms to inactivate or block the transient Na

current, and then repolarized to membrane potentials ranging

from �25 to �60 mV for 200 ms (Raman and Bean, 1997; Fig-

ure 5D). Currents were then normalized to the transient current.

We found DV gradients in the amplitude of peak I(NaR) and

I(NaP) in layer II/III stellate and pyramidal cells, with both cell

types also showing similar inactivation parameters (Pearson’s

correlation, DV position versus I[NaR]: stellate, R2 = 0.35, p <

0.001, n = 28; pyramidal, R2 = 0.31, p = 0.02, n = 17; I[NaP]: stel-

late, R2 = 0.47, p < 0.001, n = 28; pyramidal, R2 = 0.39, p = 0.007,

n = 17) (Figures 5E–5H; Figure S5). The amplitudes of these cur-

rents correlated to a degree larger than predicted by the cell’s DV

position (residuals of currents with position regressed out: R2 =

0.266, p < 0.05, n = 45) (Figure 5I). Moreover, although current

amplitudes at repolarized membrane potentials showed DV gra-

dients, inactivation parameters did not vary between dorsal and

ventral cells (Figure 5F), suggesting that the observed gradients

do not simply reflect differences in steady-state channel avail-

ability (Magistretti and Alonso, 1999).

Consistent with the DV gradient in I(NaR) and I(NaP) observed,

unnormalized I(NaR) and I(NaP) amplitudes exhibited DV gradi-

ents. Transient amplitudes did not exhibit a DV gradient,

suggesting that there were no DV differences in axonal compart-

ments due to differences in slicing (Figure S5). However,

although outside-out macropatch recordings were consistent

with the presence of a DV gradient in somatic I(NaP), they lacked

I(NaR), suggesting that I(NaR) may be preferentially expressed in

the axon initial segment (Castelli et al., 2007; Hamada et al.,

2016; Khaliq and Raman, 2006; Kole, 2011; Royeck et al.,

2008; Figure S5). Taken together, these data point to gradients

in non-inactivating Na currents as a key contributor to bursting

in MEC cells.

DISCUSSION

Here, we revealed a DV gradient in the bursting dynamics of

spatially modulated MEC cells in behaving animals. Moreover,

we found that high-frequency FRs are associated with robust

spatial signals, particularly in response to high-frequency inputs,

such as those that likely occur at fast running speeds. A corre-

sponding DV gradient in bursting dynamics and peri-threshold

Na channels was observed in vitro, pointing to intrinsic conduc-

tances as potential single-cell mechanisms for in vivo bursting

dynamics. Together, these results reveal topographic organiza-

tion in spiking dynamics that could complement the organization

in the spatial scale of MEC grid cells. Moreover, future work
(H) Same as (F) but for normalized I(NaP). The gradients of Na current component

I[NaP], F[1, 41] = 0.017, p = 0.90, h2 = 0; I[NaR], F[1, 41] = 1.98, p = 0.17, h2 = 0

(I) Correlation of I(NaR) and I(NaP) within individual neurons. Best-fit lines to data

See also Figure S5.
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could consider whether the gradient in bursting we observe

could play a role in supporting a differential function of dorsal

versus ventral MEC in behavior. In the hippocampus, it has

been proposed that dorsal versus ventral neural populations

support different behaviors, such as spatial memory, anxiety,

or fear (Fanselow and Dong, 2010; Moser and Moser, 1998;

Strange et al., 2014). Although the anatomical range over which

we considered bursting did not extend across the entire DVMEC

axis, the findings that dorsal cells show a higher propensity to

burst and that bursts carry higher spatial information and

coherence raise the possibility that the dorsal MEC pole contains

coding features that may play a role specifically in spatial

learning.

Our findings have implications for network-level models

capable of generating grid cell firing patterns. Many of these

models rely on translation-invariant attractor networks, in which

the animal’s movement drives the translation of an activity

pattern across a neural population (Burak and Fiete, 2009;

Couey et al., 2013; Fuhs and Touretzky, 2006). Such models

often rely on network homogeneity, with only a few attractor

states surviving heterogeneity in cellular excitability or synaptic

inputs (Renart et al., 2003). Here, we report heterogeneity in

the bursting propensity of grid cells of the same spatial scale.

However, the effects this variability in spiking features may

have in attractor-based grid cell network models remains un-

known. Even so, the presence of heterogeneity in grid cell

spiking dynamics, and the challenge this may present to attrac-

tor models, are complementary to reports of heterogeneity in the

spatial tuning features of MEC cells (Hardcastle et al., 2017a,

2017b), suggesting future computational work needs to account

for heterogeneity in the intrinsic and synaptic features of grid

cells.

A remaining question is what underlying mechanism gives rise

to the larger range in bursting we observe in dorsal MEC in vivo

and in vitro (Figures 1C and 4C), compared with the less variable

range in dorsal Na current amplitudes we observed in vitro (Fig-

ures 5G and 5H). First, our computational model as well as

previous work indicates that the lower variability observed

in vitro could give rise to higher variability in vivo, when consid-

ering the variability in the timing of inputs, changes in noise or

conductance (Dorval and White, 2005; Fernandez and White,

2008), or the increase in population-wide rhythmic activity

(Mitchell and Ranck, 1980) that occur under in vivo conditions.

Second, it is important to also consider thatmultiple ion channels

are graded in a cell type-specific manner along the DV MEC axis

(Garden et al., 2008; Giocomo and Hasselmo, 2008; Pastoll

et al., 2012a). Moreover, grid cell firing properties have been

observed in both stellate and pyramidal cell-types in MEC (Sun

et al., 2015; Tang et al., 2014). Thus, the degree of variability in

bursting we observed in vivo could reflect the interaction of Na

kinetics with the dynamics of other ion channels, which vary in

a cell type-specific manner (Alonso and Klink, 1993; Eder and

Heinemann, 1994; Pastoll et al., 2012a; Yoshida and Alonso,
amplitudes did not differ between cell types (ANCOVA, comparison of slopes:

.05).

are shown.



2007). For example, given that putative excitatory speed cells

increase their FR with running speed, it is reasonable to hypoth-

esize that grid cells receive high-frequency inputs from these

cells at high running speeds. In MEC, the accurate integration

of high-frequency inputs is supported by the presence of the hy-

perpolarization activated cation current I(h) and leak K+ current,

which are both graded along the DV axis in stellate cells (Garden

et al., 2008; Giocomo and Hasselmo, 2008, 2009). In dorsal

MEC, these integrated inputs may thusmore effectively translate

into high-frequency bursts of action potentials because of larger

amplitude sodium currents, resulting in more a more accurate

grid code. In this framework, the larger heterogeneity we observe

in bursting dynamics, compared with Na current amplitudes

in vitro, could reflect the fact that stellate and pyramidal cells

contain significantly different densities of multiple ion channel

currents (Alonso and Klink, 1993; Eder and Heinemann, 1994;

Pastoll et al., 2012a; Yoshida and Alonso, 2007). Thus, although

pyramidal cells have the capacity to burst because of their Na

conductances, they may lack the ion channel kinetics to drive

integration in way that results in a robust position code in vivo.
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tions provide temporal windows for local circuit computation in the entorhi-

nal-hippocampal loop. Neuron 64, 267–280.

Mizuseki, K., Diba, K., Pastalkova, E., and Buzsáki, G. (2011). Hippocampal
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

In vivo experimental model and subject details
The dataset consisted of MEC neurons from previously published datasets (male mouse n = 18) (Eggink et al., 2014; Giocomo et al.,

2011; Hardcastle et al., 2017b). For in vivo experiments from Eggink et al. (2014) and Giocomo et al. (2011), all experiments were

performed in accordance with the Norwegian Animal Welfare Act and the European Convention for the Protection of Vertebrate

Animals used for Experimental and Other Scientific Purposes and approved by the National Animal Research Authority of Norway.

For in vivo experiments from Hardcastle et al. (2017b), all techniques were approved by the Institutional Animal Care and Use

Committee at Stanford University School of Medicine. Mice were housed together with their littermates (50:50 C57B6/129SvEv

and C57B6) until surgery. At implantation, mice ranged in age from 3 to 12 months.

In vitro experimental model and subject details
All techniques were approved by the Institutional Animal Care and Use Committee at Stanford University School of Medicine. In vitro

recordings were performed in male and female C57BL/6 mice. Mice were house together with their littermates. At the time of the

recordings, mice were aged P18 – P30, providing developmental conditions under which Na currents have fully expressed (Nigro

et al., 2012).

METHOD DETAILS

Surgical implantation of chronic recording devices and in vivo single-unit data acquisition
For chronic implantation of recording electrodes, mice were first deeply anesthetized with isoflurane (induction chamber 3.0% with

air flow at 1200 ml/min, reduced to 1% once the animal was secured in the stereotaxic apparatus) and then given a subcutaneous

injection of buprenorphrine (0.3 mg/ml). A tetrode bundle composed of two polyimide-coated platinum iridium 90%–10% wire

tetrodes, cut flat with impedances reduced to 200 kU at 1 kHz, was implanted in the left or right hemisphere, angled at 0 – 8 degrees

in the posterior direction in the sagittal plane, at 0.3 - 0.5 mm anterior to the transverse sinus, 3.1 – 3.3 mm from themidline and 0.5 to

1.1 mm below the dura. The microdrive was secured to the skull using dental cement adhered to jeweler’s screws, with one screw

serving as a ground electrode. Mice were then housed individually in transparent plexiglass cages.

For all data collection, mice were allowed to recover for at least one week after surgery, after which data acquisition began. Mice

were connected to the recording equipment via AC coupled unity-gain operation amplifiers and placed in a recording box (70 3

70 cm, 903 90 cm or 13 1 m) with a single white polarizing cue, surrounded by black curtains. Mice foraged for randomly sprinkled
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food over a 20 – 60 minute long recording session. After each finished set of experiments, the floor of the test box was washed with

soapy water, tetrodes were moved by R 25 mm until new well-separated cells were encountered, after which mice rested in their

home cage until the next recording session. Mice did not experience the open field more than twice per day (sessions separated

by R 3 hours). After the completion of recordings, offline cluster cutting software was used to sort spikes (TINT software, Axona

Ltd.) and video tracking data was analyzed for the location and head direction of the animal. Manual cluster cutting was performed

using two-dimensional projections of the multidimensional parameter space (waveform amplitude), with additional separation

utilizing autocorrelation functions.

Cell layers and the location of all recorded cells relative the border between MEC and other cortical regions were determined from

post hoc Nissl-stained sagittal brain sections. After the final recording session, electrodes were notmoved.Micewere then killed with

an overdose of pentobarbital and transcardially perfused with 0.9% saline (wt/vol) followed by formaldehyde. Brains were extracted

and stored in 4% formaldehyde and later (> 24 hours) were frozen, cut in sagittal sections (30 mm) and stained with cresyl violet. The

positions of the tips of the recording electrodes and measurements were determined from digital pictures of the brain sections made

using AxioVision (LE Rel. 2.4). The position of the tip of the tetrode was identified and a measurement between this position and

the dorsal border of medial entorhinal cortex was made. The dorsal-ventral location of recorded cells was then back calculated

from the position of the tip of the tetrode and the noted tetrode depth on the day of the recording. The laminar location of recording

electrodes was determined on the basis of cytoarchitectonic criteria (Giocomo et al., 2011) (Figure S1).

Shuffling procedures for cell classification
Any cells with < 100 spikes or that came from sessions with < 75% coverage of the environment were removed from the analysis.

Shuffling for grid, border and head direction cells was then performed as in Giocomo et al. (2011). One hundred randomperturbations

of all cells in the sample determined the chance levels. For each permutation trial, the entire sequence of spikes fired by a given cell

was time shifted along the animal’s path by a random interval between 20 s and the total trial lengthminus 20 s, with the end of the trial

wrapping to the beginning. For grid cells, an autocorrelation map was constructed and a grid score calculated for each permutation.

Border scores and mean vector lengths were calculated for each permutation as described above. The 95th percentile was then

determined from the overall distribution of grid, border or head direction scores in the shuffled dataset.

Shuffling for speed scores followed the same shuffling procedures as that used for grid, border and head direction cells but two

scores were calculated and used to define the speed cell population. First, the correlation between running speed and firing rate

was determined (speed score) and second, the recording session was divided into four equal sections and the correlation between

the running speed x firing rate relationship calculated (speed score stability). Both positive and negative tails of the speed score

distribution were considered so that cells with significant relationships with running speed – whether they be positive or negative –

would be included (97.5th percentile for positive speed scores = 0.071 and 97.5th percentile for negative speed score = �0.053).

For speed score stability, the 95th percentile was determined from the overall distribution (P95 for speed score stability = 0.43).

Cells were defined as speed cells only when they crossed the threshold for both speed score and speed score stability. After

shuffling, neurons were identified as putative interneurons based on their firing rate and the width of their waveform (mean firing

rate > 10 Hz or trough to peak duration < 0.25 ms). Interneurons were removed from further analysis, leaving a total of 821 putative

excitatory neurons.

Definition of spatially and directionally-responsive neurons
Spatially-responsive neurons were classified based on previously published methods (Langston et al., 2010). Position data was

binned (2.5 cm x 2.5 cm bins) and smoothed with a 21-sample boxcar window filter (400 ms, ten samples on each side). The

peak firing rate was defined as the rate in the bin with the highest firing rate. The structure of grid cell rate maps was quantified

for cells with more than 100 spikes by calculating the spatial autocorrelation for each smoothed rate map. To classify grid cells, a

grid score was calculated by taking the circular sample of the autocorrelation and comparing it to rotated version of the same

sample (60� and 120� versus 30�, 90� and 150�). The minimum distance between elements in the first group (60� and 120�)
and elements in the second group (30�, 90� and 150�) was defined as the cell’s grid score. Neurons with a grid score higher

than P95 = 0.36 were defined as grid cells. For each grid cell, we also computed the spatial information and the spatial coherence

of the rate map. Spatial information was reported in bits/spike, and computed as spatial information:
P
i

piðli =lÞlog2ðli =lÞ, where i

is the bin number, li is the mean firing rate of the cell in the i-th bin, l is the mean firing rate, and pi is the probability of the animal

being in the i-th bin. Spatial coherence was computed as the arc-tangent, or the Fisher z-transformation, of the correlation be-

tween a given pixel and the average value of the neighboring 3-8 pixels in the spatial map, and roughly corresponds to the sim-

ilarity of neighboring pixel values.

Border cells were identified by computing a previously published border score (Solstad et al., 2008). The difference between the

proportion of high firing rate-bins along one of the environmental walls and the normalized mean product of the firing rate and dis-

tance of a high firing-rate bin to the nearest wall was divided by the sum of those two values. Border cells were classified as neurons

with a higher border score than P95 = 0.52.

Non-grid, non-border spatial cells were identified through the application of a linear-nonlinear Poisson model (Butler et al., 2019;

Hardcastle et al., 2017b). In this model, cells were identified as encoding position (P), head direction (H), or speed (S). However, here
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we only considered if the cell encoded P. In this framework, the model estimates the spiking rate of each cell, br , as a function of po-

sition, head direction, or running speed as:

br =
exp

�
b+
P

iX
T
i wi

�
dt

where r denotes a vector of firing rates over T time bins,b denotes the baseline input (a learned parameter), XT
i denotes the input

matrix for variable i (i˛½P;H; S�; XT
i is a T x ðlength of wiÞ matrix), wi denotes the learned parameters for variable i, and dt is the

time bin width (fixed to be 20 ms; all navigational variables are linearly interpolated to this sampling rate). Each row in the matrix

XT
i indicates the feature related to variable i at time point t, and is computed using cardinal spline interpolation (Butler et al., 2019).

The model was fit assuming that spikes followed a Poisson noise distribution. Learned parameters were computed by maximizing

the log-likelihood of observing the data given the model:

bw = argmaxwi ;b

X
t

log Pðntjexp
 
b +

X
i

XT
i wi

!
� 1

2
bi

X
i

X
j

w2
i;j

where nt is the number of spikes for in time bin t, and bi is the weight of the L2 penalty. This was set to 1 for all variables. This maxi-

mization problem was carried out using fminunc in MATLAB. Models were fit and performance was assessed using 10-fold cross-

validation. Model performance was computed as the log-likelihood increase from amean-firing rate model, divided by the number of

spikes observed in that testing data fold. Determination of which variables were encoded was accomplished via a forward search

method (Hardcastle et al., 2017b).

Directional analyses were only performed for experiments with two LEDs (cell number n = 819). The direction of the mouse’s head

was calculated for each sample by determining the relative position of the two head-mounted LEDs onto the horizontal plane. Direc-

tional tuning curves were plotted by calculating the firing rate as a function of the mouse’s directional heading, divided into bins of 2

degrees and smoothed with a 15 degree mean window filter. The length of the mean vector (MVL) for the circular distribution of the

firing rate was then used to quantify the strength of directional tuning. Neurons with a mean vector length larger than P95 = 0.14 were

classified as head direction cells.

Speed cells were identified by computing a speed score, defined as the correlation between firing rate (smoothed with a Gaussian

filter with s = 20, following Kropff et al., 2015) and running speed (smoothed with a Gaussian filter with s = 5), and speed stability.

Tuning curves were computed by first binning along speed values (0-50 cm/s in 20 equally sized bins) and computing the average

firing rate in each bin.

Quantification of theta-locking and theta-modulation
To quantify the degree of theta-locking, we first filtered the LFP for theta frequency (6-10 Hz) using a Butterworth filter. We then

computed the Hilbert transform (using the Hilbert function in MATLAB), and computed the ‘theta-phase’ as the arctangent of the

imaginary and real part of the Hilbert transform. Phase values were shifted to run between 0 and 2*pi. We then computed a theta-

locking score by first computing the histogram of theta-phases at the time of each spike, with bin size = 2 degrees and smoothing

over 15 degrees. Next, we computed the mean vector length of this histogram as the theta-locking score.

To quantify the degree of theta modulation, we implemented the procedure outlined in Climer et al. (2015). This method allows for

robust calculation of theta rhythmicity under conditions of low firing rates, which is typically the case with entorhinal neurons (Climer

et al., 2015). Briefly, this method fits a parametric function to the marginal distribution of all spikes given that another spike occurred

within 600 ms. The parametric model is fit by maximizing the following likelihood function:

Lðx; t;b; c; f ; r; sÞ = Dðð1�bÞexp
�
� x

10t

��
r exp� x

10c

�
Fðt; sÞ+ 1Þ+bÞ

where x is the lag, and t;b; c; f ; r; s are all parameters that control the specific shape of this function and are found through the maxi-

mization process. The function Fðt; sÞ is a combination of two sinusoids, and allows this function tomodel potential theta-skipping. As

in Climer et al. (2015), we computed the magnitude of rhythmicity, termed a, based on the value of these parameters: a= ð1�bÞr,
where b is a baseline likelihood and r is a rhythmicity factor. This measure varied between 0 and 1, where 1 is maximally rhythmic,

and served as our theta modulation index. We could also compute a p value that reported whether fitting a rhythmic model ðr > 0Þ fit
the data significantly better than a non-rhythmic model (r = 0. Following Climer et al. (2015), we computed the p value from the log-

likelihood ratio test between the rhythmic and non-rhythmic models.

Generation of simulated spike trains
Simulated spike trains were generated based on the parameters fit by a generalized linear model (GLM). Specifically, for each cell, we

fit a GLM which modeled the cell’s spiketrain (n) as a set of observations from a non-stationary Poisson process with mean r(t). This

mean was computed as a nonlinear function of the animal’s position, head direction, running speed, and the phase of the

theta-filtered LFP: r(t) = exp(wp*p(t) + wh*h(t) + ws*s(t) + wth*th(t)), where p(t), h(t), s(t), and th(t) are features corresponding to the an-

imal’s position, head direction, running speed, and LFP-theta phase respectively. We chose these specific variables due to their
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prominence in the literature for driving entorhinal spiking. Features were all splines, as described above, and thus all parameters cor-

responded to the value of control points. Further, thismodel was exactly the same as the one described above, except it included LFP

data, spike history, used dt = 2ms, and did not include any cross-validation or feature selection.We learned parameterswi that maxi-

mized our model fit to the full set of data collected during a recording session. Withwi in hand, we were then able to use the equationbr = ðexpðb +
P

iX
T
i wiÞ =dtÞ to compute br for every time bin. Using the poissrnd function in MATLAB, we then generated an estimated

spike count for each time bin (using poissrndðbr t �dtÞÞ.This generated a simulated spike train from which we could compute a simu-

lated bursting score. We then computed a ‘‘normalized bursting score,’’ using the simulated bursting score as the normalization:

Normalized BS =
True BS� simulated BS

simulated BS+ true BS
PCA on the ISI histograms
To further validate our definition of bursting score, we compared our approach to that taken by Latuske et al. (2015). In this approach,

we first computed the ISI histograms, using 1 ms bins and only considering intervals less than 12 ms, for each cell. Each histogram

could be described using a single vector of numbers (the value of each histogram bin), and these vectors could be stacked for all cells

to form amatrix (size = # of cells x 12). Plotting values in this matrix corresponded to plotting N cells in a 12-dimensional space. Since

we could not visualize this space, we then performed PCA on this matrix, and re-embedded the N data points in a 2-3 dimensional

space. This allowed for an unsupervised method to visualize how cells varied in their in vivo spiking dynamics. We followed this pro-

cedure, which was identical to that taken in Latuske et al. (2015), but also colored each data point according to its bursting score, or

rank in the sorted list of bursting scores. In addition, we correlated the bursting score with the projection of the data onto the first,

second, and third principal component.

In Vitro data collection and analysis
In vitro slice physiology

For slice preparation, mice were first continuously anesthetized with isoflurane and perfused with cold artificial cerebrospinal fluid

(ACSF) oxygenated by bubbling 95% O2/5% CO2 through the ACSF. After perfusion, the mouse was rapidly decapitated and the

brain removed under cold (4�C), oxygenated ACSF (ACSF concentrations in mM: 126 NaCl, 26 NaHCO3, 3 KCl, 1.25 NaH2PO4,

2 MgCl2, 2 CaCl2, 10 Glucose). The brain was then cut in halves through the corpus callosum and each half of the brain glued

with the cut side down to allow slicing of sagittal medial entorhinal cortex (MEC) sections (300 mm thick). For slicing, we used the

same ACSF solution listed above (sucrose-free). Slices were then held in a chamber stored at 31 - 33�C for 30 minutes, followed

by room temperature for a minimum of 30 minutes and up to six hours. For whole cell patch clamp recordings, slices were placed

in a chamber continuously perfused with oxygenated (95% O2/5% CO2) ACSF under an upright microscope (Zeiss A1). Cells

were clearly visible with a 40X water-immersion objective lens, which allowed easy identification of the laminar and dorsal-ventral

location of MEC cells. Putative layer II/III neurons were identified by their superficial location and their morphology, with stellate cells

showing several thick branching dendrites (Klink and Alonso, 1997). All recordings were amplified by a Multiclamp 700B (Molecular

Devices; sampling 50 kHz for voltage clamp, 20 kHz for current clamp, filtered at 10 kHz) and digitzed by a Digidata1440. The liquid

junction potential was not corrected (voltage clamp = �6 mV (versus ACSF), current clamp = �12 mV, nucleated patches = �8 mV).

Capacitative artifacts were reduced for visualization purposes in all voltage clamp recordings except those shown in Figure S5I,

which displays raw records.

The dorsal-ventral location of each recorded neuron was calculated from a 10x photograph of the slice with the cell either still

patched (n = 43 cells included in voltage clamp experiments, all cells included in current clamp experiments), or identified after

the experiment by being filled with fluorescent dye or biocytin (n = 3 cells included in voltage clamp experiments). The borders be-

tweenMEC and other cortical layers and the ventral MEC end were identified based on DIC images and referenced to the Allen Brain

Mouse Atlas (Pastoll et al., 2012b). Pixel measurements in Photoshop were used to quantify the distance to the dorsal border of MEC

for each recorded neuron. These pixel measurements were then converted into actual dorsal-ventral micron distances using a cali-

bration scale (conversion rate = 1.6).

Whole-cell voltage clamp recordings

Patch pipettes for voltage clamp recordings (2.9-5.8 MU) were pulled from 10 cm borosilicate glass capillary tubes (0.86 inside

diameter, 1.5 outside diameter) using a P-1000 puller (Sutter Instrument Company). Pipettes were filled with an intracellular solution

containing (in mM): 115 CsMethanesulfonate, 15 NaCl, 5 TEA, 2 MgCl2, 0.5 EGTA, 10 HEPES, 1 sucrose, 14 Tris-creatine PO4, 4

NaATP, 0.3 Tris-GTP, 0.1%–0.3%biocytin and 20-70 mMAlexa488 hydrazide (Invitrogen). The voltage-clamp extracellular contained

(in mM): 60 NaCl, 26 NaHCO3, 60 TEACl, 3 KCl, 2 MgCl2, 0.5 CdCl2, 2 BaCl2, 4 4-AP, 1-5 glucose and 10 mM ZD7288. To improve

voltage control during clamp of whole-cell currents, we employed three strategies. First, ten minutes before recording, sub-satu-

rating TTX (15 nM, �IC50) was added to the ACSF. Sub-saturating TTX has been shown to reduce Na+ current amplitudes and

improve space clamp (Carter and Bean, 2009; Milescu et al., 2010). When the voltage-clamp extracellular was washed in

(after the cell was patched) it contained the same concentration of TTX. Second, solutions resulting in a reduced sodium gradient
Cell Reports 30, 2349–2359.e1–e7, February 18, 2020 e4



of [Na]out = 86 mM / [Na]in = 19 mM were used to reduce the amplitudes of Na currents. Finally, cells were patched at room temper-

ature to slow currents. For recordings, tight seals (> 1 GU) were formed between the recording pipette and cell membrane, then

ruptured with negative mouth pressure.

We started wash-in of the reduced Na extracellular solution five minutes before voltage-clamp recordings. To examine membrane

properties before Cs perfused the cell (and thus blocked I(h)), input resistance was measured, and the cell was tested for sag (a slow

depolarizing shift in the membrane potential) immediately after break-in using current clamp (Dickson et al., 2000). Current was

applied to hold the cell at �70 mV and applied 1 s long hyperpolarizing current steps. Traces which had a minimum trough value

in their sag at a membrane potential between �90 and �100 mV were analyzed. Sag ratio was quantified by dividing the minimum

trough value of themembrane potential by themembrane potential achieved at steady state. After current clampmeasurements were

made and transient current amplitudes stabilized (�5-10minutes), we applied a standard protocol used for assaying non-inactivating

Na currents. We found that slow ramps, usually used to record persistent current, allowed adequate clamp but slowly drove channels

into long-lived slow-inactivated states (Magistretti and Alonso, 1999) making assay of recovery difficult. On the other hand, short

ramps were plagued by escaping spikes or unusual hysteresis between upward and downward ramps, indicating non-equilibrium

gating or space clamp artifacts. In order to better separate equilibrium and non-equilibrium components, we used a standard resur-

gent step protocol assaying persistent current as the steady-state level of current at the end of a 200 ms step, allowing for extended

settling time of the clamp (see Figure 5D, step to +10mV for 20ms, then back to various hyperpolarized potentials from�25 to�60, in

5 mV increments for 200 ms; Raman and Bean, 1997).

Series resistance and capacitance compensation were monitored throughout the recording and cancelled using a seal test. After

the extracellular solution had fully washed in, a change of greater than 10% in either series resistance or capacitance was grounds for

discarding a cell. Series resistances ranged from 6.2 �18 MU, (mean series resistance ± SEM = 13.5 ± 2.0 MU) and were compen-

sated 48 ± 4%, asmuch as possible without ringing. Pipette capacitance was zeroed and retouched if it drifted during a recording, as

it had fast kinetics and was separable by eye. Cell capacitance was cancelled manually so as to cause the least current deflection

possible in a seal test during a 10 mV test pulse (mean cancelled capacitance ± SEM; stellate cells = 38.6 pF ± 2.2; pyramidal cells =

35.1 ± 3.1 pF). After recording whole-cell currents evoked by our resurgent step protocol in sub-saturating TTX solution, a trace of

whole-cell currents in a saturating TTX solution was obtained after full wash-on (TTX = 900 nM, time for full wash-on > 6 min).

Reported TTX-sensitive currents were generated by subtracting these conditions (sub-saturating to saturating.)

Whole-cell current clamp recordings

For current clamp recordings, slices were placed in a recording chamber continuously perfused with carboxygenated ACSF (kept at

36.0 ± 0.5�C). Electrodes were pulled from 10 cmborosilicate glass capillary tubes (3.8-5.9MU, 0.86mm inside diameter (ID), 1.5mm

outside diameter (OD)) and were filled with a K-gluconate-based intracellular solution containing (in mM): 120 K Gluconate,

10 HEPES, 0.2 EGTA, 20 KCl, 2 MgCl2, 7 Phosphocreatine Di-tris, 4 Na-ATP, 0.3 Tris-GTP, 0.1% biocytin and/or 40 mM Alexa488

hydrazide. For recordings, tight seals (> 1 GU) were formed between the recording pipette and cell membrane, then ruptured with

negative mouth pressure. After break-in, cells were only included if their resting potential % �60 mV and had an action potential

peak of R +10 mV. Bridge and electrode capacitance compensations were applied. Input resistance was monitored by fre-

quency-intensity (FI) curves obtained by holding the cell at �70 mV and applying 1 s long depolarizing current injections. For the

dual-pulse protocol, 1 ms long depolarizing current steps were given in 100 pA increments to determine the action potential

threshold. For all dual-pulse protocols, cells were held at �70 ± 2 mV and bridge balance and holding current were adjusted after

each latency tested. Any change of > 200 pA in holding current or 20% of the bridge balance was grounds for discarding a recording.

Occasional failures for the first spike (for example, a positive drift or increase in the current required to evoke an action potential) were

observed. If more than one in ten action potentials failed for this first spike and it was not due to a small change in holding (< 200 pA),

the cell was discarded. After establishing the first-spike threshold stimulus, the second-spike threshold (SST) was measured as the

first injection to elicit a spike (with 50-100 pA resolution) in one of twoways: manually (n = 21) or using a pre-programmed stimulus file

(n = 21), in which a set first injection was followed by a series of 10-20 s-spike injections at any of 8 latencies, with each injection pair

separated by 1 s and tiling 20%–120% of the first spike threshold in 100-pA steps. Not all latencies were tested in all cells and cells

that hadmeasurements for < 4 latency valueswere not included. In addition, one cell was not includedwhen computing the latency at

which the minimum SST value occurred, as all SST values were monotonic and thus a trough was not present (Figure 2C).

In a subset of experiments, 10 mM Riluzole (in DMSO, diluted 1:1000) was washed in after the completion of the initial dual-pulse

protocol and a second, identical, dual-pulse protocol was performed. Riluzole recordings did not begin for > 10 minutes after wash-

in, to allow the drug to equilibrate. A small subset of recordings remained stable long enough towash out the effect of Riluzole (> 45mi-

nutes total, 15 minute wash-on and 15 minute wash-off of drug, after �10-15 minutes of initial measures).

Nucleated patch recordings

Outside-out macropatches (nucleated patches, Sather et al., 1992) were pulled to isolate a small population of somatic channels.

Thick-walled borosilicate glass electrodes (1.5 mmOD 0.75 mm ID, Sutter) were pulled to 3.2 - 4.8 MU after fire polishing. Electrodes

were wrapped in parafilm to within �300 mm of the tip to reduce pipette capacitance. Cells were held at 36 ± 0.5�C to measure real-

istic kinetics for cells in vivo. Layer II cells with a shadow of a nucleus near a smooth surface (to increase the chance of a macropatch)

were patched. Bath ACSF was the same as that in voltage-clamp recordings, with a low Na intracellular used to boost current

amplitudes containing (in mM): 120 CsMethanesulfonate, 1.8 NaCl, 5 TEA, 0.5 EGTA, 10 HEPES, 1 sucrose, 14 Tris-creatine PO4,

4 Mg-ATP, 0.3 Tris-GTP. Upon sealing, the resting membrane potential was measured using current clamp and cells with a resting
e5 Cell Reports 30, 2349–2359.e1–e7, February 18, 2020



membrane potential > �60 mV were discarded. Nucleated patch recordings were then made by slowly withdrawing the electrode

(0.1 – 0.2 mm a second) while applying 1-1.2 psi of negative pressure. TTX (2 mM, to increase wash-on speed 2x) was then washed

in, with recordings running repeatedly until the patch died. A single resurgent step (+10 mV for 20 ms, followed by repolarization to

�45 mV for 200 ms) was used to assay Na currents as the patch was formed and through the process of pulling as well as in the

isolated patch. The greatest number of quality traces immediately before and after TTX perfusion were averaged and subtracted

(4-40 traces for each).

After a patch detached fully from the soma we readjusted pipette and cell capacitance, as well as series resistance, to cancel out

these currents in the recordings. However, due to the small size of the patch and slow but constant shearing of membrane in fluid

flow, patch capacitances drifted downward. Drift on a long (5-10 minutes) timescale was not grounds for discarding a recording,

as subtractions could be obtained ± 30 s after wash-on, over which period the cell capacitance was stable. The whole-cell compen-

sations immediately before wash-in were not readjusted, resulting in the subtraction of any artifacts shared by both the control and

TTX traces (see raw recordings in Figure S5I). Due to the overlap (at 37�C) in the temporal components of the patch capacitance and

the extended inactivation kinetics of the Na currents, it is possible that some subtractions contained artifactual changes in patch

capacitance between control and TTX and thus appeared to extend the inactivation kinetics of the ‘‘Na’’ currents. While this was

a possibility we could not fully rule out, we could not detect this scenario based on changes in subthreshold leak subtraction pulses

or online cancellation (n = 11). Series resistance was cancelled tomeasure andwatch for drift (traces in which this was stable to within

20%were used for subtraction), but compensation was not used as current amplitudes were small enough to make the series resis-

tance error insignificant, as reported previously (Martina and Jonas, 1997).

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification and statistical analysis in vivo dataset
Custom-written MATLAB scripts were used to analyze all data. Unless stated otherwise, all error bars and data quantifications are

expressed as mean ± standard error of the mean (SEM). Statistical tests are listed following the relevant result in the results, figure

legend or Materials and Methods detail. Unless otherwise stated, p < 0.05 was taken as the criterion for significance. Unless other-

wise specified, data was speed filtered and data from times in which speed was less than 2 cm/s were not used for analysis.

The bursting score was computed as the number of burst spikes (spikes that preceded or followed another spike within 10 ms)

divided by the number of total spikes. This threshold is consistent with previous studies characterizing bursts in the hippocampus

(Harris et al., 2000; Hussaini et al., 2011; Mizuseki et al., 2009), MEC (Constantinou et al., 2016; Mizuseki et al., 2009), septum (Ranck,

1973), Bursting score versus firing rate curves were generated by first computing the average firing and bursting score in 500ms time

bins, and then computing the average bursting score per 3-Hz wide firing rate bins. For further analysis, only curves with more than

5 bins were considered. The slope of the linear fit of bursting score as a function of mean firing rate was computed assuming the

intercept = 0.

To compare coding properties of burst spikes and tonic spikes, the spike train for each cell was first divided into ‘bursting’ and

‘tonic’ spikes. We then identified the first spike in each burst (FB spikes) and randomly downsampled the tonic spikes to match

the number of FB spikes. We then re-computed the grid score, spatial information, spatial coherence, and speed slope using FB

spikes only, or tonic spikes only.

To determine whether burst spikes were driving correlations between bursting score and grid score (and speed slope), we first

identified burst spikes for a given cell. We then identified the first spike in each burst and deleted the remaining spikes in each burst

(deleting ni spikes total for cell i). We then recomputed the grid score (for grid cells) or speed slope (for speed cells) using the remain-

ing spikes.We compared this analysis to one in which spikes were randomly rejected; i.e., for cell i, ni spikes were deleted at random,

and then the grid score or speed slope was re-computed.

To compare bursting and spatial coding during fast or slow running speeds, we first split each recording session into times of slow

(2 – 10 cm/s) or fast (10 – 50 cm/s) running speed. To compare bursting in each speed epoch, we re-computed the bursting score for

each epoch, for each session. To compare the grid score, spatial information, and spatial coherence for each speed epoch, we

down-sampled speed epochs such that the fast and slow speed epochs for a given session matched in coverage (using 2.5 3

2.5 cm2 bins), number of time points (which follows from matching coverage), and number of spikes. Epochs were randomly

down-sampled. Due to variations in output due to random down-sampling, this analysis was repeated 20 times, and averages across

iterations are reported. Grid score and spatial coherence increases were computed as the difference between each metric for each

epoch, divided by the maximum of each metric for each epoch. Values were only computed for cells that exhibited coherent grid

patterns in either the fast or slow speed epochs for 10/15 iterations of the down-sampling procedure, which were then averaged

across these iterations.

Quantification and statistical analysis in vitro dataset
MATLAB or SPSS were used to analyze the data. Unless stated otherwise, all error bars and data quantifications are expressed as

mean ± standard error of the mean (SEM). Statistical tests are listed following the relevant result. Unless otherwise stated, p < 0.05

was taken as the criterion for significance. For all correlations, Pearson’s correlation coefficients are reported. For the comparison of

I(NaR) and I(NaP) gradients in stellate and pyramidal neurons along the DV axis, slope and Y intercept measures were based on a
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univariate analysis of covariance (ANCOVA) in SPSS.We first tested for an interaction between themain factors to determinewhether

the regression lines showed significantly different slopes. Next, to test for a significant difference in the Y intercept, we used the pres-

ence or absence of a significant slope difference to set up the ANCOVAmodel. As no significant difference in slopewas detected, the

ANCOVAwas run without an interaction term,making the assumption of equal slopes between the two groups. Effect size is reported

as ɳ2. For second spike threshold analyses, ANOVA with repeated-measures were performed in SPSS.

DATA AND CODE AVAILABILITY

This study did not generate any unique in vivo datasets. The in vitro datasets are available from the corresponding author on request.

The code used in the linear-nonlinear Poisson model can be accessed at: https://github.com/GiocomoLab/ln-model-

of-mec-neurons. The code used for the leaky integrate-and-fire model can be accessed at: https://github.com/GiocomoLab.

ADDITIONAL RESOURCES

No reagents were generated for this study.
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Figure S1, Related to Figures 1 and 2: Histology for 11 mice, which were representative of the 

recording locations for all mice included in the in vivo analysis. Nissl stained sagittal sections of 

the section showing the final location of the tetrode track shown. A red dot indicates the deepest 

ventral location of the tetrode track.  
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Figure S2, Related to Figures 1 and 2: Bursting dynamics in entorhinal cortex. A. Histogram of 

bursting scores observed for grid cells (left), all non-grid, non-border spatial cells (middle), and all 

other cells (non-grid).  B. Histogram of the interspike intervals observed for 5 grid cells with the 

highest bursting scores (noted above each plot). C. Left: Histogram of bursting score modulation 

values for all cells. The bursting score modulation was computed by dividing each session into 

halves, computing the bursting score for each half, and then computing the absolute difference, 

divided by the sum, of the two bursting scores. Modulation values scale between 0 and 1, although 

many cells had low bursting score modulation values (mean = 0.25). Right: Comparison of the 

average bursting score modulation (denoted by the red dashed line) with a null distribution of 

average bursting score modulation values. This distribution was generated by shuffling the 

bursting score modulation values across the first half of all sessions, and re-computing the 

bursting score modulation value. The observed average lies far to the left of the null distribution, 

indicating that bursting scores are much more stable across sessions than would be expected if 

there was no stability of bursting scores. D. Theta modulation values versus bursting score for 

grid cells (left), non-grid, non-border spatial cells (middle), and all other cells (right). The theta 

modulation values were computed following Climer et al., 2015 (and using the code available at 

github.com/jrclimer/mle-rhythmicity). Following Climer et al., 2015, we compute the magnitude of 

rhythmicity, termed 𝑎, based on the value of these parameters: 𝑎 = (1 − 𝑏)𝑟, where 𝑏 is a baseline 

likelihood and 𝑟 is a rhythmicity factor. This measure varies between 0 and 1, where 1 is maximally 

rhythmic. We did not observe a significant correlation in grid cells (correlation coefficient = 0.071, 

p = 0.49) or non-grid cells (correlation coefficient = 0.097, p = 0.07), but we did see a significant 

relationship in non-grid spatial cells (correlation coefficient = 0.22, p = 0.015). E. The fraction of 

cells with significant rhythmicity as a function of bursting score. Following Climer et al., 2015, we 

compute the p-value from the log-likelihood ratio test between the rhythmic and non-rhythmic 

models. We then bin the bursting scores into six bins, compute the fraction of cells with p < 0 in 

each bin, and determine whether the fraction of significantly rhythmic cells changes with bursting 



score. We did not observe a relationship between the fraction of significantly rhythmic cells and 

bursting score in grid cells (p = 0.29), non-grid cells (p = 0.15), or non-grid spatial cells (p = 0.44). 

F. The bursting score versus theta locking score for grid cells (left), non-grid spatial cells (middle), 

or all non-grid cells (right). The theta locking score was computed based on a cell’s spiking 

preference for a  particular phase of the theta-filtered LFP. We did not see a significant relationship 

between theta locking and bursting score for grid cells (correlation coefficient = -0.032, p = 0.68) 

or non-grid spatial cells (correlation coefficient = 0.097, p = 0.07). However, all non-grid cells did 

exhibit a significant relationship between theta locking and bursting score (correlation coefficient 

= 0.1, p = 0.01).  
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Figure S3, Related to Figures 1 and 2: Topographical organization in the bursting dynamics of 

MEC neurons. A. Bursting score and average firing rate are positively correlated (n = 821, R2 = 

0.021, p < 0.001). Red line indicates line of best fit. B. There was no significant difference in the 

bursting score between conjunctive and non-conjunctive grid cells. C. Non-conjunctive grid cells 

exhibited a strong negative correlation between bursting score and dorsal-ventral (DV) depth (left; 

R2 = 0.089, p < 0.01), while conjunctive grid cells did not exhibit a significant negative correlation 

between bursting score and DV depth (right; R2 = 0.031, p = 0.11). Red lines indicate line of best 

fit. However, there was no significant difference between the correlation values of the two groups 

(Fisher r-to-z transform: z = 0.86, p = 0.41) D. Top row: non-conjunctive grid cells exhibited 

positive correlations between bursting score and grid score (R2 = 0.07, p = 0.02), spatial 

information (R2 = 0.16, p < 0.001), and spatial coherence (not shown; R2 = 0.19, p < 0.001). 

Bottom row: conjunctive grid cells exhibited positive correlations between bursting score and grid 

score (R2 = 0.083, p < 0.01), spatial information (R2 = 0.16, p < 0.001), and spatial coherence (not 

shown; R2 = 0.18, p < 0.001). For both rows, red line indicates line of best fit. E. Grid score did 

not significantly correlate with DV depth (R2 = 0.02, p = 0.07). Red line indicates line of best fit. F. 

While the bursting score of grid cells positively correlates with the average firing rate (R2 = 0.08, 

p < 0.001), grid score does not correlate with the average firing rate (R2 = 10-4, p = 0.90). Red line 

indicates line of best fit. G. We observed a significant correlation between bursting score and the 

location of a non-grid spatial cell along the DV axis (R2 = 0.05, p < 0.01) and between bursting 

score and the spatial information of a non-grid spatial cell (R2 = 0.15, p < 0.01). Red line indicates 

line of best fit. H. We did not observe a correlation between the bursting score and border score 

of border cells (R2 = 0.02, p = 0.22; left panel) or the bursting score and the location of a border 

cell along the DV axis (R2 = 0.03, p = 0.13; right panel). Red line indicates line of best fit. I. We 

did not observe a correlation between the bursting score and mean vector length of head direction 

cells (R2 = 4*10-4, p = 0.76; left panel) or busting score and the location of a head direction cell 

along the DV axis (R2 = 8*10-4, p = 0.68; left panel). Red line indicates line of best fit. J. We did 



not observe a correlation between the bursting score and location along the DV axis for speed 

cells (R2 = 0.01 p = 0.23). Red line indicates line of best fit. K. The dorsal-ventral position 

correlates with the bursting score for non-grid spatial cells (R2 = 0.045, p < 0.001) L. For speed 

cells, bursting correlated with the absolute value of the speed cell slope (slope = firing rate x 

running speed; R2 = 0.041, p < 0.05), even when the data was controlled for differences in firing 

rates across cells (R2 = 0.058, p < 0.01). The absolute value of the speed slope was higher when 

only bursts were used, compared to when only tonic spikes were used, to compute each metric 

(n = 89, p < 0.001, binomial test). M. The squared correlation coefficient between the absolute 

value of the speed score, divided by average firing rate, and the bursting score of speed cells 

decreases as burst spikes are preferentially rejected (black line, red dots; F(3) = 31, p = 0.012). 

When spikes were randomly rejected, there was no significant decrease in the squared correlation 

coefficient between the absolute value of the speed score, divided by average firing rate, and the 

bursting score of speed cells (gray line, blue dots; F(3) = 0.003, p = 0.96). In addition, the slope 

between squared correlation coefficient and bursting score was significantly lower when burst 

spikes were rejected compared to when spikes were randomly rejected (F(1) = 22, p = 0.004). 

Transparent dots indicate non-significant correlations.  
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Figure S4, Related to Figures 1, 2 and 4: Variable bursting definitions. A. Comparison of the 

bursting score computed with a burst threshold of 10 ms with that computed with a threshold of 5 

ms (left), 8 ms (middle), and 12 ms (right). In all cases, the bursting scores were highly correlated 

(all p < 0.001, correlation coefficients shown above each plot). B. The bursting score versus the 

grid score (left), spatial information (middle), and the distance from the dorsal border (right) for 

grid cells when the burst threshold is 5 ms. We observed significant relationships in all three plots 

(grid score: p = 0.004, spatial information: p = 0.002, depth: p = 0.006), replicating our original 

results with a burst threshold of 10 ms. C. The bursting score versus the distance from the dorsal 

border for all cells when the burst threshold is 5 ms. We observed a significantly negative 

correlation (p = 0.00005), replicating the results seen when the burst threshold is 10 ms.  D. 

Following Latuske et al., 2015, we performed PCA on the interspike interval histograms (within a 

range of 0-12 ms). We then projected the data onto the first two principle components and colored 

each point (which corresponds to a cell) according to its bursting score (left), or its rank in a sorted 

list of bursting scores (right). We observed that the bursting score and the position of the neuron 

in the PC space were related. E. The eigenspectrum of the covariance matrix computed in PCA 

(in D). Note that the first two eigenvalues explained most of the variance. F. The bursting score 

versus the data projected on the first PC (left), the second PC (middle), or the third PC (right). 

The bursting score correlated with the projected data in each case (all p < 0.001). G. The 

distribution of average running speeds across recording sessions. The red line indicates 10 cm/s, 

the threshold chosen for the dividing sessions into “fast” and “slow” running speeds. H. The 

simulated bursting score versus the true bursting score. The red line indicates unity. I. The 

normalized bursting score versus the true bursting score. The red line is to aid a visual comparison 

of the low bursting cells (with a bursting score < 0.1) and the high bursting cells (with a high 

bursting score > 0.1). Note that cells with high true bursting scores (e.g. above 0.1) tended to 

exhibit very high normalized bursting scores, indicating that their bursting dynamics resulted from 

more than externally driven high firing rates. On the other hand, cells with low true bursting scores 



(e.g. below 0.1) tended to exhibit a range of normalized bursting scores, including negative scores 

that indicate that the cell bursted less than what might be expected via Poisson spiking. J. The 

dorsal-ventral distance versus the simulated bursting score. There is not a significant relationship 

between these two variables (p > 0.1). K. The dorsal-ventral distance versus the normalized 

bursting score. These are significantly related (r2 = 0.01, p = 0.001). 
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Figure S5, Related to Figures 3, 4 and 5: In vitro bursting dynamics in MEC neurons.  A. 

Representative current clamp recordings of the membrane potential in response to positive and 

negative current injections. B. We classified cells based on morphological and 

electrophysiological criteria (Alonso and Klink, 1993). To measure the sag ratio, an 

electrophysiological signature of MEC stellate cells, we held the membrane potential at -70 mV 

and applied 1 s long hyperpolarizing current steps. We classified cells as stellate when the sag 

ratio (sag trough/steady-state) was > 1.16 (mean sag ratio ± SEM; stellate = 1.33 ± 0.02, n = 25; 

pyramidal = 1.04 ± 0.02, n = 17). Sag ratios were not obtained from 3 neurons. C. TTX-subtracted 

whole-cell currents elicited with a 20-ms step to 10 mV, followed by an IV curve for repolarization 

to different membrane voltages. Peak I(NaR) (the black trace) is elicited at -45 mV. D-F. 

Unnormalized I(NaP) and I(NaR) amplitudes decrease along the DV MEC axis, while the transient 

current (I(NaT)) does not change along the same axis. This indicates that the I(NaR) and I(NaP) 

DV gradients reflect changes in ion channel gating kinetics rather than systematic series 

resistance errors or DV changes in the transient Na currents. D. Raw I(NaP) density in stellate 

(blue) and pyramidal (red) neurons plotted relative to the cell’s position along the DV axis (stellate 

R2 = 0.17, p = 0.03, n = 28; pyramidal R2 = 0.18, p = 0.09, n = 17; combined R2 = 0.17, p = .005). 

Best fit lines to data are shown. E. Raw I(NaR) density in stellate (blue) and pyramidal (red) 

neurons plotted relative to the cell’s position along the DV axis (stellate R2 = 0.24, p = 0.008, n = 

28; pyramidal R2 = 0.10, p = 0.21, n = 17; combined R2 = 0.21, p = 0.002). Best fit lines to data 

are shown. F. Transient current amplitudes (I(NaT) are shown for stellate (blue) and pyramidal 

(red) neurons plotted relative to the cell’s position along the DV axis.  There was no significant 

correlation in I(NaT) and DV position for either stellate or pyramidal cells (stellate R2 = 0.005, p = 

0.71, n = 28; pyramidal R2 = 0.002, p = 0.86, n = 17; combined R2 = 0.001, p = 0.83). G. Somatic 

sodium currents in nucleated patches exhibit no I(NaR) but suggest a gradient in I(NaP) current 

kinetics. Previous work has suggested that some cell types express I(NaR) or I(NaP) preferentially 

in the axon initial segment through the first node of Ranvier (Castelli et al., 2007; Khaliq et al., 



2003; Kole, 2011). Thus, it is possible that the slicing angle of our preparation results in 

differences in compartment-specific kinetics preservation, which could drive DV differences in the 

non-inactivating current densities we observe. To garner data about purely somatic currents while 

preserving information regarding their DV MEC position, we made outside-out macropatch  

recordings (Sather et al., 1992).  Schematic shown here illustrates the procedure to obtain such 

voltage clamp recordings. H. Raw unfiltered recordings of currents elicited from a nucleated patch 

showing full “best case” subtraction quality in a ventral cell. Subtraction of the TTX recording 

removes leak and capacitance currents as well as other voltage dependent currents not sensitive 

to TTX, leaving raw voltage-gated Na currents. The initial trace is shown in blue, as TTX washes 

in traces are depicted in red and complete Na current block shown in black. I. Representative 

voltage-clamp recording of TTX-sensitive Na currents in nucleated patches along the DV axis. 

Because of the potential for small drifts in baseline on the order of the currents of interest (1-

10pA), subtraction artifacts and baseline have been blanked for clarity and currents have been 

normalized to allow for comparison of kinetics. The late transient current decay kinetics suggested 

dorsal-ventral differences in persistence of opening, a signature of non-inactivating channels. J. 

Averaged normalized currents in dorsal (< 725 µm from the dorsal border, red, n = 6) or ventral 

(> 725 µm from the dorsal border, blue, n = 5) cells. A bi-exponential fit is shown for each set of 

currents to quantify persistence as measured by delayed inactivation kinetics. Both dorsal and 

ventral currents exhibited two components of current decay. Typical fast inactivation kinetics (first 

exponential of bi-exponential fit, tau = 0.4 ms) were observed in both groups but the slow 

component amplitudes and kinetics differed across groups. Dorsal cells exhibited ~40% of the 

current with a slow 7.3 ms decay tau. Ventral cells in contrast exhibited ~10% of their current with 

a 3.5 ms decay. K. Resurgent current voltage protocol was used to assay I(NaR) but no detectable 

current was observed upon repolarization in our patches. Averaged trace of all cells shows no 

peak of current 5 – 10 ms following repolarization, the window in which I(NaR) would be detected 

as a slowly rising transient current (bracket). Thus, in summary, we found that resurgent currents 



were not somatic in origin but that somatic transient Na current decay kinetics (indicative of 

potential delayed activation, delayed inactivation, and/or re-opening) are likely to vary in a dorsal-

ventral fashion (Magistretti et al., 2003; Raman and Bean, 2001).  
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