Supplemental data

A Human-like Bile Acid Pool Induced by Deletion of Hepatic Cyp2c70 Modulates Effects of Farnesoid X Receptor Activation in Mice

Jan Freark de Boer^{1,2,*}, Esther Verkade^{2,*}, Niels L. Mulder², Hilde D. de Vries¹, Nicolette Huijkman^{2,3}, Martijn Koehorst¹, Theo Boer¹, Justina C. Wolters², Vincent W. Bloks², Bart van de Sluis^{2,3}, Folkert Kuipers^{1,2}

*Equal contribution

Affiliations:

Departments of ¹Laboratory Medicine and ²Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ³iPSC/CRISPR Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

Supplemental Table S1. Relative abundance of individual bile acid species in plasma

Supplemental Table S2. Concentrations of individual bile acid species in plasma

Supplemental Table S3. Concentrations of individual bile acid species in bile

Supplemental Figure S1. Expression cassette of single-guide RNA targeting Cyp2c70

Supplemental Figure S2. Bile composition

Supplemental Figure S3. Impact of Cyp2c70 ablation on microbiota

Supplemental Figure S4. Concentrations of bile acids and phospholipids in bile and fecal loss of muricholic acids

Supplemental Figure S5. Hepatic mRNA expression of bile acid uptake transporters

Bile acid	CTRL (n=8)	<i>Cyp2c70^{ako}</i> (n=8)	p-value	
LCA (%)	0.0 [0.0-0.4]	1.2 [0.6-2.3]	0.0007	
DCA (%)	3.7 [1.4-5.5]	4.1 [1.5-6.8]	0.645	
CDCA (%)	0.3 [0.0-1.4]	8.6 [3.4-17.3]	0.0009	
UDCA (%)	1.1 [0.3-2.8]	3.6 [0.7-4.1]	0.028	
HDCA (%)	0.0 [0.0-0.4]	0.0 [0.0-0.3]	0.225	
CA (%)	7.0 [1.8-18.2]	6.3 [2.7-10.5]	0.879	
αMCA (%)	0.0 [0.0-0.8]	0.6 [0.2-1.0]	0.022	
βΜCA (%)	5.9 [0.9-16.5]	0.6 [0.1-1.1]	0.0006	
ωMCA ^a (%)	5.1 [1.0-15.9]	0.7 [0.2-2.5]	0.001	
T-LCA (%)	0.0 [0.0-0.0]	0.4 [0.3-0.7]	0.0006	
T-DCA (%)	2.5 [0.0-4.9]	3.1 [1.3-5.3]	0.574	
T-CDCA (%)	0.7 [0.0-1.2]	19.0 [13.6-29.1]	0.0009	
T-UDCA (%)	1.5 [0.5-2.5]	4.8 [2.6-8.0]	0.0002	
T-HDCA (%)	0.2 [0.0-0.8]	0.3 [0.0-0.4]	0.848	
T-CA (%)	43.8 [21.4-64.1]	32.3 [17.6-39.4]	0.021	
Τ-αΜCA (%)	4.2 [2.3-5.6]	8.6 [5.0-13.8]	0.0006	
Τ-βΜCΑ (%)	16.1 [9.4-22.1]	1.5 [1.0-3.1]	0.0002	
Τ-ωΜCA (%)	6.2 [3.5-10.0]	0.8 [0.4-1.8]	0.0002	
Conjugated bile acids (%)	74.8 [43.7-93.7]	71.6 [55.8-89.7]	0.721	

Supplemental Table S1. Relative abundance of individual bile acid species in plasma

Relative abundance of bile acid species in plasma of male mice presented as median [range]. Statistical comparisons were made using the Mann-Whitney U test. CTRL, control; (T-)LCA, (tauro-)lithocholic acid; DCA, deoxycholic acid; CDCA, chenodeoxycholic acid; UDCA, ursodeoxycholic acid; HDCA, hyodeoxycholic acid; CA, cholic acid; MCA, muricholic acid. ^aSlight overestimation possible due to interfering peak.

Bile acid	CTRL (n=8)	<i>Cyp2c70^{ªko}</i> (n=8)	p-value
LCA (µmol/L)	0.0 [0.0-0.0]	0.2 [0.1-0.4]	0.0002
DCA (µmol/L)	0.3 [0.1-0.4]	0.5 [0.3-1.9]	0.003
CDCA (µmol/L)	0.0 [0.0-0.1]	1.5 [0.2-4.7]	0.0002
UDCA (µmol/L)	0.1 [0.0-0.2]	0.7 [0.1-2.7]	0.0006
HDCA (µmol/L)	0.0 [0.0-0.0]	0.0 [0.0-0.1]	0.08
CA (μmol/L)	0.4 [0.1-2.4]	0.8 [0.3-6.6]	0.16
αMCA (μmol/L)	0.0 [0.0-0.1]	0.1 [0.0-0.4]	0.005
βMCA (μmol/L)	0.2 [0.1-2.2]	0.1 [0.0-0.2]	0.005
ωMCA ^a (μmol/L)	0.3 [0.1-2.1]	0.1 [0.0-0.3]	0.04
T-LCA (μmol/L)	0.0 [0.0-0.0]	0.1 [0.0-0.2]	0.0002
T-DCA (μmol/L)	0.1 [0.0-0.4]	0.5 [0.1-2.4]	0.02
T-CDCA (μmol/L)	0.0 [0.0-0.1]	2.9 [0.8-17.9]	0.0002
T-UDCA (μmol/L)	0.1 [0.1-0.2]	0.7 [0.1-4.2]	0.0003
T-HDCA (μmol/L)	0.0 [0.0-0.1]	0.0 [0.0-0.1]	0.43
T-CA (μmol/L)	2.5 [0.9-11.6]	4.0 [1.6-24.1]	0.33
T-αMCA (μmol/L)	0.2 [0.1-0.7]	1.0 [0.4-7.4]	0.001
T-βMCA (μmol/L)	0.9 [0.3-3.0]	0.2 [0.1-1.0]	0.02
T-ωMCA (µmol/L)	0.3 [0.2-0.9]	0.1 [0.0-0.4]	0.01
Total bile acids (μmol/L)	6.2 [2.1-18.1]	16.2 [5.3-74.9]	0.050

Supplemental Table S2. Concentrations of individual bile acid species in plasma

Bile acid species in plasma of male mice presented as median [range]. Statistical comparisons were made using the Mann-Whitney U test. CTRL, control; (T-)LCA, (tauro-)lithocholic acid; DCA, deoxycholic acid; CDCA, chenodeoxycholic acid; UDCA, ursodeoxycholic acid; HDCA, hyodeoxycholic acid; CA, cholic acid; MCA, muricholic acid. ^aSlight overestimation possible due to interfering peak.

	CTRL	Cyp2c70 ^{ako}	CTRL + PX	<i>Cyp2c70^{ako}</i> + PX
Bile acid	(n=8)	(n=6)	(n=6)	(n=7)
LCA (mmol/L)	ND	ND	ND	ND
DCA (mmol/L)	ND	ND	ND	ND
CDCA (mmol/L)	ND	ND	ND	ND
UDCA (mmol/L)	ND	ND	ND	ND
HDCA (mmol/L)	ND	ND	ND	ND
CA (mmol/L)	0.1 [0.0-0.2]	0.1 [0.0-0.2]	ND	ND
αMCA (mmol/L)	ND	ND	ND	0.0 [0.0-0.2]
βMCA (mmol/L)	0.0 [0.0-01]	ND	0.0 [0.0-0.1]	ND
ωMCA (mmol/L)	0.0 [0.0-0.1]	ND	0.0 [0.0-0.1]	0.0 [0.0-0.1]
T-LCA (mmol/L)	ND	0.1 [0.0-0.1]*	ND	ND [#]
T-DCA (mmol/L)	0.5 [0.4-0.8]	0.6 [0.3-0.9]	0.0 [0.0-0.1] [#]	ND [#]
T-CDCA (mmol/L)	0.2 [0.1-0.2]	6.4 [5.4-13.4]*	0.1 [0.1-0.2] [#]	2.7 [1.4-12.4]* ^{,#}
T-UDCA (mmol/L)	0.3 [0.2-0.4]	0.7 [0.3-1.3]*	0.3 [0.1-0.4]	1.1 [0.9-3.4]* ^{,#}
T-HDCA (mmol/L)	0.1 [0.1-0.2]	0.2 [0.1-0.3]	$0.1 \left[0.0 {-} 0.1 ight] ^{\#}$	0.1 [0.0-0.4] [#]
T-CA (mmol/L)	19.8 [13.3-25.5]	13.9 [9.7-17.8]*	1.5 [0.5-2.3] [#]	1.4 [1.1-3.4] [#]
T-αMCA (mmol/L)	0.9 [0.4-1.0]	3.6 [1.7-3.9]*	0.6 [0.3-0.8] [#]	3.8 [2.4-12.4]*
T-βMCA (mmol/L)	8.9 [5.6-15.9]	1.1 [0.9-1.8]*	9.8 [5.0-11.8]	2.3 [1.4-7.3]* ^{,#}
T-ωMCA (mmol/L)	2.0 [1.4-3.1]	0.3 [0.2-0.6]*	2.0 [1.2-3.5]	0.8 [0.4-2.0]* ^{,#}
Total bile acids (mmol/L)	34.6 [22.4-47.1]	27.2 [19.2-38.6]	15.2 [7.2-18.3] [#]	11.8 [9.9-45.2] [#]

Supplemental Table S3. Concentrations of individual bile acid species in bile

Bile acid species in cannulated bile bile of male mice presented as median [range]. Statistical comparisons were made using the Kruskal-Wallis H test followed by Conover *post hoc* comparisons. CTRL, control; PX, PX20606; (T-)LCA, (tauro-)lithocholic acid; DCA, deoxycholic acid; CDCA, chenodeoxycholic acid; UDCA, ursodeoxycholic acid; HDCA, hyodeoxycholic acid; CA, cholic acid; MCA, muricholic acid; ND, not detected. *p<0.05 vs. WT controls receiving the same treatment. [#]p<0.05 vs. animals of the same genotype not receiving PX.

Supplemental Figure S1. Single-guide RNA expression cassette used to target the Cyp2c70 gene

Nucleotide sequence of the expression cassette that was cloned into the adenovirus that was used to acutely knock-out Cyp2c70 in livers of L-Cas9tg mice. See methods section for details concerning the production of the virus and further experimental details.

Supplemental Figure S2: Bile composition

Ratios of cholesterol:bile acids as well as phospholipids:bile acids in bile of $Cyp2c70^{ako}$ mice and controls ±PX20606 (PX; 10mg/kg/day). *p<0.05, **p<0.01, ***p<0.001 (Kruskal-Wallis H test followed by Conover *post-hoc* comparisons). N=6-8 animals/group. BA, bile acids; CTRL, control; PL, phospholipids.

Supplemental Figure S3. Impact of Cyp2c70 ablation on microbiota

Microbial DNA was extracted from freshly frozen feces and 16S ribosomal DNA was sequenced. Stack diagrams showing the relative abundance of different phyla in the individual mice (A) are provided as well as the mean of the groups (B). The Shannon index, providing information concerning the diversity of the microbiota did not reveal differences between the groups (C). N=6-8 animals/group.

Supplemental Figure S4. Concentrations of bile acids and phospholipids in bile and fecal loss of muricholic acids

Biliary bile acid (A) and phospholipid (B) concentrations in $Cyp2c70^{ako}$ mice and controls ±PX20606 (PX; 10mg/kg/day). Percentage of muricholic acids secreted in bile that is lost in feces (C), where lower percentages loss thus represent more efficient intestinal reabsorption. **p<0.01, ***p<0.001 (Kruskal-Wallis H test followed by Conover *post-hoc* comparisons). N=6-8 animals/group. CTRL, control; MCAs, muricholic acids; NS, not significant.

Supplemental Figure S5. Hepatic mRNA expression of bile acid uptake transporters

Expression of the bile uptake transporters *Ntcp* (A) and *Oatp1a1* (B) was determined by real-time quantitative PCR on reverse transcribed RNA. **p<0.01, ***p<0.001 (Kruskal-Wallis H test followed by Conover *post-hoc* comparisons). N=6-8 animals/group. CTRL, control; PX, PX20606.