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Supplementary Figure 1. Distribution of coverage in (A) tumour and (B) normal samples in PCAWG.



Supplementary Figure 2. Flow-chart of variant calling in PCAWG. Individual algorithms from the Sanger, DKFZ 
and Broad Institute pipelines, together with SMuFIN and MuSE, fed variants into a series of post-processing filters to 
remove false positives. These were then integrated using decision trees designed to maximise precision and sensitiv-
ity to generate a final set of called somatic mutations for each sample. SNV, single nucleotide variant; SV, structural 
variant; OxoG, filter for 8-oxoguanine-induced sequencing errors; Broad PoN Filter, filter for variants identified in a 
panel of normal samples constructed by the Broad Institute. 
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Supplementary Figure 3. Pairwise comparison of rates of different classes of somatic mutation. Points are 
coloured by tumour type, as depicted in the legend. Both x and y axes are on a log scale. SNVs, single nucleotide 
variants (substitutions); Indels, insertions or deletions <100 base pairs in size; SVs, structural variants; Retrotrans-
positions, counts of somatic retrotransposon insertions, transductions and somatic pseudogene insertions.
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Supplementary Figure 4. Correlation of somatic mutation load with age. Each point corresponds to a 
patient, and points are coloured by tumour type, as depicted in the legend for Extended Figure 3. Clockwise 
from top left, panels correspond to burden of SNVs, Indels, SVs, Retrotranspositions, MNVs, and mtDNA 
mutations.
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Supplementary Figure 5. Volcano plot of mixed effects models of APOBEC kataegis. Fitted coeffi-
cients for PCAWG drivers and cytidine deaminase expression levels (regular and blue circled dots, 
respectively) are plotted against the modulus of their Z-values, estimated using two-sided mixed effects 
models, based on n=1,222 patients with RNA-sequencing data. Coefficients with a Benjamini-Hochberg 
corrected q ≤ 0.05 are highlighted in red. Forward selection with these variables led to a final model 
containing APOBEC3B expression level, the number of rearrangements and patient age at diagnosis. 
Addition of BRCA2 or ATM status did not further improve the model.
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Supplementary Figure 6. Association of kataegis with structural variants. (A) Density estimates for the 
distance distribution from kataegis foci to the nearest breakpoint, stratified by signature. The dashed line indicates 
the 1kb cut-off used for SV-association. (B) Stacked bar plot showing the proportion of kataegis clusters associat-
ed with different classes of structural variant, split by kataegis signature. The overall distribution of classes of 
structural variant across PCAWG as a whole is shown at the top. (C) Density estimates for the size distribution (on 
a log scale) of deletions associated with different kataegis signatures. 
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Supplementary Figure 7. Chromothripsis events involving the TERT gene in chromophobe renal cell 
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Supplementary Figure 8. SV-related APOBEC during post-chromothripsis amplification across cancer types. Copy 
number plot of chromothriptic regions categorised as “liposarc-like” in 10 samples from different cancer types. Segments 
indicate the copy number of the major allele. Points represent SNV multiplicities, i.e. the estimated number of copies carrying 
them, coloured by base change and shaped by strand. Small vertical arrows link SNVs to their corresponding copy number 
segment. Kataegis foci are shown within black boxes, and show typical strand-specificity (all triangles or all circles). Additional 
SV-related APOBEC SNVs are marked with a red box and were identified as C>T or C>G at intermediate multiplicities.
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Supplementary Figure 9. Properties of telomeres across different tumour clusters. (A) Distribution of telomere 
sequence and properties across samples in the four clusters, with both tumour (blue points) and matched normal (red 
points) shown. Data are based on n=2518 tumour samples and their matched normal samples. (B) Enrichment (positive 
T statistics) or depletion (negative T statistics) of different variant sequence motifs in the four clusters of telomere proper-
ties. Data are based on n=2518 tumour samples. (C) Variance of frequency of different sequence motifs across the four 
clusters. Data are based on n=2518 tumour samples.
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Supplementary Figure 10. Properties of telomeres across different normal clusters. Enrichment (posi-
tive T statistics) or depletion (negative T statistics) of different variant sequence motifs in the four normal 
clusters of telomere properties. Data are based on n=2518 normal samples.
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Supplementary Figure 11. Distribution of Illumina Hi-Seq short read lengths across PCAWG tumour 
sample cohorts. The distribution of DNA-seq read lengths across PCAWG tumour type cohorts are displayed 
as stacked bar plots. Reads from the 63 donors selected for the pilot projects are broken out as a separate 
category labeled "Pilot-63".
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Supplementary Figure 12. Performance of germline variant calling pipelines and the PCAWG consensus 
germline callset based on targeted resequencing. Estimates for all panels are based on n=50 samples used 
for validation. (A) Precision, recall and F-score measures for SNP and Indel calls. (B) Genotype concordances 
considering homozygous reference sites. (C) Precision, recall and F-score measures for SNPs split by minor 
allele frequency (AF). (D) Precision, recall and F-score measures for indels split by minor allele frequency (AF), 
with common defined as variants with allele frequency > 20 %, mid defined as variants with 5% < allele frequen-
cy ≥ 20%, and rare defined as variants with allele frequency ≤ 5%.
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Supplementary Figure 13. Example of a replication-based complex SV using long-read 
sequencing. A tandem duplication (3,510 bp) on chromosome 2 with an inverted template insertion 
(356 bp) derived from chromosome 4 in-between (bottom panel). Alignment of the consensus 
sequence of locally assembled long reads to chromosome 2 and chromosome 4 of the human refer-
ence genome (top panel). Breakpoints are circled and marked as 1 (beginning of the tandem duplica-
tion), 2 (end of duplication) and 3 (templated insertion). For each breakpoint, the middle panel shows 
a snapshot of the Illumina short read data at the SV breakpoint. Paired-ends coloured in red and blue 
are supporting the translocations from chr2:chr4 and the coverage tracks show the expected 
increase and decrease of coverage from inside to outside of the duplicated segment.
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Supplementary Figure 14.  Summary of somatic call counts from the pilot-63 cases.  (A) Number of 
unique proposed variants called by sample, sorted in increasing order to show the range, for (left) SNVs and 
(right) indels.  (B) The total distribution of somatic variants called by caller across all samples that were called 
on by all callers, colored by the total number of callers that made that call (the “concordance”).  (C) The mean 
concordance of the calls for each sample, plotted vs the number of variants called by the core callers in the 
sample, with smaller points representing those samples that not all pilot callers made successful calls on. 
(Left) SNVs, (right) indels. The sample size is n=50 samples used for validation. The blue line represents the 
fitted line to the data, with the grey shaded area representing the 95% confidence intervals for the fitted line.



 

 

Supplementary Figure 15. The total distribution of somatic indels called by caller across all sam-
ples that were called on by all callers, colored by the total number of callers that made that call (the “con-
cordance”), as with Supplementary Figure 13, but stratified by indel length.  Note that even very short (1 
or 2 bp) insertions or deletions show low degrees of concordance.



              

  

 
 

 
 

 
 

SNVs Indels

Supplementary Figure 16. Accuracies of the individual callers on the validation samples. (A) Box-and-whisk-
ers plots showing the range of sensitivities, precisions, and F1 accuracies of the callers on individual samples 
(n=50), for SNVs (left) and Indels (right). The box denotes the interquartile range, with the median marked as a 
white point. The whiskers extend as far as the range or 1.5x the interquartile range, whichever is less. (B) Heatmap 
showing the same accuracies by caller and by sample, so that cross-caller correlations of accuracies can be seen. 
(C) A precision-recall plot of the overall accuracies across all validation samples for the callers, with contours shown 
of constant F1 accuracy. Note that the overall numbers are weighted more heavily for high-mutation-count samples, 
which particularly for SNVs tend to be easier to call and thus have higher accuracies. (D) As might be expected from 
the concordance data, accuracies were generally higher on more highly-mutated samples. The sample size is n=50 
samples used for validation. The blue line represents the fitted line to the data, with the grey shaded area represent-
ing the 95% confidence intervals for the fitted line.
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Supplementary Figure 17. Smoothed average concordance of calls by inferred VAF, shown for SNVs 
and Indels. The green and red lines represent smoothed average concordances, with the grey shaded area 
representing 95% confidence intervals for the fitted lines. Data are based on mutations assessed for valida-
tion in n=50 samples. Concordance is very low at low implied VAF because of small numbers of reads in 
support of the variant and varying filtering and noise estimation methods; concordance is also low at high 
VAF, due to the difficulty of distinguishing these from much more numerous germline variants.
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Supplementary Figure 18. Raw deep-sequencing validation results.  (A) Depths achieved for deep-sequencing 
validation cases, for normal (red) and tumour (green), and indels (bottom) and SNVs (top).  (B) Validation Tumour vs 
Normal VAFs for all calls with sufficient depth to make a call, coloured by the call made for all good samples, for SNVs 
(left) and indels (right).  (C) Unused validation data from donor DO36352 for which normal sample appears to have 
been sequenced twice; this suggests an estimate for the false-positive PASS rate for the validation of under 1% 
(8/821 SNVs, 7/2083 indels).  (D) Validated-true rate and fraction of calls vs concordance.
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Supplementary Figure 19. Accuracy of core callers and derived consensus models. (A) plots of the accura-
cies of core callers and derived consensus models for SNVs (left) and indels (right). 4-fold cross-validation with 
random splits was used for the models requiring training; models were trained on 3 /4 of the samples, and 
applied to the remaining 1/ 4, until all samples were plotted. The box denotes the interquartile range, with the 
median marked as a white point. The whiskers extend as far as the range or 1.5x the interquartile range, which-
ever is less. The sample size is n=50 tumours used for validation. (B) Overall accuracies, broken down by VAF 
bins. The ensemble methods significantly improve accuracies at low allele fraction.
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Supplementary Methods 
This file describes supplementary methods used in the ICGC/TCGA Pan-Cancer Analysis of 
Whole Genomes Cosortium paper. Individual data sets were accessioned at Synapse 
(https://www.synapse.org/), and are denoted throughout this document using with 
synXXXXX numbers; accessioned data sets are also mirrored at https://dcc.icgc.org as detailed 
in Supplementary Table 4. 

 

1. Pilot-63 Analysis 
These are methods applied to the Pilot-63 benchmark and validation exercise described in 
Supplementary Notes 1. 

1.1 Validation Process 

VCF files for the Pilot-63 calls were centrally collected and preprocessed for consistency by 
left-aligning indels. We merged the VCFs by case and annotated each call with its concordance 
as defined in the main text and the callers that made the call. For the 50 samples selected for 
validation we sampled calls stratified on caller and concordance using the following 
procedure. We aimed to select up to 10,000 sites per sample, split between 4000 SNVs, 3000 
indels and 3000 structural variants. In practice many samples had fewer indels or SVs than 
the validation budget; in these cases we distributed the excess validation budget to additional 
indels or SNVs. 

The sampling procedure follows that used by the DREAM1 project.  A “call budget” is 
established, with a desired number of calls equal across callers and prescribed across 
concordance bins; in our case we aimed for 30% of the call budget to be for private 
(concordance = 1) calls, and the rest evenly distributed among remaining concordance bins. 
This call budget can then be represented by a two-dimensional grid (Supplementary Table 8) 
as below.  

Across callers, concordance bin by concordance bin, calls within each bin are uniformly 
randomly selected.  When all callers are done, if some bins are now empty, the “extra” call 
budget is redistributed among concordance columns proportionately to the original 
distribution, and the process continues.  Iterations over the full 2d grid are done until the 
budgeted number of calls have been selected.  The procedure used is very stable; while 
rerunning multiple times selects different calls, the number of calls per bin changes only very 
modestly. 

We split the 50 samples into 4 subsets for validation sequencing. We designed each capture 
array to minimize complexity for downstream data deposit based on national and 
international sequencing regulations. Thus, arrays 1, 3 and 4 were comprised solely of TCGA 
samples and array 2 had international ICGC samples along with 3 TCGA samples.  Arrays 2, 3, 
and 4 were sequenced at Washington University of St. Louis and Array 1 was sequenced at 
the Baylor College of Medicine. (Supplementary Table 9) 
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1.2 Processing of Validation Data 

The results of target capture and sequencing were processed largely following Nimblegen-
recommended best practice2, with the exception that duplicates were not removed due to 
the depths, nor were ends trimmed a second time.  Reads were remapped to the 
PCAWGPanCancer reference using the standard PCAWG aligner and parameters, and then 
realigned around nearby germline indels using GATK3 IndelRealigner and calls from 
HaplotypeCaller and the DKFZ pipeline.  

Variant allele fractions (VAFs) for the tumour and normal validation sample were determined 
using bam-readcounts (https://github.com/genome/bam-readcount) for SNVs, and SGA 
somatic-variant-filters for indels. SGA somatic-variant-filters annotates realigns each read 
covering a candidate variant to determine whether it better supports the reference or the 
alternate allele. 

1.3 Variant Classification using VAFs 

From the read counts data above, variants were classified as follows: 

● LOWDEPTH if the number of reads in the normal or tumour fell below our threshold 
of 30, 

● NOTSEEN unless the number of evidential reads in the tumour was inconsistent with 
1% noise with (p value < 0.02) 

● STRANDBIAS if one of the strands was responsible for at least 90% of the evidence 
reads 

● NORMALEVIDENCE if a Fisher exact test fails to rule out the normal VAF being 
consistent with the variant VAF within a factor of 2 (p < 0.01)  

● GERMLINE if the number of evidential reads in the normal was consistent (binomial 
test) with a VAF of 0.95-1.0 or 0.45-0.5 

● PASS otherwise 

1.4 Calculating Per-Caller Accuracy 

Using stratified sampling described above one can generate accuracy estimators that have 
greatly reduced variance for any given caller or difference between two callers than would be 
possible by (for instance) uniformly selecting from the entire call-set.  However, those 
estimators require reweighting the results to reflect the populations of the bins the calls came 
from.  Intuitively, if there were only two populations of calls, A with 100 calls and B with 1000,  
and one selected 10 calls from each to validate, the (say) overall true positive rate would not 
be simply the number of true positives divided by twenty, but would have to reflect the fact 
that each call selected from B “represents” 1000/10 = 100 calls from the population, and so 
have to be weighted more strongly than those from A which each represent 10.  So, for any 
given caller, the (eg) true positive rate must be calculated by bins and reweighted: 
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Where N is the total number of calls, Nc is the number per concordance bin, and nc is the 
number selected.  False positive rates, etc, are calculated the same way, and from those rates 
accuracies are calculated. 

For model selection, 20% of samples were held back, and training on the remaining 80% was 
performed by 5-fold cross-validation by case, with the model trained on 4/5 of the cases and 
accuracies calculated using the method above on the remaining 1/5.  Once models were 
selected (2+/4 for SNVs, and stacked logistic regression for Indels), accuracies for the entire 
set of validation cases were calculated on the whole set for SNVs, and trained and evaluated 
using the same cross-validation procedure for indels.  As with evaluation, models were not 
trained on calls in repeat-masked regions of the genome due to lack of validation data.  The 
indel model was then trained on the entire 46-case validation set for application to the all 
PCAWG cases.   

1.5 SNV/Indel Callers Used in Pilot-63 Exercise 

This section describes non-production callers that were only used in the pilot and validation 
phase. Production callers are described in Section 2 of this document. 

1.5.1 ADISCAN_Beta 

ADISCAN_Beta4 uses three implicit suppositions: a genome in a tissue was homogenous; the 
proportions of an allele for each tester were respectively 0.5 and 1.0 at a heterozygous and 
homozygous position; and deviations of the allele frequency from 0.5 and 1.0 were derived 
from the errors during sequencing or alignment steps. The distance of pair allelic fractions 
(PAFs) at a genome position between two comparing testers was calculated as a tangential 
function, as follows: 
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In equation (1), A, A’ and B, B’ were respectively the depth of reads for the minor and the 
major allele in the position i. The ratios were binned from 1 to 21. The ratio for the first group 
ranges from 0 to 0.0075 and the ratios for the subsequent bins increase 0.05 each time except 
the last steep where 0.075 was added. All other groups were evenly divided to get a 0.05 
interval. Xi and yi are the bins corresponding to ai and bi, 
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ADISCAN_Beta  score = 𝑙𝑜𝑔(40	𝑤	𝑡") 	− 𝑙𝑜𝑔(𝑚𝑖𝑛(𝐴,𝐵, 𝐴′, 𝐵′))𝐶& −	𝐶8 (3)) 

 

In equation (2), 22 was a constant number that was generated by adding 1 to the largest bean 
number 21, and ti was the output of the tangential function of the ratio of allelic differences 
between two comparing testers. 

In equation (3), five weights (w = 1.1 or 1.2; and 0.7, 0.8, or 0.9,) were specified. The first two 
weights (1.1 and 1.2) reward the cases with few or no sequencing errors in calling a 
homozygote, while the other three weights (0.7, 0.8 and 0.9) differentially penalize the cases 
with different extents of sequencing errors. When the ratio of reads for smaller allele was 
larger than 27.5%, the position was regarded the position as a potential heterozygote. The 
weights were biased toward cases in which the directions of pair allelic fraction (PAF) were 
opposite between two testers and their distance from the perfect heterozygotic status, 50 to 
50. Positions with sequence depth below 0 in either tester were disregarded and not further 
considered for variant calling. Two constants were used to adjust ADISCAN_Beta scores within 
the range of 50. 

1.5.2 LOHcomplete 

The LOHcomplete SNV pipeline utilizes GATK to call the genotypes of both control and 
tumour, which were jointly analyzed using custom Perl5 or R. Two types of SNVs were 
identified, i.e. gain-of-heterozygosities (GOHs) where the genotypes of control and cancer are 
homozygous and heterozygous respectively and loss-of-heterozygosities (LOHs) where the 
genotypes of control and cancer are heterozygous and homozygous respectively. 

1.5.3 OICR_bl 

Ensemble SNV calls from MuTect6 (v1.14), RADIA7 (v1.1.0) , Strelka8 (v1.0.12), and 
SomaticSniper9 (v1.0.2) were used (at least called by 3 out of the 4 callers or called by 
SomaticSniper and one other caller). See1 for the detailed parameters of each caller. SNVs 
were further filtered by the following databases: dbSNP14210 (modified to remove somatic 
and clinical variants, with variants with the following flags excluded: SAO = 2/3, PM, CDA, TPA, 
MUT and OM)10, NHLBI exome sequencing study (Exome Variant Server, NHLBI GO Exome 
Sequencing Project, Seattle, WA; accessed March, 2013), 1000 Genomes Project (v3), 
Complete Genomics 69 whole genomes, duplicate gene database (v68)11, ENCODE DAC and 
Duke Mappability Consensus Excludable databases12 (comprising poorly mapping reads, 
repeat regions, and mitochondrial and ribosomal DNA), invalidated somatic SNVs from 68 
human colorectal cancer exomes (unpublished data) using the AccuSNP platform (Roche 
NimbleGen), and the Fuentes database of likely false positive variants13. SNVs were 
whitelisted (and retained, independently of the presence in other filters) if they were 
contained within the Catalogue of Somatic Mutations in Cancer (COSMIC) database14 (v71). 

1.5.4 OICR_SGA 

SGA’s graph-diff feature (from both fabc28ac, Sept 17 2014 and f1c64dd1, Jan 21 2015) and 
FreeBayes15 (git commit 4233a239, Oct 7, 2014) were used to propose somatic variants, with 
graph-diff examining differences in the assembly graph structure between the paired 
samples.  FreeBayes calls were filtered first for compatibility with the assembly graphs using 



Pan-Cancer Analysis of Whole Genomes, Supplementary Information 28 

 

sga graph-concordance, and then with sga somatic-variant-filters to ensure a minimum read 
depth supporting the variant of 4, and a minimum allele fraction of 10%.  The two call-sets 
were then merged with low-quality (lower than 20) variants filtered out.  A final filtering step 
removed variants found in dbSNP build 142 but not COSMICv71. 

1.5.5 WUSTL  

Somatic SNVs detection was performed by running 3 callers on normal-tumour matched 
pairs: VarScan16 (version 2.2.6 with default parameters except where "--min-coverage 3 --
min-var-freq 0.08 --p-value 0.10 --somatic-p-value 0.05 --strand-filter 0"), SomaticSniper9 
(version 1.0.4 with default parameters except where "-q 1 -Q 20"), and Strelka8 (version 1.0.14 
with its bwa_default parameters, plus the extra parameter "--ignore-conflicting-read-
names"). The raw calls were screened to remove common germline SNPs from a panel of 
whole-genome normals present at ≥ 0.1% MAF in dbSNP-138 and were filtered to meet the 
following criteria: 

(1) All putative SNV calls were required to satisfy average mapping quality difference between 
var- and ref-supporting reads ≥ 30; maximum difference of average supporting read length 
between var and ref reads ≥ 25; maximum mismatch quality sum of ref-supporting reads ≤ 
60; 5-bp maximum length of flanking homopolymer; minimum average relative distance from 
either end of reads ≥ 0.1; VAF < 2% with < 2 variant reads in the normal; minimum average 
relative distance to the effective 3´-end of read for var-supporting reads, ≥ 0.2; 

(2) Calls generated by VarScan and Strelka were required to have minimum strandedness of 
0.5%, maximum difference in average mismatch quality sum between the var and ref 
supporting reads ≤ 70, and VAF ≥ 2% with ≥ 2 var-supporting reads in the tumour; 

(3) Calls generated by SomaticSniper were required to have depth of coverage between 20 
and 75 in both normal and tumour, strandedness ≥ 5%; minimum average relative distance 
from the 3´-end of the read to be ≥ 0.2; maximum difference in average mismatch quality sum 
between the var and ref supporting reads ≤ 60, and VAF ≥10% with ≥ 6 var-supporting reads 
in the tumour. 

Somatic indels detection was performed using Pindel17,18 and Strelka (as above) on normal-
tumour matched pairs. Pindel runs (version 0.2.5a3 with default parameters except where "-
B 100 -A 20 -M 2 -e 0.03 -u 0.05 -b") were supplied with breakpoint events identified in either 
sample by BreakDancer (version 1.4.5 with default parameters). Candidate Pindel somatic 
calls were required to have VAF ≥ 10% with ≥ 1 read present in each direction and 
homopolymer length based on the reference genome not exceeding 6. The filtered Pindel 
calls, with complex indels having been removed, were merged with the passed call set from 
Strelka without additional processing. 

1.5.6 CRG-clindel 

ClinDel v0.1, a module of the SHORE platform19, was used as described previously20 to identify 
short indels up to 50bp independently in tumour (TD) and normal (ND) samples. 
Subsequently, variants identified in TD were flagged as somatic if no indel was observed in 
ND, and ND had at least 8x coverage at the respective position. ClinDel parameters were 
optimized for maximal sensitivity (‘discovery mode’), requiring for calls in TD a minimum 
coverage of 3x, minimum alternative allele count of 3, and minimum minor allele fraction 
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(MAF) of 0.05. This setting allows for identification of indels with low cancer cell fraction, at 
the expense of a potentially high false positive rate. In order to increase the sensitivity of 
identifying indels in ND (i.e. to minimize false somatic calls), we increased the prior probability 
for positions in which an indel was found in TD or with reported indels in dbSNP or 1000GP 
(optional parameter of ClinDel). Furthermore, a simple-sequence-repeat (SSR) filter step has 
been performed, but flagged indels have still been reported. 

1.5.7 Novobreak-indel 

novoBreak-indel21 used the same settings for the indel sub-challenge of synthetic challenge 4 
of the ICGC-TCGA DREAM Mutation Calling Challenge 
(https://www.synapse.org/#!Synapse:syn312572/wiki/). novoBreak (v1.03) was run under 
the parameters ‘-k31 -m2’. All the assembled contigs and unassembled short read pairs 
containing the novo-kmers were mapped to the reference using BWA-MEM 22. The alignment 
results were sorted and the coordinates of indels were adjusted using SortSam of Picard 
(v1.107) (http://broadinstitute.github.io/picard/) and LeftAlignIndels of GATK 3,23,24 (v2.8-1), 
respectively. The “cigar” strings of the alignment results were parsed to generate an indel list 
(in VCFv4.1 format). Indels were further filtered using Database of Single Nucleotide 
Polymorphisms dbSNP (Build ID: 138, Available from: http://www.ncbi.nlm.nih.gov/SNP/) 
and low complexity regions identified with the mdust program 
(http://compbio.dfci.harvard.edu/tgi/). Finally, only indels with allele fraction greater than 
1% were selected. 

 

2. Whole Genome Sequencing Somatic Variant Calling 
The following sections describe the somatic variant calling methods used during the 
production phase of the project. 

2.1 Whole Genome Alignment  

Beginning in early 2014, we compiled an inventory of matched tumour/normal whole cancer 
genomes in the ICGC Data Coordinating Centre and polled ICGC projects for whole genomes 
that they anticipated completing in the near future. Our PCAWG inclusion criteria for donors 
were: (i) a matched tumour and normal specimen pair; (ii) a minimal set of clinical information 
including patient age, sex and histopathological diagnosis; and (iii) characterisation of tumour 
and normal whole genomes using Illumina HiSeq platform short paired-end sequencing reads 
(Supplementary Table 1). The great majority (93%) of samples were sequenced with either 
100 or 101 bp reads. Longer or shorter read lengths were applied to the remainder of the 
samples. Notably, within the Panc-AdenoCA cohort, 115 of 480 samples used 126 bp reads 
(24% of this cohort, 2% of total), and within the Stomach-AdenoCA 64 of 150 samples used 
90 bp reads (60% of cohort, 1.4% of total) (Supplementary Table 10; Supplementary Figure 
11). Most of the tumour samples came from treatment-naïve, primary cancers, but a small 
number of donors with multiple samples of primary, metastatic and/or recurrent tumour 
(Supplementary Table 1). 
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All reads, from per-lane FASTQs or unaligned BAMs, were aligned with bwa-mem 0.7.8-r455 
with all alignment scores output and using the default alignment algorithm options against 
human reference hs37d5 (available at 
https://dcc.icgc.org/releases/PCAWG/reference_data/pcawg-bwa-mem). 

2.2 Variant Calling Pipelines Used During Production 

This section describes the pipelines applied to somatic variant calling. Following application 
of these pipelines, variants were merged (Section 2.4, Supplementary Notes Section 2), and 
the resulting consensus variant set subjected to a set of filters and other QC steps described 
in Section 2.5 and illustrated in the process flow diagram of Supplementary Figure 2.  

2.2.1 DKFZ Pipeline 

Single nucleotide variants. Calls were generated by samtools25 and bcftools26 (version 0.1.19), 
and potential variants called in the tumour were followed by a lookup of the corresponding 
positions in the control. To enable calling of variants with low allele frequency we disabled 
the Bayesian model (by setting -p 2). Thus, all positions containing at least one high quality 
non-reference base are reported as candidate variant. The resulting raw calls were 
categorized into putative somatic variants and others (artefacts, germline) based on the 
presence of variant reads in the matched normal sample. The frequency of all putative 
somatic variants was then refined by checking for potential redundant information due to 
overlapping reads and precise base counts for each strand were determined. All variants were 
annotated with dbSNP141, 1000 Genomes (phase 1), Gencode Mappability track, UCSC27 High 
Seq Depth track, UCSC Simple-Tandemrepeats, UCSC Repeat-Masker, DUKE-Excluded, DAC-
Blacklist, UCSC Selfchain. The confidence for each variant was then determined by a heuristic 
punishment scheme taking the aforementioned tracks into account. In addition, variants with 
strong read biases according to the strand bias filter were removed. High confidence variants 
were reported. 

Small insertions and deletions. Platypus28 version 0.7.4 was used.  All variants indicating an 
Indel were categorized into putative somatic and other based on the genotype likelihoods 
(matched genotype 0/0 for somatic indels). High confidence somatic variants were required 
to either have the Platypus filter flag PASS or pass custom filters allowing for low variant 
frequency using a scoring scheme. Candidates with the badReads flag, alleleBias, or 
strandBias were discarded if the variant allele frequency was <10%. Additionally, 
combinations of Platypus non-PASS filter flags, bad quality values, low genotype quality, very 
low variant counts in the tumour, and presence of variant reads in the control were not 
tolerated. 

2.2.2 EMBL Pipeline 

Structural variants. We used DELLY29 v0.6.6 to call simple and complex structural variants 
(SVs). A high-stringency SV set of somatic calls were derived by requiring at least four 
supporting read pairs, with the additional requirement for split read support for SVs smaller 
than 500 bp. Somatic SVs were filtered for absence in the paired (normal) control tissue. 
Additionally, we removed SVs detected either in ≥1% of a set of 1,105 germline samples from 
healthy individuals from the 1000 Genomes Project phase I or in the panel of normal samples 
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constructed from the DELLY’s consensus germline SVs called in PCAWG normal tissues 
samples (see Section 3). Multi-tumour sample analyses were analyzed jointly together with 
the paired normal sample to improve SV discovery, and subsequently split into individual 
tumour samples. 

Copy number alterations. We used ACEseq30 v1.0.189 to call somatic copy number alterations 
and estimate tumour cell content and ploidy. Allele frequencies in tumour and matched 
normal were obtained for all SNPs recorded in dbSNP10 (build 135), and positions with BAF 
values between 0.1 and 0.9 in the normal were assumed to be heterozygous in the germline. 
To improve sensitivity for the detection of allelic imbalances, heterozygous and homozygous 
SNPs were phased with IMPUTE31 (version 2). In addition, the coverage for 10-kilobase (kb) 
windows was recorded for tumour and matched control and corrected for GC content- and 
replication timing-dependent coverage bias. The genome was segmented using the R package 
PSCBS32 at change points in the coverage ratio and BAF signal. SV breakpoints identified by 
DELLY were incorporated as predefined segment borders. Segments were clustered according 
to coverage ratios and BAF values using c-means clustering. The R package mclust was used 
to determine the optimal number of clusters based on the Bayesian information criterion. 
Small segments (<9 kb) were attached to the more similar neighbor. Finally, tumour cell 
content and ploidy of a sample were estimated by fitting different tumour cell content and 
ploidy combinations to the data. Segments with balanced BAF values were fitted to even-
numbered copy number states, whereas unbalanced segments could also be fitted to uneven 
copy numbers. Finally, estimated tumour cell content and ploidy values were used to 
compute the total and allele-specific copy number for each segment. Full details of the 
ACEseq processing steps can be found in the ACEseq documentation33). 

2.2.3 Sanger Pipeline 

Single nucleotide variants. Sanger SNV calls were generated using CaVEMan34 (v1.5.1). 
CaVEMan takes copy number segments, purity and ploidy information from the CNV caller 
ascatNgs19 to improve calling in regions of aberrant copy number. CaVEMan did not analyse 
known problematic regions based on the UCSC High Seq Depth track or variants on the non-
primary chromosomes. The filtering phase, cgpCavemanPostProcessing (v1.0.2), uses 
germline calls from cgpPindel18, a panel of aberrant sites generated from 59 blood normals 
and a set of engineered filters to reduce the data to a high confidence set of somatic calls. 
The filters are described in detail on the cgpCaVEManPostProcessing wiki page35 and include 
read-depth, phasing, positional and directional bias, repeats (various classes). 

Small insertions and deletions. We used cgpPindel v1.5.7 to call indels. This uses a slightly 
modified version of pindel v2.0 with custom read selection that works better with the 
standard PCAWG mapping pipeline, and additional post calling filtering, including the normal 
panel of aberrant sites used with the Sanger SNV calls and UCSC High Seq Depth regions. The 
read selection component has been updated to handle the increased incidence of split read 
mappings caused by indel events in BWA-mem data (while still being compatible with BWA-
backtrack). As with the Sanger SNV calls a panel of aberrant sites generated from 59 blood 
normals is used to filter out common artefacts along with a set of engineered filters. Full 
details of the variant filters can be found on the cgpPindel wiki page18 and include likely 
germline, depth dependant mutant fraction and repetitive slip filters. 
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Structural variants. We used BRASS36 v4.012 to call simple and complex genomic 
rearrangements along with grass37 to identify the likely consequence of the event.  As in 
CaVEMan and cgpPindel the raw input data is filtered to remove regions corresponding to the 
UCSC High Seq Depth Regions, along with the exclusion of non-primary chromosomes, prior 
to identifying groupings of incorrectly paired reads.  The generated groups that did not 
present in the matched normal sample were further filtered against groupings identified in 
the 59 blood normals described earlier.  Surviving groupings were sanitised for fold-back 
artefacts, mismapping and microbial and viral contamination. 

Copy number alterations. We used ascatNgs38 v1.5.2 to call somatic copy number alterations. 
Due to the unguided execution of this algorithm it is expected that a subset of results would 
be suboptimal or fail to resolve. Where ascat was unable to find an appropriate solution a 
global 5/2 Tumour/Normal copy number was generated with normal contamination value of 
0.3 to be passed into CaVEMan. Under normal conditions inspection and refitting is 
recommended, however, as Battenberg results were being manually reviewed for both 
general and sub-clonal copy number this was deemed sufficient to be used for input for SNV 
calling by CaVEMan. 

2.2.4 Broad Pipeline  

Single nucleotide variants. Raw candidate SNV calls were produced by MuTect6. MuTect 
explores read evidence for a variant in tumour and matched normal samples and utilises a 
Bayesian classifier to detect somatic mutations with very low allele fractions, requiring only a 
few supporting reads. A log likelihood ratio statistic for each variant is calculated based on 
consideration of several confounding aspects: levels of foreign DNA contamination 
(estimated by ContEst39) and normal population samples-based statistics.  Subsequent 
filtering within MuTect is based on bias metrics, such as mapping quality of reads, strand bias, 
read position bias and clustering of variants. These raw candidate calls are then filtered in the 
pipeline by the following Broad filters: Realignment Filter, Panel of Normals filter, and 
Orientation Bias (OxoG40) filter. These filters were later applied to the PCAWG consensus 
somatic mutation calls dataset separately.  

Small insertions and deletions (pilot-63 phase). MuTect2 performs local assembly of all reads 
surrounding potential somatic variants (both SNVs and indels, but only indels were selected 
for the PCAWG pilot) to generate candidate haplotypes and realigns reads to these 
haplotypes with a pair hidden Markov model to obtain a likelihood of each read versus each 
haplotype. It inputs these likelihoods into a probabilistic model for the likelihood of variants 
implied by the assembled haplotypes. To eliminate artefacts due to library preparation, 
sequencing, and mapping error, MuTect2 filters variants based on mapping quality of reads, 
strand bias, gap and read end proximity, read position bias and clustering of variants. Calls 
are then filtered in the pipeline by the following Broad filters: Realignment Filter, and the 
Panel of Normals filter. 

Small insertions and deletions (production phase). SvABA41 calls variants by performing 
genome-wide local assemblies of gapped, clipped, unmapped and discordant read pairs. 
Contigs are assembled with a modified version of the SGA assembler. The assembled contigs 
are aligned to the reference to identify contigs with gapped alignments (indicating short 
insertions and deletions) or with multi-part alignments (indicating structural variations). 
Reads are also aligned to the contigs to identify the read support for either the tumour or 
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normal allele. The variants are then genotyped and classified as either germline or somatic. 
SvABA is freely available at https://github.com/walaj/svaba. 

2.2.5 MuSE Pipeline 

Single nucleotide variants. MuSE42 version 1.0rc calls are made in two steps, which requires 
(1) the indexed reference genome FASTA file, (2) the binary sequence alignment/map 
formatted (BAM) sequence data from the pair of tumour and normal DNA samples, and (3) 
the dbSNP variant call format (VCF) file that should be bgzip compressed, tabix indexed and 
based on the same reference genome as (1). The first step, ‘MuSE call’, takes as input (1) and 
(2). The BAM files require aligning all the sequence reads against the reference genome using 
the Burrows-Wheeler alignment tool (BWA43), with either the backtrack or the maximal exact 
matches (MEM22) algorithm. In addition, the BAM files need to be processed by following the 
Genome Analysis Toolkit (GATK) Best Practices that include marking duplicates, realigning the 
paired tumour-normal BAMs jointly and recalibrating base quality scores. To speed up ‘MuSE 
call’, the WGS data may be splitted into small blocks (<50Mb) by using the provided option 
either ‘-r’ or ‘-l’, and concatenating all the output files by the Linux command CAT. The second 
step, ‘MuSE sump’, takes as input the output file from ‘MuSE call’ and (3). There are two 
options for building the sample-specific error model. One is applicable to WES data (option ‘-
E’), and the other to WGS data (option ‘-G’). 

2.2.6 SMuFIN Pipeline 

Small insertions and deletions. SMuFIN44 was used for indel calling. For this analysis, SMuFin 
was run taking BAM files from whole genome sequences as input, corresponding to the 
tumour and normal samples of the same individual. The complete PanCancer set, which 
includes the pilot validation subset, was executed on an HPC environment using OpenMPI 
over an average of 32 nodes (2xIntel SandyBridge, 8-core/2.6GHz), taking six hours of 
execution time per genome pair in the Marenostrum 3 Supercomputer.   Input and output 
files were stored locally, and then integrated into the PCAWG data sets.  The version of 
SMuFin used here, modified 2014-10-26, has no algorithmic tuning parameters, and the 
method is as described in Moncunil et al44. 

2.3 Consensus Somatic SNV/Indel Annotation  

Prior to merging, all called SNVs and indels were annotated according to their predicted 
functional impact on coding regions and other functional elements. Each variant was labeled 
using the union of annotations. 

Within the Sanger pipeline, we ran VAGrENT45 v2.1.2 which used Ensembl release 74 as a base 
for the annotation. Variants were compared to all overlapping transcripts and described using 
HGVS syntax and Sequence Ontology terms, two annotations were then recorded per variant. 
The first was a default against the most representative transcript, typically the longest 
transcript with a CCDS identifier. The second was a worst case, an annotation described with 
the most disruptive Sequence Ontology term.  

Within the DKFZ and EMBL pipelines, we ran the ANNOVAR46 package downloaded on 12 
November 2014 to perform gene-based annotation using the GENCODE database (v19). It was 
run using default parameters. 
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2.4 Merging of WGS somatic variant calls 

Following completion of the somatic mutation calling and annotation pipelines described 
above, all candidate somatic variants were subjected to the series of merging steps to 
generate an accurate consensus call set. All scripts are available as Dockstore packages, as 
described in Supplementary Table 3. 

2.4.1 Somatic SNV and indel Merging  

The SNV and indel call sets produced by each pipeline were merged together to create a single 
consensus call set using the SNV-MERGE47 script. This script implements the consensus model 
strategies described in Supplementary Notes 2. For SNVs, the script uses a simple “2+/4” 
approach where calls seen by at least two callers were selected as consensus calls. For indels, 
SNV-MERGE implements a previously-published stacked logistic regression method48. 

2.4.2 Somatic SV Merging  

To achieve the merged set of somatic SVs, somatic SV calls from SvABA (Broad pipeline), 
DELLY (DKFZ pipeline), BRASS (Sanger pipeline) and dRanger (Broad pipeline) were combined 
into a union set as described here. For each tumour/normal pair, high confidence SVs from 
each caller were pairwise joined based on SV class and position (identical paired-end read 
orientation), allowing 200 bp of slop at the breakpoints. Calls were merged using a graph 
structure, by inserting an edge in the graph for each joined pair. High confidence merged calls 
were derived by requiring at least two out of the four callers to support an SV. For each 
merged SV, consensus breakpoint positions were chosen based on proximity to the consensus 
breakpoint. The call-set was filtered to remove artefacts related to transposable element 
insertions (using curated transposable elements master copy hotspots, available in the 
PCAWG SV merge Docker container, and adding a slop of 15 Kbp), and fold-back inversion 
artefacts (using a list of fold-back inversion artefacts provided by the Sanger pipeline, adding 
a slop of 200bp). Additionally, pseudogenes and cDNA both contain DNA with exon-exon 
junctions, and these can manifest as deletions between exons of the affected gene. To 
remove such pseudogene and cDNA carry-over artefacts, we identified and removed exon-
exon spanning SVs involving genes containing at least two exon-exon bridging deletions. 

2.4.3 Somatic Copy Number Alteration Merging  

Consensus copy number profiles were constructed from the output of six copy-number 
aberration (CNA) callers, as detailed in49. We first segmented each cancer’s genome into 
regions of constant copy number, separated by breakpoints denoting copy-number shifts. 
These breakpoints were based on PCAWG’s consensus structural variants (SVs)49, which were 
complemented with high-confidence breakpoints reported by multiple CNA callers obtained 
by summarising the intersection of genomic regions where these callers agreed a breakpoint 
must exist. 

We then used the six CNA callers to determine the allele-specific copy-number for each 
consensus segment, requiring the callers to use a separately established consensus purity and 
ploidy value, and subsequently applied a multi-tiered approach to combine the callers’ results 
into consensus profiles. Finally, segments were assigned a level of confidence based on the 
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degree of consensus on the major and minor allele copy-number states. On average, a strict 
majority of callers agreed on 93% of each cancer’s genome. 

2.5 Variant Call Set Quality Control and Flagging 

Following merging, a series of algorithms were applied to somatic variants to detect and flag 
suspect samples and individual variants. These flagged sets were then manually reviewed to 
develop inclusion/exclusion rules described in the next section. Scripts that implement these 
steps are available as Dockstore images at the locations described in Supplementary Table 3. 

2.5.1 Tumour in Normal Estimation 
Our ability to distinguish somatic variants from germline variants is adversely affected by 
contamination of tumour cells in the normal sample.  We estimate the level of tumour-in-
normal contamination (TiN), using deTiN50 based on two key signals.  Presence of tumour cells 
in the normal sample can be observed as “shadows” of somatic mutations in the normal 
sample. This is quantified by fitting the allele counts in the normal sample as a function of the 
allele counts and local copy number in the tumour.  The slope of the fit is one estimate of TiN.  
The other key signal is the allele shift of germline heterozygous SNPs in the normal away from 
50% at sites with tumour copy number variation.  The second TiN estimate is the fitted allele 
fraction shift. Each signal provides a TiN likelihood curve (0>=TiN>=1, where TiN is defined 
relative to the tumour sample) ) and the two likelihood curves are combined into a single TiN 
likelihood curve and the final TiN estimate for each sample.  

2.5.2 Germline site somatic mutation filter  
Somatic mutation calls can suffer from “bleed-through” of germline variants, which can be 
due to insufficient total coverage or lack of sufficient presence of the alternate allele in the 
matched normal sample. Both of these cases can lead to insufficient power to identify a 
germline SNP in the matched normal, while a somatic mutation may be called in the often 
more deeply sequenced tumour sample. 

The MuTect mutation caller accounts for this problem by requiring higher read coverage in 
the normal sample to call a somatic mutation at a known site recorded in the dbSNP database 
supplied at runtime, compared to a somatic mutation at a non-dbSNP site6. A post-filtering 
step similar to this strategy was applied to the entire consensus mutation call set. 

Somatic mutations from the May 2016 consensus SNV MAFs (filtered by the “at least two out 
of four callers” criterion) were subjected to overlap with >14M common (>1%) variants 
obtained from the 1000 genomes project. Of ~54M somatic SNV variants, 0.64% were 
classified as “possible germline risk” based on this overlap with common 1000 genomes 
variants.  

Of these “possible germline risk” SNVs, 91.5% were flagged and removed by the Broad’s panel 
of normals (PoN).  

“Possible germline risk” somatic mutations that passed the PoN-filter were subjected to the 
following filtering strategy:  

SNVs with more than one alternate read in the matched normal (n_alt_count >1) were flagged 
and filtered on any chromosome (78 mutations failed) 
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SNVs on autosomes were flagged and filtered if their total coverage in the normal sample was 
less than 19 reads (n_alt_count + n_ref_count <19) (563 mutations failed) 

Due to expected low coverage, the coverage criterion from 2. was not applied on the Y 
chromosome 

Due to expected low coverage, the coverage criterion from 2. was not applied to the X 
chromosome in male patients  

Coverage filtering as in 2. was applied to chromosome X for female patients (945 mutations 
failed) 

Mutations for 5 patients without reported donor sex were genotyped from sequencing data 
and filtered with criteria 4 or 5 as appropriate (11 mutations failed).  

Read counts for the matched normal samples (n_alt_count, n_ref_count) were obtained from 
MuTect’s force-called call_stats files produced with the OxoG docker on the union call set. As 
those calls were only available for SNVs, indels were not included in this germline site filter 
analysis. 

2.5.3 Oxidative Artefact Filtration 

We applied OxoG40 to identify and remove consensus variant calls that were likely false 
positives caused by oxidative DNA damage. 

2.5.4 Strand Bias Filtration  

The strand bias filter flags SNVs that are likely false positives resulting from different artefact-
causing processes. Sample-wide PCR template strand bias and sequencing strand bias (i.e. 
bias between forward and reverse sequencing reads) is identified for each of the 96 SNV 
categories defined by the type of base exchange and the context of the flanking bases. SNVs 
are considered as biased if they are from a biased category and have no sufficient support 
from the opposite strand.  The software and a detailed description of the method is available 
at51. In the consensus SNV calls, flagged SNVs were filtered if in one sample more than 3% of 
the SNVs and more than 30 SNVs were flagged. 

2.5.5 Review and curation of consensus variant calls 

Following annotation, merging and flagging, the SNV, indel, SV and SCNA consensus call sets 
were subjected to intensive examination by multiple groups in order to identify anomalies 
and artefacts, including uneven coverage of the genome, strand and orientation bias, 
contamination with reads from non-human species, contamination of the library with DNA 
from an unrelated donor, and high rates of common germline polymorphisms among the 
somatic variant calls. In keeping with our mission to provide a high-quality and uniformly 
annotated data set, we developed a series of filters to annotate and/or remove these 
artefacts. Tumour variant call sets that were deemed too problematic to use for downstream 
analysis were placed on an “exclusion list” (353 specimens, 176 donors). In addition, we 
established a “grey list” (150 specimens, 75 donors), of call sets that had failed some tests but 
not others and could be used, with caution, for certain types of downstream analysis.  
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2.5.5.1 Sample Exclusion Criteria 
After generating consensus calls, cases were excluded from further analysis if they had 
incomplete or inconsistent metadata, or if the data failed too many basic quality control 
measures.  Some remaining samples were excluded for the following reasons: 

High levels of cross-contamination with other subjects as inferred by MLE calculations based 
on SNV allele fractions using the tool ContEst39. 

Evidence of contamination of tumour in the normal sample (Tumour-In-Normal or TiN 
contamination; see Tumour in Normal below) by the presence of normal reads that support 
somatic mutations found in the tumour, or by a shift in the ratio of allele frequencies at 
heterozygous SNPs in regions of somatic copy number variation.  Samples with TiN scores 
higher than 15% were excluded. 

A number of samples initially seemed to have extraordinarily high rates of structural variation, 
in particular deletions in either or both of the tumour or normal.  Upon closer inspection, 
these deletions were introns, and the samples were inferred to have been contaminated with 
RNA.  These samples were removed. 

2.5.5.2 Variant Exclusion Criteria 
Somatic variants called in the remaining 2,778 whole cancer genomes totalled 45.7 million 
passing and 5.4 million failing SNVs, and 2.5 million passing and 3.8 million failing indels.  In 
addition to these variants, others were further filtered for particular artefacts seen by 
downstream analysis tools: 

SNVs were run through the Broad’s realignment filter52, where variants supported primarily 
by BWA aligned reads that were unambiguously mapped to a different location by BLAT were 
omitted; this removed another 1.8 million SNVs, many of which were extremely high 
concordance; 

Variants were then filtered out by a panel of normals based on 2,450 PCAWG samples 
developed and maintained by Broad. This step removed an additional 1.3 million SNVs and 
683,000 indels; 

Samples showing noticeable oxidative damage in reads by OxoQ metric40 were subject to 
Orientation Bias filter (OxoG) to remove false positive calls generated by oxidative process 
during library construction; 

A sequencing and PCR bias filter of SNV calls based on abnormal or suspicious distribution of 
forward/reverse read counts in the 96 possible mutations including triplet context removed 
112 thousand SNVs;  

Calls overlapping common variants (>1%) in the 1000 Genomes data set were removed, 
eliminating 1344 SNVs (description under Broad pipeline) 

Y-chromosome variants in donors known to be female (368 SNVs and 134 indels) were 
removed; and 

SNVs that overlapped a germline call in the same patient were removed 
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SNVs that overlapped with germline indels made in the normal were removed, which 
eliminated a final 328 SNVs. 

In addition, calls that were less clearly due to artefacts but were worth flagging were 
annotated: 

High contributions from “artefact” signatures R1, R2, and N353. 

SNVs near indels:  There is an enrichment of apparently false somatic snv calls near both 
somatic and germline indels because of challenges in aligning indel containing reads. Somatic 
snvs were therefore flagged if near a somatic or germline indel (position -10 to +25) called in 
the same sample. 

2.6 miniBAM generation 

The last step prior to distribution of somatic variants to downstream analytic groups was to 
prepare miniBAM files for each tumour/normal pair. The miniBAM file format is a reduced 
representation of the aligned BAM file in which reads that provide the evidence for the 
presence of a somatic or germline variant are retained and the remainder of the reads are 
discarded. This generates a dramatic reduction in file size, while retaining the ability to 
visually review called variants. We generated one “miniBAM” file per specimen pair using the 
VariantBam algorithm54. The genomic windows we chose for miniBAM generation were +/- 
10 base pairs (bp) for SNVs, +/- 200 bp for indels, and +/- 500 bp for SV breakpoints. This 
reduced the size of each aligned BAM file to approximately 0.5% of its original, while retaining 
the reads needed to visually inspect and confirm each variant call. miniBAMs were generated 
using the coordinates of all raw variant calls generated from the core and supplementary 
callers prior to the filtering and merging process, allowing both consensus and suspect 
variants to be reviewed.  

 

3. Germline Variant Identification from WGS 
3.1 Data Overview and Call-set Generation 

The PCAWG germline working group constructed a WGS-based germline variant call-set from 
non-cancerous samples of 2,642 patients affected by 39 different cancer types using the 
approach presented below. The non-cancerous samples in the PCAWG resource are mostly 
blood samples (>75%), though some fewer cases are based on tissue adjacent to the primary 
tumour or other sites of normal tissue such as bone marrow, lymph node or skin. The average 
germline sequencing coverage was 39x, which is presumed to be adequate for germline 
variant calling (Bentley et al., 2008). Several algorithms were used for SNP, indel and SV calling 
following genotyping, call-set integration and haplotype-phasing. Somatic variant calls 
(including somatic SNVs, indels, and structural variants) and normalized gene expression 
measurements (available for a subset of donors; N=1,172) generated by transcriptome 
sequencing were obtained from the PCAWG technical and transcriptome working groups. In 
cases were more multiple samples of primary, metastatic and/or recurrent tumour were 
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available from a donor, germline-somatic analyses were pursued using the primary tumour 
sample. 

3.1.1 Broad germline SNP and indel call-set generation 

The Genome Analysis Tool Kit (GATK) HaplotypeCaller version 3.3.0 was used to analyse 2,818 
samples on the Broad Institute’s Firehose computing framework, by employing the current 
GATK best practices recommendations24. SNPs and indels identified in individual samples 
were jointly genotyped across all 2,818 samples using the GATK CombineGVCFs and 
GenotypeGVCFs modules on a Cray Urika-GX System equipped with 25 compute nodes (each 
with 32 cores, 256GB RAM) and an 800GB SSD with 2TB of hard disk and 120TB of additional 
Lustre distributed file system storage. 

Variant filtering was performed using the GATK Variant Quality Score Recalibration (VQSR) 
workflow to identify calling artefacts. The VQSR approach trains a Gaussian mixture model 
based on supplied training data composed of known, validated (“true”) variants as well as 
known artefacts. The model is trained over a number of variant quality metrics to determine 
the multi-dimensional quality metric profile of a true germline variant. The model is then 
applied to all variants in the call set, which are scored with the log-odds ratio of the probability 
of being a true variant (VQSLOD). Various sensitivity tranches (concentric dashed ellipses) are 
calculated based on VQSLOD scores such that a pre-specified percentage of known, “true” 
variants fall within each tranche. Novel variants that fall within multiple sensitivity thresholds 
are annotated with the most conservative, or restrictive, sensitivity tranche. Tranches that 
include higher percentages of known variants (outermost ellipses) have more permissive 
VQSLOD threshold values and are more likely to contain false positive variant calls than 
tranches with more conservative VQSLOD threshold values (inner ellipses). The sensitivity 
thresholds applied to the Broad call-set to classify “PASS” quality variants were 99.6 for SNPs 
and 95.0 for Indels (though the tranche annotations allow researchers to calibrate a custom 
sensitivity level to suit different analysis needs). The “gold standard” training sets used for 
the VQSR workflow were the Mills set of variants for indels55 and the HapMap356 and Illumina 
Omni 2.5M SNP array set of variants for SNPs. Genotype calls were filtered for quality by 
removing any calls with a genotype quality score (the phred-scaled probability of an incorrect 
alternate allele call) less than 20. 

Sample-level quality control metrics examined included the per-sample call rate (the 
percentage of all possible variant sites with a called genotype in a given sample), mean 
sequencing read depth, mean genotype quality score, ratio of transitions to transversions 
called, and the ratio of heterozygous to homozygous alternate genotypes called. Samples 
featuring at least one outlying metric (i.e., with values greater or less than 4 standard 
deviations from the mean value calculated over all samples of the same ethnicity) were 
flagged as potential outliers. Sample ethnicities were imputed based on the first 8 principal 
components obtained over ~115,000 linkage disequilibrium-pruned SNPs across the genome 
with r2>.1 and a minor allele frequency (MAF) > 0.01. 

Duplicate samples and cryptically related samples in the cohort were identified by running 
KING57 on the same set of ~115,000 pruned SNPs used in the principal components analysis. 
The 2,818 samples analysed using GATK included 176 that were later black-listed by the 
PCAWG project (their removal resulted in the set of 2,642 samples that were ultimately used 
by the PCAWG germline group). 
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3.1.2 Freebayes germline SNP and InDel call-set 

We employed freebayes (doi:arXiv:1207.3907) (v0.9.21-26-gbfd9832) in single-sample calling 
mode for SNP and indel discovery (--min-repeat-entropy 1, --report-genotype-likelihood-
max). Raw calls were filtered for quality (QUAL>20, QUAL/AO>2), strand bias artefacts (SAF>1, 
SAR>1), and read position artefacts (RPR>1, RPL>1), and normalized for consistent 
representation with vt normalize58 (v0.5). Freebayes short sequence variant calling was 
pursued on the EMBL-EBI Embassy Cloud (www.embassycloud.org), using the following 
setup: 1500 cores, 50 TB SSD storage, 4 TB of RAM. Variant calling with freebayes on the cloud 
was orchestrated using an early release version of the Butler cloud workflow orchestration 
framework59 (https://github.com/llevar/butler, revision fa28b5c). 

3.1.3 Short variant calling with the Real Time Genomics (RTG) software 

We called germline variants from the project BAMs using the single-sample variant caller from 
Real Time Genomics (RTG) version rtg-core 3.6.2 (Real Time Genomics Ltd, Hamilton, New 
Zealand; https://github.com/RealTimeGenomics). RTG snp uses a Bayesian network model 
for variant calling, and a haplotype-aware Bayesian method for making “complex” calls60 
(indels, MNPs, and combinations thereof). First, base-qualities from reads in the BAM files 
were recalibrated with RTG calibrate to generate calibration files needed by RTG snp. To 
maximise parallelization during calling, the BAMs were split by chromosome and the final call-
set for each sample was obtained by merging the final VCFs from all jobs. Variant calls were 
scored using the RTG Adaptive Variant Rescoring method60 (AVR), which uses a random forest 
algorithm model to score variants with respect to their probability to being correct. The model 
was trained with WGS calls from the CEPH and YRB trios of the 1000 Genomes Project. Variant 
calls where filtered with an empirically defined AVR cutoff of 0.1 to obtain a variant set with 
good quality metrics. We used two compute environments to run the calling pipeline. We 
analysed the first 1,300 samples in the Annai BioCompute Farm (Annai Systems Inc., Carlsbad 
Ca, USA), which is a OpenStack based virtualized cluster environment hosted at the UC San 
Diego Super Computer Center. The remaining samples were analyzed using a DNAnexus 
platform (DNAnexus Inc., Mountian View, CA, USA), which uses as backend the Amazon AWS 
cloud infrastructure, using an DNAnexus applet that implements the identical variant calling 
pipeline61. 

3.1.4 Delly germline deletions 

Delly29 v.0.6.3 was applied to each pair of tumour and matched control to jointly call germline 
and somatic deletions >500bp. Candidate germline deletions were merged across samples 
into a unified deletion site list using a strict reciprocal overlap of 90% and a breakpoint offset 
<=100bp. The deletion sites were subsequently genotyped in parallel using Delly v0.7.3 at the 
EMBL-EBI Embassy Cloud across all control genomes and then merged using BCFtools. 
Uncertain genotypes with genotype quality below 20 were set to missing. Deletions with an 
overall genotype missing rate >15% were removed as well as deletions that lacked at least 
one carrier sample with a variant allele support >=20% to account for potential tumour-in-
normal contaminations at lower level. Among clusters of overlapping deletions that likely 
arose due to breakpoint inaccuracies in single-sample SV calling, we selected the best deletion 
in terms of overall genotype quality. To ensure high specificity we further filtered the 
remaining SVs using a machine learning approach that used as a training set genotyped 
deletions in the 1000 Genomes Project phase 3 low coverage data. We evaluated the array 
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concordance of these deletions using Intensity Rank Sum testing (IRS) and differentiated likely 
true SVs (p-value < 0.5) and likely false SVs (p-value >= 0.5). The most predictive feature in 
the random forest model was the read-depth ratio of SV carriers compared to SV non-carriers, 
which is well in line with the nature of the Delly algorithm, which solely relies on paired-ends 
and split-reads but annotates read-depth to enable a subsequent read-depth based filtering 
of germline deletions. Machine learning parameters were picked to derive a final deletion site 
list of an estimated FDR of 5% using the PCAWG validation SNP6 array dataset. Overall, Delly 
ascertained 29,492 deletions (27,577 copy-number variable regions) in the set of 2,642 
PCAWG control samples. 

3.1.5 Mobile element insertion call set 

Pre-aligned BAM files from 2,834 PCAWG tumour and matched normal pairs were processed 
with TraFiC-mem v1.1.0 (https://gitlab.com/mobilegenomes/TraFiC) to jointly call non-
reference germline and somatic MEIs, including Alu, L1, SVA and ERV-K insertions. Briefly, the 
algorithm relies on the identification of discordant read-pairs from Illumina paired-end 
sequencing data, followed by clipped-read analysis to characterize the insertion breakpoints 
at base pair resolution. A complete description of TraFiC-mem method is provided in the on-
line methods section of the somatic retrotransposition manuscript62. In order to guarantee a 
high specificity, germline MEIs were required to have both their 5’ and 3’ insertion 
breakpoints characterized and be supported by at least 4 clipped-reads to be considered for 
further analyses. Then, candidate germline MEIs identified along all non-cancerous samples 
were clustered using a breakpoint offset of ≤50bp and the MEI supported by the highest 
number of reads (discordant plus clipped reads) in each cluster was selected as representative 
to generate a non-redundant MEI dataset. This dataset comprises 27,546 candidate germline 
MEI, including 22,207 Alu, 4,366 L1, 945 SVA and 28 ERV-K insertions. 

The unified MEI site list was re-genotyped in all the normal genomes using TraFiC-genotyper 
v1.1.0 (https://gitlab.com/mobilegenomes/TraFiC-genotyper). To genotype each MEI, the 
algorithm inspected the read alignments around the predicted insertion breakpoints 
searching for reads supporting the reference (i.e. MEI absence) and alternative (i.e. MEI 
presence) alleles. Properly aligned reads spanning the breakpoint with a minimum overhang 
of 20 bp support the reference allele (REF-reads), while clipped-reads with clipping positions 
at a maximum distance of 3 bp to the predicted breakpoint support the alternative allele (ALT-
reads). Reads marked as duplicates and reads clipped both at their beginning and ending 
extremes are removed, as they usually constitute mapping artefacts. Then, MEI allelic fraction 
(AF) is computed as the ratio of ALT-reads to TOTAL-reads (i.e. ALT-reads plus REF-reads). A 
heterozygous genotype call is made for MEI with AF between 0.1-0.9, a homozygous call for 
AF higher or equal than 0.9 and the genotype is set to ‘missing’ if the AF is lower than 0.1. 
Genotypes supported by less than 4 ALT-reads or REF-reads are also set to ‘missing’. Finally, 
a single multi-sample VCF v4.2 file, containing germline MEIs genotypes for the complete set 
of normal samples, is produced as output. 

In order to prevent sample-specific genotyping errors due to the accumulation of artefactual 
split-read alignments around the insertion breakpoints, heterozygous and homozygous 
alternative genotypes were set to ‘missing’ if they were supported by at least 5-fold more 
split-reads than the median among all the analyzed samples. Finally, MEIs with an allele count 
of 0 or an overall genotype missingness rate >5% were filtered out. 
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The released dataset is composed by 27,254 germline MEI events. Consistently with 1000 
Genomes catalogue of germline variation63, Alu and L1, with 97% (26,302/27,254) of the 
events, are the most abundant retrotransposon lineages in the PCAWG germline resource. 
On the other hand, SVA and ERV-K polymorphisms, with 927 and 25 instances, represent 
minor categories. Most MEIs (84%; 22,979/27,254) represent rare alleles (MAF < 1%), while 
10% are common variants (MAF > 5%). To determine which MEIs were not previously 
reported, we compared our call set to 1KGP phase 3 and GoNL63,64 v6.1 SV releases. Those 
MEIs whose insertion breakpoint was at a maximum distance 100 bp of an already known 
element from the same family were catalogued as known; or novel, otherwise. A large 
proportion of loci (58%; 15,681/27,254) constitute novel genetic variation not previously 
reported. Novel germline MEIs are particularly enriched in rare polymorphism although a 
substantial fraction of them (11%, 2,631/24,198) correspond to common variation. On a 
population level, we found that each donor bears ~1,300 polymorphic MEIs on average 
(Extended Figure 12F). This finding substantially differs from recent estimations of ~1,200 
MEIs per donor63 based on WGS at a coverage of ~8x, as compared to the ~39x WGS coverage 
of PCAWG matched normal samples. As previously reported for SNPs65 and deletions63, we 
observed that individuals of African ancestry exhibit higher MEI loads than individuals from 
other populations.  

Finally, for germline MEIs already reported by 1000 Genomes Project, we evaluated the 
consistency between PCAWG and 1000 Genomes Project inferred allele frequencies overall 
and across each ethnicity. Correlations were over 0.7 for each retrotransposon subfamily – 
even for Admixed Americans and South Asians, two ethnics groups composed by only 29 and 
39 samples, respectively (Extended Figure 12G,H). 

3.1.6 Orthogonal validation of germline MEI with single-molecule sequencing 

In order to evaluate our germline MEI resource, a liver hepatocarcinoma specimen 
(SP112196) and the corresponding matched normal (SP112195) were selected from a PCAWG 
donor (DO50807) to be sequenced by single-molecule sequencing using Oxford Nanopore 
Technologies (ONT). Whole-genome libraries were constructed with the ONT 1D ligation 
library prep kit (SQK-LSK109), which includes steps to repair (NEBNext FFPE DNA Repair, NEB), 
end-repair and dA-tailing the DNA (NEBNext End Repair/dA-tailing module, NEB). We 
obtained 2 and 4 libraries for SP112196 and SP112195, respectively. Genomic libraries were 
loaded on MinION R9.4 flowcells (FLO-MIN106 rev D), and sequencing runs were controlled 
using the software MinKNOW v18.07.18 and v18.12.5. We used the basecallers Albacore 
v2.3.3 and Guppy v2.1.3 to identify DNA sequences directly from raw data and generate 
FASTQ files. Files with quality score values below 7 were excluded at this point. Minion 
adapter sequences were trimmed using Porechop v0.2.3 
(https://github.com/rrwick/Porechop) and the internal guppy trimming. Then, for each 
sequencing run we used minimap2 v2.10-r761 to map sequencing reads onto the hs37d5 
human reference genome, and the SAM files were converted to BAM format, sorted and 
indexed with Samtools v1.7. BAM files derived from the same sample were merged, sorted 
and indexed. After this process, sequencing coverage were 10x (SP112196) and 8x 
(SP112195), and the average read size of mapped reads were 5.6 Kb (SP112196) and 14 Kb 
(SP112195). We performed validation of 1,243 germline MEIs genotyped as heterozygous or 
alternative homozygous in the liver hepatocarcinoma donor (DO50807) sequenced using 
ONT. In order to maximize the coverage, we pooled the long-reads derived from the tumour 
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and matched normal sample under the assumption that most germline variation will be 
captured in both datasets. The resulting BAM file represents 18x coverage on average. Then, 
we applied the same approach we used for the assessment of somatic MEIs62. Briefly, we 
sought for two types of reads supporting each germline MEI in the BAM file: (i) reads 
completely spanning the insertion and that are identified as standard insertions on the 
reference; and (ii) reads spanning only one of the inserted element extremes, so they get 
clipped during the alignment in the reference. Germline MEIs supported by at least two reads 
were considered true positive (TP) events or false positives (FP), otherwise. Overall, we 
observed 6% (78/1,243) false positive events while when we stratified MEI by frequency, the 
FDR was 7%, 3% and 0% for common, low frequency and rare variants, respectively (Extended 
Figure 12I). False discovery rate was estimated as follows: FDR = FP / (TP + FP). We further 
evaluated the consistency between the predicted MEI lengths based on Illumina and 
Nanopore. Inferred lengths strongly correlate between both sequencing technologies for Alu 
(Spearman’s ρ = 0.49, P = 7.66e-61) and L1 elements (Spearman’s ρ = 0.94, P = 4.94e-50), while 
SVA lengths are frequently underestimated in Illumina calls (Extended Figure 12J). This 
underestimation of SVA lengths in Illumina data can be explained due to the variability of SVA 
sequences at their GC-rich tandem repeats (VNTR) central region66, which cannot be resolved 
through short-read data analysis.  In order to validate additional germline MEIs, we reused 
the dataset generated for evaluating TraFiC-mem somatic calls62. This dataset is composed by 
one cancer cell-line (NCI-H2087) and its matched normal cell-line (NCI-BL2087) sequenced 
both with Illumina and ONT. We re-genotyped our germline MEI call-set in the matched 
normal Illumina sample and each heterozygous and alternative homozygous MEI was 
subjected to long-read validation as described for the hepatocarcinoma donor. Consistently 
with this data, we observed a FDR of 7% (79/1,119) and a strong correlation for Alu and L1 
inferred MEI lengths. Overall, through the analysis of two long-read datasets (i.e. PCAWG 
hepatocarcinoma donor and cell-line) we attempted validation for 1,789 distinct variants 
from our germline MEI variation resource with an FDR of 6% (103/1,789). 

3.1.7 Germline L1 source element analysis 

BAM files from tumour and matched normal pairs were processed with TraFiC-mem v1.1.0 
(https://gitlab.com/mobilegenomes/TraFiC) to identify somatic L1-mediated transductions, 
among other types of retrotransposition events, as described by the PCAWG Structural 
Variation Working Group62. L1-mediated transductions are small tracks of L1-adjacent unique 
DNA sequences mobilised through L1 retrotransposition that can be used as barcodes to trace 
somatic L1 insertions to individual source L1 loci67. L1-transduction calls were matched with 
our germline L1 resource to compile a dataset of candidate germline L1s mediating 
transductions in multiple tumour samples or more than one transduction in a single sample. 
Candidate L1s were subjected to manual curation and breakpoint annotation through visual 
inspection of BAM files with IGV the Integrative Genomics Viewer68 (IGV). This analysis 
revealed 114 germline L1 loci with detectable somatic transduction activity, including 70 that 
represent insertions with respect to the human reference genome. L1 source elements were 
then genotyped in all the matched normal genomes using the same genotyping approach and 
filters described for germline MEIs, prior to their integration into the phased PCAWG germline 
variant release. 22 out of 44 elements in the reference genome appeared to be fixed within 
the PCAWG cohort. To further support this observation, we searched for discordant read-pair 
clusters pointing to the deletion of the elements amongst all the normal genomes; no deletion 
clusters were identified, what is consistent with the fixation of these loci in PCAWG donors. 
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To identify hot-L1 source elements two metrics were computed for each L1 source locus. First, 
the percentage of samples, with at least one retrotransposition event, where the element is 
active. Second, the activity rate, measured as the average number of transductions mediated 
by the element in those samples where it is active. Then, source elements were clustered 
according to these two parameters using scikit-learn69 v0.18.1 DBSCAN implementation 
(eps=0.8, min_samples=5). This analysis revealed a well-defined cluster composed by L1s 
without hot activity and two clearly differentiated groups of outliers, corresponding to Plinian 
and Strombolian hot loci, respectively. Outlier elements were catalogued as Plinian if they 
exhibited activity rates over 5 and were active in less than 2% of the samples and Strombolian, 
otherwise. 

3.1.8 Short germline variant consensus call-set 

Germline SNPs and indels were discovered using Freebayes, the Genome Analysis Tool Kit 
(GATK) HaplotypeCaller and the Real Time Genomics (RTG) variant caller, as described above. 
The FreeBayes and RTG call sets were ‘by sample’ whereas the GATK call set was genotyped 
across all 2,642 samples for a unified VSQR filtered site list. We did not perform additional 
genotyping to obtain genotype likelihoods of Freebayes and RTG-based variant calls across all 
2,642 samples. Because of our reference-panel based statistical phasing strategy, we first 
kept all GATK sites that are present in the 1000 Genomes Project phase 3 haplotype reference 
panel. All remaining bi-allelic and multi-allelic SNPs and indels out of the FreeBayes, RTG and 
GATK call sets were uniformly normalized to facilitate a variant site intersection. We 
decomposed all multi-allelic variants into bi-allelic variants, left-aligned all variants using vt58 
and then kept all GATK sites that are shared with at least one other caller (FreeBayes or RTG). 
For multi-allelic GATK sites, all decomposed bi-allelic variants needed to be confirmed by one 
additional caller. The consensus call set was then further subsetted to samples deemed of 
sufficient quality for inclusion (#n=2,642) and we set all genotypes with genotype quality <20 
to missing. We subsequently dropped all sites with an updated allele count of zero or with 
less than 75% of the samples genotyped. 

3.2 Germline short variant validation  

Deep validation sequencing was performed on 50 of the original PCAWG pilot 63 
tumour/normal pairs representing 24 cancer types. Originally 5,000 sites were selected by 
the PCAWG Germline Working group based on consensus variant calling. NimbleGen capture 
reagents were capable of capturing 3,112 (65%) of these sites following exclusion of repetitive 
sequence and poor nucleotide context (i.e. high GC-content). These sites were sequenced in 
every tumour/normal pair of the cohort. 38 of the 50 samples were sequenced at Washington 
University in St. Louis, while the remaining 12 were sequenced in at the Wellcome Trust 
Sanger Institute following international protocols and regulations. A median sequencing 
depth of 512 reads in the control sample, 610 reads in the tumour sample, was identified 
across all variants tested. 0.5% of the targeted germline variants did not have sufficient 
coverage (fewer than 20 reads per site) and were hence excluded. 

3.2.1 Short variant call validation experiments 
We assessed the performance of the three pipelines for inference of germline variants from 
WGS data used in this study (GATK HaplotypeCaller70, RTG 
(https://www.realtimegenomics.com), Freebayes15 and the PCAWG consensus-phased 
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germline call-set using resequencing data for randomly picked candidate germline short 
variant sites. We identified the genotypes of the tested sites based on read counts in the ultra-
deep sequencing data using a custom script. Several filters were applied to remove false 
positives (see below under “methodological details”). We then employed calls based on ultra-
deep resequencing as a gold standard to benchmark germline short variant call-set quality. 
We separately evaluated SNP and indel calls using precision, recall, false discovery rate (FDR), 
F-score and genotype concordance as measures.  

All benchmarked pipelines showed excellent performance in SNP calling (Supplementary 
Figure 12), with precision estimates >99%, and recall estimates ranging from 96.5%-98.8% (F-
scores ranged from 0.980 to 0.992). All pipelines also showed high genotype concordance 
prior to phasing (with the maximum of 0.994 observed for the HaplotypeCaller) when 
considering homozygous reference, heterozygous and homozygous alternative calls in the 
analysis. When taking into account only alternative sites (ignoring homozygous reference), 
concordance was similarly high with a maximum of 0.995 achieved by RTG (Supplementary 
Figure 12). In the consensus-phased call-set, the precision was 0.995 and the recall 0.980. 
Performance measures for rare (AF <= 5%), mid-common (5% < MAF >= 20%) and common 
variants (AF > 20%) revealed similar precision estimates for rare variants in all call-sets 
(Supplementary Figure 12). Precision of indel calls of Freebayes and RTG was similarly high 
as for SNPs (ranging from 0.996 and 0.993), at the cost of lower recall (~91-92%) (similar to 
earlier studies71). HaplotypeCaller achieved a lower recall and precision (88.1 and 98.2 %, 
respectively), mostly due to a reduced performance for rare indels (Supplementary Figure 
12) The consensus-phased calls reached values of 0.924 and 0.995 for recall and precision 
respectively. Indel genotype concordance ranged from 0.955 to 0.971 when taking into 
account homozygous reference sites, but was slightly reduced to 0.917-0.931 when only 
considering variant sites (Supplementary Figure 12) with the consensus-phased call-set 
showing the best concordance. Additionally, the allele frequency of variants in the tested 
population was correlated with the recall of the calls (Supplementary Figure 12). 

 
Methodological details. Ultra-deep sequencing reads were aligned using BWA-MEM 0.7.8-
r455. We identified the genotypes of tested sites based on read count data, using a custom 
script. Several filters were applied to remove false positives, including a minimum coverage 
filter (depth [DP] > 15) and the exclusion of sites exhibiting strand bias (> 90 % in a specific 
strand) and sites with more than 2 alternative alleles in the same sample. Next, we used these 
calls as gold standard to benchmark the three variant analysis tools, as well as the PCAWG 
germline consensus sites list, achieved in ~39x WGS data from the PCAWG network. We 
separately evaluated SNP and indel (left aligned with bcftools) calls using precision, recall 
(sensitivity), false discovery rate (FDR), F-score and genotype concordances as measures. Only 
those variants that passed the specific filters of each caller were considered. 

Note that for calculating precision, calls were considered as true positives when the pipeline 
found the correct alternative allele, irrespective of the called genotype (heterozygous or 
homozygous), while genotype concordance took into account the predicted genotype. In the 
concordance analysis, two types of concordance were obtained: one considering all 
genotypes and one ignoring homozygous reference genotypes. In the GATK HC results, “./.” 
genotypes were considered as homozygous reference (0/0). 
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·    TP ~ True positive 

·    FP ~ False positive 

·    FN ~ False negative 

·    TN ~ True negative 

·    Precision = TP/(TP+FP) 

·    Recall (sensitivity) = TP/(TP+FN) 

·    FDR (False discovery rate) = 1 – precision  

·    F-score (F1) = 2TP/(2TP+FP+FN) 

As another means of quality control, we performed Principal Component Analysis (PCA) 
jointly for PCAWG samples and 1000GP phase 3 samples using ancestry informative marker 
(AIM) SNPs. Reassuringly, PCAWG donors fell inside the diversity of their 1000GP 
counterparts. We also estimated the proportion of archaic ancestry in PCAWG samples using 
the ADMIXTOOLS software combining PCAWG samples with samples from the Simons 
Genome Diversity Project (SGDP)72 following the methods recently described by Fu and 
colleagues73. We compared each PCAWG sample against 9 SGDP African samples, 3 Dinka 
samples, the Archaic genomes of one Neanderthal and one Denisovan individuals and the 
Chimpanzee reference genome (PanTro2). We also used 8 European and 7 East Asian samples 
from SGDP as controls. Using this dataset, we calculated the d-statistic for each PCAWG 
sample. We removed from the dataset all samples with over 50% inferred African ancestry 
and all samples with a d-statistic’s Z-score lower than 3. We analyzed archaic admixture for 
the remaining 2670 samples using the f4-ratio statistic. The results by population show 
estimates within the diversity found by previous studies of 1.2-1.5% admixture for European 
samples and 1.4-1.8% for Asian samples. 

 

3.3 Whole-genome low coverage structural variant validation using long-reads 
Genomic DNA of a prostate cancer patient carrying a BRCA1 germline mutation was 
sequenced using the Oxford Nanopore Technologies (ONT) GridION device. The fast5 
sequencing files were basecalled using Guppy and then aligned using minimap274 v2.11. 
Resulting BAM alignment files were sorted and indexed using SAMtools25. Alfred75 was used 
for quality control and to estimate the mean sequencing coverage 1.6x (median coverage = 
1) which was very low due to limited gDNA availability and low input DNA quality. The mean 
sequencing error rate was 11.9% at a median read length of 1596bp. 77% of the genome was 
covered >=1x. Because of the high error rate of long read sequencing we assumed that we 
will require at least a ~200bp prefix and suffix alignments across the SV junction to confidently 
validate an Illumina SV breakpoint, which lowered the effective coverage for SV junction 
detection to 1.3x. 

Using the Lander and Waterman model 76 and an effective sequencing coverage of 1.3x 
(haploid coverage 0.65x) the percentage of SV breakpoints on a given haplotype that are 
covered by at least two reads is expected to be 14%, and 48% will be covered by at least one 



Pan-Cancer Analysis of Whole Genomes, Supplementary Information 47 

 

read. Because of the low sequencing coverage, we devised an algorithm that collects all 
primary, secondary, and supplementary alignments for a given long read, sorts the internal 
breakpoints by sequence coordinate and then cross-matches these long read junctions to the 
Illumina SV call-set using a strict 80% reciprocal overlap criterion for intra-chromosomal SVs 
and a maximum breakpoint offset <1000bp for inter-chromosomal SVs. Using this approach, 
we could validate overall 36.8% of all Illumina SV breakpoints in the prostate cancer patient, 
with 34.1% for deletion-type SVs, 39.2% for duplication-type SVs, 32.5% for inversion-type 
SVs and 30.7% for inter-chromosomal SVs. These results suggest high accuracy (specificity) of 
the PCAWG somatic SV call-set for the selected prostate cancer patient, corroborated by long 
reads. We could not evaluate the sensitivity of the Illumina call-set because of insufficient 
long read coverage. 

We next attempted to locally assemble long reads that jointly span the same SV breakpoint 
to elucidate SV breakpoint characteristics and to identify template insertions between 
adjacent SV breakpoints. For all SV breakpoints with more than one supporting long read we 
used a multiple-sequence alignment-based algorithm75 to compute a consensus sequence of 
greater length and with slightly improved sequencing error rate (10.4%). These consensus 
sequences were then aligned back to the respective reference segments using Maze 
(https://gear.embl.de/maze) and a custom MUMmer pipeline77. Two examples of a long-read 
consensus alignment are shown in Supplementary Figure 9 and Supplementary Figure 13. 

 

3.4 Haplotype-block phasing of germline variants using 1000GP as a haplotype 
reference panel 

Germline variant phasing of PCAWG normal samples was initiated with Eagle278 to phase bi-
allelic SNPs and indels using the 1000 Genomes Project phase 3 dataset63 as a haplotype 
reference panel. This haplotype scaffold included all bi-allelic variants shared between 
PCAWG and 1000GP. All remaining bi-allelic variants not present in 1000GP were 
subsequently phased using ShapeIt279 and added onto the input Eagle2 haplotype scaffold. 
The ShapeIt2 phasing was conducted in 2Mbp windows using 200Kbp buffer regions on either 
side of the window boundary; different chunks were concatenated into a combined Eagle2 
and ShapeIt2 bi-allelic haplotype scaffold using BCFtools80.  ShapeIt2 was run using default 
parameters except for “-S 800 –W 0.2 and --buffer 200000”. Multi-allelic short variants with 
at least 2 alternative alleles were phased onto this combined scaffold using MVNcall81 with 
the following non-default options: “--var-multi --k 100 --iteration 50”. Conversion into 
MVNcall haplotype format was conducted using custom shell and python scripts, and 
BCFtools and HTSlib was used to merge and concatenate MVNcall output files. Germline 
deletions and mobile elements were phased depending on the availability of genotype 
likelihoods, which are required by MVNcall. Because of that, bi-allelic deletions were phased 
using MVNcall, while mobile element insertion calls (which did not have genotype likelihoods) 
were phased using ShapeIt2. 
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3.5 Inference of continental-scale ancestry and genome-wide local ancestry 
deconvolution 

We estimated the proportion of genome-wide continental-scale ancestry of donors, by 
implemented a supervised version of the ADMIXTURE algorithm82. First, 4235 ancestry 
informative SNP markers (AIM) were chosen for maximum discriminative power between 5 
continental super populations (European, East Asian, Africa, Native American, South Asian) 
as described in83. Minor allele frequencies were calculated for the 5 continental populations 
at these AIMs using 1000 Genomes Phase 3 data71 from unrelated subjects as previously 
described83. For each sample, missing data at any AIM location was filled in with homozygous 
reference calls. We optimized the log-likelihood for the ADMIXTURE model assuming K=5 and 
the allele frequencies to be known from above. Individual ancestry likelihoods for each of the 
five continental super populations were estimated per donor using the LBFGS optimization 
algorithm, implemented in the R software (R Core Team 2014). Scripts, ancillary files, and 
ancestry proportion estimations are available at the Sage Bionetworks Synapse platform 
(Seattle, WA, USA) under syn4877977. We validated the method by analyzing the samples 
from the 1000 Genomes, assigning each individual to a superpopulation based on the highest 
estimated superpopulation likelihood (or the two highest in case of admixed populations), 
and comparing the results with the of the labels of the 1000 Genomes project samples. We 
also performed spot checking by comparing our results against the clusters obtaining by 
performing PCA with Plink84, using a subset of 700k SNPs across the genome chosen with r-
squared < 0.2 in 1 MB chunks and with a minor allele frequency of >= 1%. PCA plots where 
visualized using the Genesis software (http://www.bioinf.wits.ac.za/software/genesis/). 
Results are available at the Sage Bionetworks Synapse platform (Seattle, WA, USA) under 
syn4874212. Genome-wide local ancestry was estimated using RFMix85 assuming five 
ancestral backgrounds: African, European, Native American, East Asian, and South Asian, as 
described in reference 86. Genome-wide local ancestry estimations are available at the Sage 
Bionetworks Synapse platform (Seattle, WA, USA) under syn18412166. 

Using inferred ancestry estimates, we assessed ancestry components to the somatic 
mutational burden. This analysis was possible for two tumour types: Liver-HCC (43 EUR vs 264 
ASN) and Stomach-AdenoCA (24 EUR vs 41 ASN). We assessed these samples for differences 
in mutational burden by ancestry and identified that the somatic C>A (βEUR=+2.1%, P=3.7e-3) 
and T>C (βEUR=-4.7%, P=2.5e-4) mutation rate in liver cancer was significantly associated with 
ancestry (FDR<10%) after accounting for demographic (ie, sex and age at diagnosis) and 
technical factors (ie, tumour purity, tumour & normal sequencing coverage, and tumour & 
normal sequencing coverage skewness). Either genetic (East Asian vs European) or 
environmental (Japan vs USA vs France) factors may contribute to this differential mutational 
burden given that the Liver cancer specimens that contributed to this analysis were collected 
in different countries (5x France, 48x USA, 254x Japan). 

3.6 Identification of protein-truncating variants (PTVs)  

High impact (i.e. pathogenic) germline variants were defined as frameshift, nonsense, and 
canonical splice site variants. Putative pathogenic germline PTVs were removed if the 
estimated minor allele frequency (MAF) in at least one continental population (EUR, AFR, 
ASN, SAN, AMR) was above 0.5% based on information from 53,105 sequenced individuals 
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that were assigned to known populations and without a cancer diagnosis from ExAC87, the 
1000 Genomes Project71, and the NHLBI GO Exome Sequencing Project88. We filtered out 
germline PTVs that were common in PCAWG (MAF>5%). Finally, all candidate germline PTVs 
were excluded from the analysis if annotated as benign in ClinVar (accessed 02/06/16). 
Germline deletion SVs called by Delly that overlapped at least one candidate exon and were 
absent in subjects from the 1000 Genomes Project phase 3 SV set were defined as high-
confidence pathogenic (i.e. inferred to lead to PTV).  

3.7 Rare variant germline-somatic variant association analysis 

The association between germline PTVs in genes and somatic mutational phenotypes was 
modeled using linear regression (lm function, R package). The model accounted for sex, age 
at diagnosis [quantiles], population structure (five principal components), tumour histology, 
project, and technical confounders (tumour purity [quantiles]; tumour and normal 
sequencing coverage [quantiles]; tumour and normal sequencing coverage bias [quantiles]). 
We limited our tests to genes with at least four germline PTV carriers and performed our 
analysis in individuals with European ancestry to reduce population-specific effects. We 
modeled somatic mutation rates by normalising mutation counts against the total number of 
somatic mutations (eg, total number of SNVs, total number of SVs). Tumours with a low 
mutational burden (<10 SNVs or SVs) were excluded from the analysis. We followed-up genes 
that passed the exome-wide significance threshold of P<0.05/20,000 (=2.5e-6) for further 
analysis. Somatic CpG mutation rates were estimated using the proportion of signature 1 
counts (PCAWG beta2 release) and the proportion of Np[C>T]pG mutation load counts 
(Supplementary Methods 3.9). We validated germline associations with mutational 
signatures that were derived from 8,134 TCGA WES samples and we tested the hypothesis 
that variation in gene expression is correlated with mutational signatures. We obtained for 
the latter gene expression quantifications based on FPKM-UQ values for 1,172 PCAWG 
donors. We restricted hereby our analysis to primary tumours and solid, non-haematological 
cancer types with at least ten donors. Cancer-type specific association analysis between rank-
normal transformed gene expression levels and somatic mutation rates was based on 951 
tumour samples and 20 cancer types. Linear regression models included (if available) sex, age 
at diagnosis, and ICGC project as putative confounders. 

3.8 Common variant germline-somatic variant association analyses 

We performed genome-wide association analysis for two endogenous mutational processes. 
We performed the analysis with common SNPs/indels (MAF>5%) that passed quality control 
(genotyping rate >95%, HWE>1e-5) and restricted the analysis to individuals with European 
and East Asian ancestry, respectively. We accounted for demographic (sex, age at diagnosis), 
histological, and technical confounders (tumour purity, tumour/normal coverage, 
tumour/normal coverage bias, project). Residual mutational phenotypes were rank-normal 
transformed and the analysis was controlled for population structure using principal 
components (N=3). The genome-wide association analysis was performed with PLINK84 v1.9, 
Manhattan plots were prepared with qqman v0.1.4 in R, and locus zoom-in plots were 
prepared with LocusZoom (http://locuszoom.org/). Somatic CpG mutation rates were 
estimated using the proportion of Signature 1 counts (PCAWG beta2 release) and the 
proportion of Np[C>T]pG mutation load counts (Supplementary Methods 3.9). APOBEC3B-
like mutagenesis was estimated using the APOBEC3B enrichment score (Supplementary 
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Methods 3.9). We considered tumours with a statistically significant contribution of APOBEC 
mutagenesis for the analysis and followed-up loci that passed the genome-wide significance 
threshold (P<5e-8). Skin melanoma samples were excluded from the APOBEC3B-like 
mutagenesis GWAS. Non-coding loci were further assessed for cis-regulatory activity in 
donor-matched primary tumour samples based on pan-cancer cis-eQTL analysis using rank-
normal transformed expression phenotypes and a linear regression model that accounted for 
sex, age at diagnosis [quantiles], histology, ICGC project, ten principles components. 

3.9 Knowledge-based analysis of mutational processes 

Enrichment and mutation load of a suspected specific mutational process were calculated 
based on prior mechanistic knowledge about mutation motifs associated with certain 
mutagenic factors and pathways89–91. The enrichment with a tri- or tetra-nucleotide motif 
pXq→pZq, wherein the mutated residue is capitalized, was calculated in each sample as 

 

Enrichment(pXq→pZq) = (Mutations(pXq→pZq) x Context(x)) / (Mutations(X→Z) x 
Context(pxq)) 

 

where X is the mutated nucleotide, Z is the nucleotide after base substitution, p is the -1 
nucleotide (or -1 and -2 nucleotides), and q is the +1 nucleotide (within the context of the 
given mutation type/ trinucleotide). For each motif, we also included the reverse complement 
sequence that would represent the mutagenic process occurring on the opposite DNA strand. 
The context was derived from the 41 nucleotides surrounding the mutated residue. This 
approach focuses on the genomic regions wherein the mutation occurred, without excluding 
any specific genomic areas. It also would not be affected by preference of mutagenesis to 
certain genomic areas over the others. This methodology usually gives results similar to NMF-
based signature analysis in which the whole genome was considered for the context in the 
calculations. To statistically evaluate whether a certain mutation type is enriched in a sample 
as compared to mutations generated by random mutagenesis, a one-sided Fisher’s exact test 
was performed to compare the following two ratios: 

 

Ratio 1:  Mutations(pXq→pZq) / (Mutations(X→Z) - Mutations(pXq→pZq)) 

Ratio 2:  Context(pxq) / (Context(x) - Context(pxq)) 

 

To account for multiple testing, P-values obtained were corrected using the Benjamini-
Hochberg method. For samples with enrichment > 1 and q-values ≤ 0.05, the minimum 
estimated mutation loads were calculated as: 

 

MutLoad (pXq→pZq) = (Mutations(pXq→pZq) x (Enrichment(pXq→pZq)-1)) / 
Enrichment(pXq→pZq) 
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If the enrichment < 1 or the q-value was ≥ 0.05, the minimum estimated mutation load was 
assigned a value of “0”. Np[C>T]pG mutational signature was studied based on "5’ 
[a|t|g|c]C[g] 3’" motif analysis and APOBEC3B-like mutational signature90 was studied based 
on "5’ [a|g]tT[a] 3’" and "5’ [a|g]tG[a] 3’" motif analysis. 

 

4. RNA-Seq Analysis 
4.1 RNA-seq alignment and quality control 

A total of 2,217 RNA-seq libraries were aligned with both STAR92 (version 2.4.0i, 2-pass), 
performed at MSKCC and ETH Zürich, and TopHat293 (version 2.0.12), performed at the 
European Bioinformatics Institute. We compared gene quantification using both alignment 
strategies giving consistent results. Different downstream analysis pipelines required either 
STAR or TopHat2; therefore, we provided alignments using both methods. The human 
genome reference used was GRCh37.p13 and GENCODE v19 was used as the transcriptome 
reference. Code and parameters used for the STAR alignment can be found at 
https://github.com/akahles/icgc_rnaseq_align and for the TopHat2 alignment at 
https://hub.docker.com/r/nunofonseca/irap_pcawg/. QC filtering was based on metrics from 
the raw FASTQ files, metrics from aligned reads, and correlation of gene expression when 
using either STAR or TopHat2. Technical replicates (722 libraries) were merged giving a final 
number of 1,359 fully processed RNA-seq sample aliquots from 1,188 donors. The list of 
sample aliquots and additional metadata can be found at 
https://dcc.icgc.org/releases/PCAWG/transcriptome/metadata/rnaseq.extended.metadata.
aliquot_id.V4.tsv. More details of PCAWG RNA-Seq data processing can be found in PCAWG 
Transcriptome Core Group94. 

4.2 Quantification of gene and transcript-level expression 

Gene expression quantification was performed using HT-Seq95 (version 0.6.1p1) separately 
on STAR-aligned reads and TopHat2-aligned reads from the same sample and then a 
consensus expression quantification was performed by taking the average. Gene counts were 
normalized by adjusting the counts to fragments per kilobase of million mapped (FPKM) as 
well as fragments per kilobase of million mapped with upper quartile normalization (FPKM-
UQ) where the total read counts in the FPKM definition has been replaced by the upper 
quartile of the read count distribution multiplied by the total number of protein-coding genes. 
Transcript-level expression quantification was performed using Kallisto96 (version 0.42.1). 

4.3 Identification of alternative splicing events 

Alternative splicing events were identified and quantified using SplAdder97 with default 
parameters and confidence level 3 based on read alignments using STAR. Splicing graphs were 
created for both tumour and normal samples (when available) individually and then merged 
to create a combined graph of all events identified in the PCAWG dataset. SplAdder was used 
to extract alternative splicing events of the following types: alternative 3’ splice site, 
alternative 5’ splice site, cassette exon, intron retention, mutually exclusive exons, 
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coordinated exon skip. A percent spliced in (PSI) value was calculated for each event and was 
used for further analysis. 

4.4 Fusion transcript identification 

Two different gene fusion detection pipelines were used for identifying fusions: FusionMap 
(version 2015-03-31) pipeline98 and FusionCatcher (version 0.99.6a)/STAR-Fusion (version 
0.8.0) pipeline99. FusionMap was run on unaligned reads from TopHat2. To reduce false 
positive fusions, fusion calls were excluded based on the number of supporting junction 
reads, sequence homology, and occurrence in normal samples. A high-confident consensus 
fusion call set was generated from fusions that were detected by both tools in at least one 
sample; and/or be detected by one of the methods and had a matched SV in at least one 
sample.   

 

5. Clustering of Tumour Genomes Based on Telomere 
Maintenance-Related Features 
Using the TelomereHunter tool, Sieverling100 analyzed the 2,518 PCAWG whole genome 
samples and produced 12 telomere related features for each sample.  TelomereHunter takes 
WGS BAM files and extracts reads with telomeric repeats.  The telomeric repeats are filtered 
according to alignment coordinates and further categorized.  The total telomere length is then 
calculated with a consideration of GC bias. The 12 features used in Sieverling to determine 
telomere maintenance defects included counts of nine different telomere variant repeats 
(TVRs) within the telomere, the number of telomere-like insertions within the genome, the 
number of genomic breakpoints, and the telomere length as a ratio between tumour and 
normal (Supplementary Table 11). For this specific analysis the TVR count was determined 
by calculating the difference from a regression line through the normals, as opposed to a line 
through the TERT modified samples as was performed in Sieverling100. 

The T distributed stochastic neighbor embedding (T-SNE) algorithm was applied to the 12 
telomere related features using the R package Rtsne. The Perplexity and alpha Rtsne 
parameters were set to 15 and 0.5 respectively.  First the T-SNE algorithm was applied to both 
normal and tumour showing a distinct separation between normal and tumour (see Extended 
Figure 13A). Density-based spatial clustering of applications with noise (DBSCAN) was then 
applied to the first two dimensions of the t-SNE output and revealed 4 tumour clusters and 4 
normal clusters (Figure 7A, Extended Figure 13A). Student t-tests revealed the most 
significant features among clusters (Supplementary Figures 10-11). A Fisher’s Exact test 
(using the fisher.test package in R) was performed to determine if any gene has significantly 
more mutations among the samples in one cluster compared to those outside the cluster (or 
vice versa). Only the genes present in the curated TMM list from the TelNet Database were 
considered101 (Supplementary Table 12).  



Pan-Cancer Analysis of Whole Genomes, Supplementary Information 53 

 

 

6. Clustered mutational processes in PCAWG 
These methods were used to infer the presence of the mutational processes of chomothripsis, 
kataegis and chromoplexy, and to characterize their clustering patterns. 

6.1 Inference of chromothripsis 

The landscape of chromothripsis regions across PCAWG samples is described by Cortés-
Ciriano102. Here, an independent set of filters was developed focused on obtaining and timing 
punctuated chromothripsis events. To maximize confidence, the overlap between the two 
sets of calls was taken as the final set.  

Chromothripsis events were inferred by integrating copy number profile (LogR), B allele 
frequency (BAF), and DNA rearrangement (SV) data. Across each chromosome arm, a 
piecewise constant fit was performed on the segment lengths to identify regions with high SV 
breakpoint density (average segment length < 3Mb = 150Mb / 50). Flagged regions on the 
same chromosome arm were merged. To discriminate punctuated events from sequential 
ones, the distribution of segment lengths within each region was compared to an exponential 
distribution with the same breakage rate, which is the distribution expected for random 
sequential breaks. The rate is computed by maximum-likelihood fitting of the observed 
distribution against an exponential distribution. A region is retained if the Kolomogorov-
Smirnov test p < 0.01.  

Whereas prototypical chromothripsis events exhibit copy number oscillations involving two 
copy number states103, chromothriptic regions can present with more states, for example 
owing to prior or subsequent DNA rearrangements affecting the genomic region in question. 
As the number of breakpoints increases, the average segment size decreases, which may 
reduce the accuracy of somatic copy number calling. To allow for small biological variation 
and copy number errors, we scaled the expected minimal fraction that at most three allele-
specific states must cover as 𝑓L3MLN/LO = 𝑚𝑖𝑛	(1,−0.006𝑁 + 1.1), with N the number of 
segments in the region. The linear relationship between fexpected and N is represented by the 
line passing through points A (𝑁 = 50, 𝑓L3MLN/LO = 0.8) and B (𝑁 = 100, 𝑓L3MLN/LO = 0.5). 
Regions were considered when at least 𝑓L3MLN/LO  x 100 % of the region was covered by at most 
3 allele-specific copy number states. As previously proposed by Kinsella et al, N should 
represent a large number to reject the sequential-event hypothesis104. Here we set 𝑁0WX =
30 as the minimum number of breakpoints per chromosome arm. Next, we performed a 
multinomial test on the numbers of rearrangements showing a tandem duplication, head-to-
head inversion, tail-to-tail inversion and deletion pattern. The null model states equal 
probability of 0.25 for each class, based on the reasoning that chromothripsis events should 
generate a near random orientation of fragment joins105. Occasionally, chromothripsis 
involves distal genomic regions or even different chromosomes, the result of which are 
derivative chromosomes harbouring sequences from more than one chromosome103. We 
reasoned that utilization of this information may facilitate ‘rescuing’ regions that exhibit too 
few breakpoints overall for reliable inference of chromothripsis. To this end, chromothripsis 
events displaying > 20 SVs linking to a region on a different chromosome were considered as 
‘connected’ to that distal region. If not, they were still considered connected if > 20% of SVs 
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(at least 6) of the chromothriptic region and > 50% of the SVs (at least 6) in the distal region 
connected the two regions. Finally, we filtered out 33% of regions as they did not overlap ≥ 
50% with region called by Cortés-Ciriano102, leading to a high-quality set of punctuated 
chromothripsis calls. 

6.1.1 Chromothripsis drivers and patterns 

In each cancer type, we tested the association of chromothripsis with whole genome 
duplication using an exact binomial test where the probability of success in each trial was the 
fraction of diploid samples that had chromothripsis. For each single base substitution and 
double base substitution signature and in each cancer type, we also tested the association of 
the exposure in each sample with chromothripsis using Mann-Whitney U tests. We also tested 
the association with the age of the patients through the same rank-based tests. Then, in each 
cancer type and for each driver event present in at least 5 samples, we tested for the 
association of chromothripsis with driver status using the Fisher-Boschloo test from the R 
package Exact v1.7. 

Finally, we tested the significance of association between chromothripsis and driver events in 
the same region in two ways. First, we assessed how many drivers in the cohort are expected 
to be hit by the same number of chromothripsis events of similar complexity but happening 
at random along the genome. Therefore, we randomised all chromothripsis events along the 
genome. In each randomisation exercise, the probability to be assigned to a chromosome was 
proportional to the size of the chromosome. A random offset was added to the original start 
and end positions and taken uniformly from 𝑈(−(𝑆L\L1/ − 1), 𝐶]"^L − 𝐸L\L1/)), where 𝑆L\L1/ , 
𝐸L\L1/  are the start and end positions of the event and 𝐶]"^L  is the size of the new assigned 
chromosome. We repeated this 1,000 times and for each randomisation of the whole set, we 
counted the number of drivers amplified or homozygously deleted, leading to a distribution 
of expected counts of drivers with randomised chromothripsis positions. 

Second, we tested for two types of enrichment of chromothripsis at driver gene loci: 1) within 
each cancer type, we tested for enrichment of one driver event against all other driver events 
using an exact Binomial test where the probability of success in each trial is the average 
fraction of other drivers co-occurring with chromothripsis in that cancer type; 2) for each 
driver event and cancer type, we also tested for enrichment of chromothripsis with that driver 
event in that cancer type against the average fraction of that driver event co-occurring with 
chromothripsis in all other cancer types, again using an exact Binomial test. P-values were 
adjusted for multiple testing by controlling the false discovery rate according to Benjamini 
and Hochberg.  

6.1.2 Timing of amplified chromothripsis using SNVs 

We further timed the amplified chromothripsis events in molecular time by counting the 
number of SNVs present on all copies of the major allele, i.e. present before the amplification, 
and comparing it to the background mutation rate across the genome. We defined a segment 
s as amplified if the number of copies of the major allele Nmaj,s > 5. For each segment, we first 
counted the number of SNVs present on all copies of the major allele Camp using the inferred 
multiplicities of the mutations multi. We counted the mutation i if 𝑚𝑢𝑙𝑡" > 𝑁X0a," × 90%. 
We then derived an average total mutation rate per Mb along the genome by looking at 1+1 
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copy number segments >5Mb (𝜇/f/ =
#hij]

8∗]LlXL1/	mL1l/n
). We then calculated the relative 

timing of the amplified material as 𝑡0XM =
opqr
spqr

tuvu
, where lamp is the length of the amplified 

segment. We obtained 95% confidence intervals by bootstrapping the SNVs 1,000 times, 
during which, if 𝐶0XM = 0, we added a pseudocount to Camp: 𝑡0XM =

&
tuvu

.  

6.1.3 Quantifying the time spent during amplification after chromothripsis 

In amplified material, we observed that almost no mutations were seen at intermediate 
multiplicities (Nminor<multiplicities<Nmajor) even in hypermutators. This led us to speculate that 
it could be an indication that amplification proceeded quickly in molecular time. To test this 
intuition, we simulated the amplification as a stepwise increase in number of copies of each 
segment. Each time step would represent a fraction of total molecular time, i.e. would carry 
a fraction of the total mutation load. This fraction can be modulated so that early steps are 
slower and later steps are faster and vice versa. For this exercise, we took time steps of equal 
length. We amplified each segment independently so that the last amplification step is 
synchronous for all segments. The cumulative molecular time spent during amplification is 
modelled as a fraction of the total molecular time. Assuming constant mutation rate over 
time, each time step can be modelled by modulating the mutation burden accordingly. We 
derive the mutation rate per Mb along the genome 𝜇/f/0m  from 1+1 and 1+0 regions of the 
genome as above. We did not count subclonal SNVs, i.e. SNVs with P(clonal)<0.5. When 
modelling amplifications, for each segment of length l in Mb and at each time step of length 
lt, a number of SNVs was drawn from a Poisson distribution with rate corresponding to the 
expected number of mutations given the genome wide mutation rate per Mb 𝜇/f/0m : 
𝑃𝑜𝑖𝑠(𝜇/f/0m × 𝑙 × 𝑁NyWWL1/ × 𝑙/), where 𝑁NyWWL1/ is the number of copies present when the 
SNV appeared. We followed the multiplicities of each simulated mutations, calculated as 
iqpzv{

i|}{{~�u
. 

Starting from the observed copy number profile of an amplified chromothriptic region in a 
sample, we simulated 1,000 amplifications for each 𝑓/"XL	]ML1/ ∈ {1,0.1,0.01,0.001} = total 
fraction of molecular time spent during amplifications. We then counted the number of SNVs 
at intermediate multiplicities defined as SNVs with multiplicities satisfying (𝑚𝑎𝑥	(𝑁X"1fW +
1, 5) < 𝑚𝑢𝑙𝑡" < 𝑁X0afW × 75%) and modelled the distribution of counts as a negative 
binomial using maximum likelihood fitting. This allowed us to derive normalised likelihoods 
for each 𝑓/"XL	]ML1/  to generate the observed counts of SNVs with (𝑚𝑎𝑥	(𝑁X"1fW + 1, 5) <
𝑚𝑢𝑙𝑡" < 𝑁X0afW × 75%) after removing kataegis foci.  

6.2 Inference of chromoplexy 

For the purposes of identifying chromoplexy events we utilized the merged set of somatic 
SVs, along with a classification scheme developed by the PCAWG SV working group49. This 
scheme involves the clustering of SV breakpoints by proximity, and subsequent evaluation of 
breakpoint clusters, termed ‘footprints’, according to orientation, copy number context and 
connectivity of adjacent rearrangements. Chromoplexy footprints consist of two breakpoints 
with a +/- (low/high) orientation and a dip in copy number between the breakpoints. Such 
footprints were joined together into an event by their interconnecting SVs. The events were 
classified as a chromoplexy chain or cycle if all constituent footprints were of this type. 
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Balanced translocations constitute the simplest chromoplexy cycles. SV signature analysis 
demonstrated that balanced translocations, but not unbalanced translocations or 
chromoplexy chains of length 2 (i.e. a single footprint with SVs not connecting to another), 
co-occurred with longer chromoplexy events in the same signature. For the purpose of our 
analysis we included all chromoplexy chains and cycles, except those chains of length 2. 

6.3 Inference of kataegis 

Regions exhibiting localized hypermutation were identified by performing a piecewise 
constant fit of inter-mutation distances. Multinucleotide variants were considered as single 
mutations at the position of the first SNV. Sets of at least 𝐾 adjacent consensus SNVs were 
flagged as candidate kataegis events if the segmented inter-mutation distance dropped below 
a threshold 𝑑. The thresholds (𝐾, 𝑑) depend on the total mutational burden 𝑚𝑏 of the sample 
as follows. The inter-mutation distance (𝑋) in a sample is robustly modeled assuming an 
exponential distribution with rate 𝜆 = m18

XLO"01(�)
. The probability of observing an inter-

mutation distance ≤ 𝑑 can then be computed as 𝑃(𝑋 ≤ 𝑑) = 1 − 𝑒9�O. Setting this as the 
probability of success 𝑝 in a Bernoulli trial and assuming 𝑁 ≫ 𝐾, we can estimate the 
probability of a streak of 𝐾 − 1 successes (i.e. K adjacent SNVs) in 𝑁	 (~𝑚𝑏) trials as 
𝑆(𝑁, 𝐾 − 1) = 𝑁(1 − 𝑝)𝑝�9&. We limit 𝑆(𝑁, 𝐾 − 1) ≤ 0.01, consider 𝑝 ≪ 1 and work back 

to derive the threshold 𝑑 ≤
9m1(&9 ��.��q�

��� )

�
 for 𝐾	𝑖𝑛	(4, 5, 6). We set a ceiling 𝑑X03 = 1kb and 

take the pair (𝐾, 𝑑) which first maximizes 𝑑 and then minimizes K. 

Kataegis candidate foci were subsequently annotated by the mutational signature(s) 
contributing to each focus, using PCAWG mutation signature classifications developed by the 
mutation signature working group using non-negative matrix factorization53. Cosine 
similarities and multinomial likelihoods were computed between the mutational spectrum of 
each focus, adjusted for local trinucleotide content, and the mutational signatures that are 
operating in the sample (including previously unreported signatures such as the C[T>N]T 
kataegis that we identified during initial analyses, and the merged signature 2/13). Cosine 
similarity biases towards ‘peaky’ signatures, while the likelihood is sensitive to contributions 
from background SNVs (in which case it biases towards ‘flat’ signatures). Balance was 
achieved by summing the ranks of their scores and assigning the focus to the signatures with 
the lowest rank sum.  

Two additional metrics were devised to verify the simultaneous, as opposed to sequential, 
nature of the events, with kataegis candidate foci having to meet at least one of two criteria: 
(1) Typical APOBEC-type kataegis events occur on a ssDNA template106 and initial analyses 
suggested that this holds true for at least some other mutational processes contributing to 
kataegis. To assess ‘strandedness’, we consider the sequence of mutated reference strand 
bases in the focus and compute the probability of a streak of a single base that is at least as 
long as the longest one observed, given the local background nucleotide frequency. For 
example, in a focus of 𝑁 = 6 SNVs, with 𝐾 = 5 consecutive mutations at reference C 
nucleotides and a background frequency 𝑝 = 0.22 of C, this probability is given by the 
following recursion 𝑆(𝑁, 𝐾) = 𝑝� + ∑ 𝑝a9&(1 − 𝑝)𝑆(𝑁 − 𝑗, 𝐾)a�&,�  to be equal to 9.17x10-4.  
P-values were corrected for multiple testing by controlling the false discovery rate according 
to Benjamini and Hochberg, and foci were considered to exhibit strand bias when q ≤ 0.1. 
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(2) Point mutations mapping to a single kataegis events should phase to a single haplotype. 
To confirm that SNVs reside on the same chromosomal homolog, we used the mutation-to-
mutation phasing information extracted from the aligned bam files by the PCAWG evolution 
and heterogeneity working group107. Briefly, we obtained phasing information for all SNV 
pairs that are within 700bp. Low quality reads and base calls were filtered out by setting 
minimal mapping and base qualities thresholds of ≥ 20. Reads that were not properly paired, 
were flagged as duplicates or had a failed vendor quality control flag were also removed from 
consideration. Kataegis generates SNVs on the same physical chromosome, as a result, reads 
should report either the mutant or the WT alleles of the two variants (Mut-Mut or WT-WT 
reads) but not just one of each (Mut-WT or WT-Mut). Candidate foci were considered 
punctuated if ≥ 75% of SNVs were in-phase with one another.  

Finally, in line with metric (2), any focus in which ≥ 10% of the SNVs show evidence of 
sequential mutagenesis (i.e. both Mut-Mut and Mut-WT or WT-Mut reads) or anti-phasing 
(i.e. only Mut-WT and WT-Mut reads) is filtered out. 

6.3.1 Analysis of kataegis drivers and patterns 

The R package blme was used to fit Bayesian generalized linear mixed effect models of the 
number of APOBEC kataegis foci per sample. We performed Poisson regression iteratively 
including the PCAWG drivers and cytidine deaminase expression levels as fixed effects, while 
controlling for tumour type (random intercept per tumour type and slope for drivers/cytidine 
deaminase expression) as well as the number of structural variants and donor age at diagnosis 
(fixed effects, both log-transformed, centered and scaled). Patient sex (as inferred from the 
sequencing data) was found not to carry significant predictive value and was further excluded 
from the modeling. A standard normal prior was placed over the modelled coefficients (fixed 
effects) while a default Wishart prior was used for the covariance of the random effects. 
Coefficient p-values were adjusted for multiple testing according to Benjamini and Hochberg. 
Forward selection using drivers and cytidine deaminase gene expression with q ≤ 0.05 and 
evaluation of BIC, AIC and likelihood ratio tests of the full model with the variable in question 
against the model without it resulted in an optimal model incorporating APOBEC3B 
expression levels, the number of structural variants, patient age at diagnosis (random effects) 
and tumour type (fixed effect). In R/lme4 formula syntax this final model is described as 
follows:  

#𝐴𝑃𝑂𝐵𝐸𝐶	𝑓𝑜𝑐𝑖~	𝐴𝑃𝑂𝐵𝐸𝐶3𝐵	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + 𝑎𝑔𝑒	𝑎𝑡	𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 + #𝑆𝑉𝑠 +
(1|𝑡𝑢𝑚𝑜𝑢𝑟	𝑡𝑦𝑝𝑒)	 

Accounting for overdispersion by repeating the exercise above with a negative binomial 
model (R package glmmTMB) yielded identical conclusions. 

Samples in the top ~5% of kataegis burden (> 30 foci) were classified into 4 groups: (non-
APOBEC) < 50% of foci with an APOBEC signature; (SV-associated) ≥ 50% APOBEC foci and ≥ 
45% of foci within 1 kb of a breakpoint; (rearrangement-independent) ≥ 50% APOBEC foci and 
≤ 20% of foci within 1 kb of a breakpoint; (mix) ≥ 50% APOBEC foci and 20-45% of foci within 
1 kb of a breakpoint. Replication Fork Directionality (RFD) measurements from sequencing of 
Okazaki fragments (OK-Seq) in HeLa cells was obtained from Petryk108. Replication timing 
measurements derived from percentage-normalized and wavelet-smoothed Repli-Seq signals 
were obtained from ENCODE/University of Washington109. 
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6.4 Subclonal architecture reconstruction 

To determine the probability of a clustered event being (sub)clonal, we used the clonal-
subclonal assignment probabilities for SNVs and SVs produced by the PCAWG evolution and 
heterogeneity working group110. Briefly, for each PCAWG sample, 11 distinct subclonal 
reconstruction methods were run on the consensus SNVs in the highest confidence consensus 
copy number segments covering at least 75% of the genome. Their outputs (i.e. # mutation 
clusters, # mutations/cluster, tumour cell fraction of each cluster and mutation assignments 
to clusters) were combined by taking a weighted median of the locations (cellular 
prevalences) and the proportion of SNVs assigned to the location, to construct a robust 
consensus subclonal architecture description. This consensus architecture, together with the 
full consensus copy number and all consensus SNVs, indels and SVs for which allele 
frequencies were available, were fed into the MutationTimer algorithm11. MutationTimer 
describes mutation clusters using a beta-binomial model and derives assignment probabilities 
for each mutation belonging to each cluster while taking into account cluster size. The result 
is the complete consensus subclonal architecture with probabilistic assignments of mutations 
to (sub)clones. MutationTimer also splits up the probability of a variant	𝑗 being clonal (1 −
𝑝]y¡,a) into the probability that it is present on a single or on multiple chromosomal copies 
(𝑝]"1lmL,a  and 𝑝l0"1,a, such that 𝑝]"1lmL,a + 𝑝l0"1,a + 𝑝]y¡,a = 1). In regions with chromosomal 
gains, this allows timing of clonal variants as clonal early, clonal late or clonal NA (i.e. 
indistinguishable), depending on whether they occurred before or after the gain. Mutations 
which are present on multiple copies in a region with copy number gains are classified as 
clonal early. If they are present on a single copy of the gained chromosome and there is loss 
of heterozygosity in the region, they are considered clonal late, as they must have happened 
after the gain on that same chromosome. All other clonal variants are classified as clonal NA. 

6.5 Clonality assessment of punctuated events 

For every punctuated event, we computed the probability of it being clonal as the normalized 
likelihood using the clonal assignment probabilities of the constituent SNVs or SVs. For 
instance, for an event	𝑖 involving 𝑁 = 1… 	𝑗 variants, each with an associated probability 1 −
𝑝]y¡,a  of being clonal in the tumour sample, the likelihood of being clonal was determined as 
∏i
a�& (1 − 𝑝]y¡,a)	and of being subclonal as ∏i

a�& 𝑝]y¡,a. The likelihoods were 
normalized to yield probabilities for (sub)clonality of the event (𝑝Nm,"  and 𝑝]y¡,"). We also 
computed the probability of every event being clonal early, clonal late or clonal NA (𝑝L0Wm6,", 
𝑝m0/L,"  and 𝑝i$,", respectively) using the probabilities that the variants involved are clonal and 
present on a single chromosomal copy, on multiple copies, or they are subclonal, as derived 
by MutationTimer. Normalised likelihoods were computed using the variants in the event 
stratified by consensus gain/LOH status (consensus copy number), weighted by the fraction 
of variants in each class, and summed according to the rules for distinguishing clonal 
early/late/NA (as described above) to obtain the final probabilities. 

The odds of observing clonal versus subclonal events of different types (kataegis, 
chromoplexy, chromothripsis or simple events such as SNVs, indels or SVs) were computed 

for every cancer type by bootstrapping the ratio 

∑r|s,4¤	�.¥
∑r|s,¦4q,4¤	�.¥
∑r¦}�,4¤	�.¥

∑r¦}�,¦4q,4¤	�.¥

 where  0.5 represents a 
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pseudocount (i.e. a single event with 𝑝Nm," = 	 𝑝]y¡," = 	0.5) and 𝑝Nm,]"X," and 𝑝]y¡,]"X,"  are the 
clonal and subclonal assignment probabilities of a simulated event matched to observed 
event 𝑖. For every punctuated event observed, we simulated 10,000 comparable events by 
sampling the same number of SNVs or SVs from the background of non-punctuated variants 
with identical gain/LOH status in that sample. Clonal and subclonal assignment probabilities 
(𝑝Nm,]"X," and 𝑝]y¡,]"X,") as well as probabilities of being clonal early, late or NA (𝑝L0Wm6,]"X," , 
𝑝m0/L,]"X," and 𝑝10,]"X,") were computed for the simulated events as described above for the 
observed events. To obtain the median odds ratio and 95% percentiles, 10,000 bootstrap 
replicates of the observed events dataset were generated while a different matched set of 
events was used for each iteration. During the bootstrap, events were weighted according to 

&
(#	L\L1/]	"1	]0XMmL)

 to give equal weight to samples with different numbers of punctuated 

events. The odds of observing clonal early versus clonal late events were computed similarly 

by bootstrapping the ratio 

∑r~p{s§,4¤	�.¥
∑r~p{s§,¦4q,4¤	�.¥

∑rspu~,4¤	�.¥
∑rspu~,¦4q,4¤	�.¥

. 

 

 

6.6. Data Availability 

All kataegis, chromoplexy and chromothripsis calls generated in this section are available 
from Synapse (syn12978907). 

 

7. Tumours without detected driver mutations 
Average detection sensitivity for each samples was calculated from mean coverage and 
consensus purity and ploidy as described in Rheinbay et al111. To rescue mutations lost to 
tumour in normal contamination, we applied the deTiN  as described previously112 
(https://github.com/broadinstitute/deTiN). Tumour-in-normal (TiN) contamination was 
estimated from unfiltered Broad pipeline SNV (called by MuTect) and Sanger pipeline indel 
calls and allelic copy number data. Briefly, deTiN estimates TiN by measuring the proportion 
of DNA supporting somatic aberrations in each sample and then recovered indels and SSNVs 
previously discarded as possible germline events based on this estimate. Bone tumours were 
removed from this analysis due to a high number of artefact calls53. Variants recovered by 
deTiN are limited to those that otherwise would have been rejected by MuTect due to low-
allele fraction presence in the normal.  

Driver discovery was performed on 169 tumours without drivers after the described rescue 
of events present in the matched normal, TERT hotspot mutations, and power considerations. 
Coding and non-coding significance analyses for tumour cohorts was carried out using MutSig 
as described in Rheinbay et al111. GISTIC version 2.0.23 was run on PCAWG consensus copy 
number107 for all samples and individual cohorts with at least five tumours with parameters -
conf 0.95 -savegene to identify significant copy number gains and losses113. Medulloblastoma 
group information was obtained from Northcott et al, 2017114. 



Pan-Cancer Analysis of Whole Genomes, Supplementary Information 60 

 

 

8. Panorama of driver mutations in human cancer 

8.1 The onCohortDrive method  
 
The discovery of mutational cancer driver genomic elements (GEs), both coding and non-
coding, has received much attention in recent years, with several methods specifically 
developed to address it. The approach followed by all these methods consists in identifying 
the GEs with signals of positive selection from the deviation of their mutational pattern across 
a cohort of tumours from the random expectation115–122. However, the identification of the 
individual driver mutations in each patient remains an open problem because of two main 
reasons. First, not all observed mutations in driver GEs are tumorigenic123,124. Second, 
currently probed cohorts of tumours are underpowered for the identification of all driver GEs 
using these methods125. (Note that, for simplicity, here we use the term mutation to refer to 
a point mutation, as defined in the paper.)  

To address the problem of accurately identifying driver mutations in the PCAWG cohort, we 
developed onCohortDrive, which is predicated on two principles derived from the 
aforementioned hurdles. On the one hand, it assumes that not all mutations in driver 
elements are drivers. On the basis of this predicate, it also assumes that an accurate 
mutational null model – taking into account mutational processes and genomic covariates of 
the mutation rate – may be computed for each GE across a cohort of tumours. The 
comparison of the number of mutations detected in a GE with their expected number derived 
from this null model then yields an excess of observed mutations above expected, which can 
be used as an estimate of the number of driver mutations in the GE across the analysed 
tumours. On the other hand, the method considers that some driver GEs are below the 
statistical power of the cohort of tumours and the methods employed for their discovery. It 
therefore starts from a Compendium of Mutational Driver GEs (see section 8.2) composed 
not only of those discovered in the cohort under analysis (i.e., discovery GEs), but also of other 
GEs with prior knowledge of involvement in tumourigenesis (i.e., prior knowledge GEs).  

On discovery GEs with computable mutational excess, onCohortDrive ranks mutations in each 
GE according to a number of features associated to their likelihood of being tumorigenic, and 
then nominates as likely drivers those at the top of the ranking, up to a number equal to the 
estimated excess as ‘drivers by rank’. We tested several ranking features that could be applied 
to mutations in all types of elements, and selected two: the CADD126 functional impact score 
and whether mutations occur in clusters. In combination, the combination of these two 
features improved the relative rank of known oncogenic mutations127 with respect to 
random. We also observed that known driver mutations exhibit significantly lower probability 
(computed using ncdDetect120) to occur than other mutations. This is not surprising: while 
passenger point mutations are expected to occur with the probabilities dictated by the 
predominant mutational process in the tissue, the drivers are also favoured by positive 
selection. We therefore used the probability of occurrence of each mutation as another 
feature to rank the mutations in driver elements. Finally, we also used several features 
specific to different types of GEs, such as the mode of action of the driver, the creation or 
disruption of transcription factors or microRNAs binding sites (TFBS, microRNABS) in coding 



Pan-Cancer Analysis of Whole Genomes, Supplementary Information 61 

 

genes, promoters, and 3’UTRs, respectively. For a few (n=6) discovery GEs, we are unable to 
compute a mutational excess: point mutations in these are classified as drivers or passengers 
following a rule-based approach, derived from establishing thresholds of the same features 
employed in the ranking, which we call ‘drivers by rule’ (see Section 8.4.5).  

To compute the number of driver point mutations of a discovery GE across a cohort of 
tumours, in this implementation of onCohortDrive we use the excess of mutations above the 
background rate estimated by NBR128,129, a method that identifies driver genes based on the 
recurrence of mutations across tumours. Briefly, NBR computes the expected number of 
mutations in a GE accounting for trinucleotide mutational signatures, sequence composition 
of the GE and the local density of mutations around it. The trinucleotide mutational signatures 
are computed from all the mutations observed across all GEs. A first estimate of the 
background mutation rate of the GE is done using only this trinucleotide composition and is 
subsequently refined using known covariates of the mutation rate, such as the local density 
of somatic mutations (normalized by sequence composition), the regional replication timing 
and the expression level.  

Once the excess for each GE is computed, its mutations across tumours are ranked based on 
several features that appraise their likelihood of being tumorigenic. These features were 
selected on the basis of prior knowledge and careful evaluation of their performance on the 
task of ranking known driver mutations in the cohort (see Section 8.3). Calculating the excess 
of mutations from the cohort allows the approach to be rank-based rather than categorical. 
It may be applied to GEs bearing signals of positive selection and a mutational excess in the 
cohort under analysis. Within the context of PCAWG, these GEs are detected applying an array 
of statistical methods to their observed mutational pattern.  

For prior knowledge GEs, and discovery GEs where NBR fails to compute a mutational excess, 
onCohortDrive implements a rule-based method to identify putative driver mutations. Both 
methods, the rank-based and the rule-based are coupled within the workflow of 
onCohortDrive, so that GEs undergo either one or the other on the basis of whether or not 
they have been found to carry a significant mutational excess. The algorithm is designed with 
the purpose of being equally functional on both coding and non-coding GEs (see below).  

The implementation of onCohortDrive is the result of a collaborative effort with the PCAWG 
Drivers and Functional Interpretation Group. Namely, we obtained from several labs within 
the working group i) the Compendium of Mutational Driver GEs; ii) the mutational excess 
computed using NBR (see above); and iii) several features of the mutations, some of which 
we ultimately employed in their ranking (see below).  

We have benchmarked the performance of onCohortDrive (see Section 8.4) on its ability to 
correctly classify a set of known driver mutations and benign mutations observed in driver 
GEs in the PCAWG cohort.  

8.2 The Compendium of Mutational Driver GEs  

The compendium of mutational driver GEs is composed, first by all driver GEs with signals of 
positive selection in their pattern of point mutations across the cohort (discovery 
compendium), with the exception of five coding genes and one promoter region of a coding 
gene identified in the lymphoma cohorts with a high proportion of mutations introduced by 
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AID (>40%). It also contains manually collated and curated previously known cancer GEs –
driving tumourigenesis through point mutations, CNAs and/or balanced genomic 
rearrangements of somatic origin– across tumour types. This list of drivers comprises: a) GEs 
with validated tumorigenic effect, obtained from the Cancer Gene Census (CGC 130 and 
literature reports (with special attention paid to recently reported instances of driver non-
coding genomic elements127), and b) genes whose mutational patterns show signals of 
positive selection across previously analyzed cohorts of tumour exomes or genomes113,131,132. 
Each GE in the Compendium is annotated with the list of cancer types where it has been linked 
to tumourigenesis and the type of evidence and source on which this link relies. Furthermore, 
the mode of action of GEs in tumourigenesis (either loss-of-function, activating, or unknown) 
is also annotated.  The Compendium of mutational driver GEs is available at syn11679360. 

We also compiled a list of known driver point mutations integrated by a previous collection 
of known tumorigenic coding point mutations127 and a few manually collected known driver 
non-coding point mutations from the literature133–137 . Three known and one novel (in 
PCAWG) POLE proof-reading affecting mutations138,139 were also included. Furthermore, we 
included an inframe indel, which causes a three amino acid insertion (p.R506_insVLR) in the 
BRAF protein, based on a previous study140. We used this list of known driver point mutations 
as part of the onCohortDrive workflow and as part of its benchmarking (see below). 

8.3 Features  

Both ranking the mutations in a GE so that likely driver mutations appear at the top, and using 
rules to discretely classify the mutations observed in a GE rely on a series of features that can 
be measured for all mutations across GEs. These features need to show different distribution 
within driver and passenger mutations in driver GEs. To decide which features could inform 
both the ranking and rules-classification processes we relied on two types of metrics. On the 
one hand, we compared the distribution of values of a feature for groups of known oncogenic 
mutations and somatic variants of cancer genes experimentally verified to be benign, or 
polymorphisms. On the other, we checked the ability of the features to produce a ranking of 
mutations observed across PCAWG tumours in which known driver mutations observed in the 
cohort appeared systematically at the top. We measured this through the relative rank of 
known drivers produced by a feature and its comparison with a random ranking of the 
mutations. 

Below, we describe the features that after careful selection, were incorporated to rank and 
rule-classify mutations in onCohortDrive, and we describe the rationale followed to select 
each of them. Note that although the features used and their implementation are similar to 
those frequently employed to identify signals of positive selection on GEs across cohorts, 
within onCohortDrive we only use them to rank mutations that appear in GEs that have 
already been identified as drivers. Moreover, different features contribute differently to the 
ranking of mutations (see Section 8.3.4).  

8.3.1. Functional Impact (FI)  

A mutation conferring a selective advantage must increase the cell fitness, and this is achieved 
by acquiring, enhancing or disrupting cellular functions. We therefore hypothesized that 
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cancer driver mutations tend to possess a high functional impact on the proteins they 
affect130,141,142.  

One of the most widely used metrics for quantifying the deleteriousness of specific mutations 
is the CADD score126, which integrates multiple annotations such as conservation across 
evolutionarily related sequences, functional genomics data and protein-level scores. The 
CADD score of known driver in cancer genes (from the Cancer Gene Census130, CGC) is greater 
than that of other mutations observed in PCAWG, all possible mutations and known 
polymorphisms in cancer genes. We therefore decided to use the CADD score of mutations 
to rank all mutations in one GE across tumours.  

8.3.2. Clustering of mutations  

Driver mutations are known to cluster in certain regions of some cancer proteins143. These 
clusters could mark sensitive regions in the primary structure of tumour suppressor genes 
and regions relevant for the activation of oncogenes. Methods to identify driver GEs have 
exploited the clustering of mutations as a signal of positive selection. Nevertheless, the 
difficulty in correctly modelling the background mutational processes taking into account all 
influences at the local level144 makes it hard to fine-tune these methods to avoid the 
identification of many false positive GEs. In the context of onCohortDrive, we use the 
clustering of mutations solely as a feature to rank the mutations detected in GEs with signals 
of positive selection following their likelihood of being drivers. In other words, in GEs that 
have been identified as drivers, we deem the mutations in clusters more likely to be driver 
mutations than non-clustered mutations.  

For each GE (G), coding or non-coding, we aim to assess to what extent each mutational 
cluster formed by the mutations observed in G provides an extremal likelihood assuming a 
background probability distribution that we infer from the mutations observed in G.  

We define a mutational cluster to be any connected subsequence 𝐶 ⊂ 𝐺 such that: i) C 
encloses more than two mutations; ii) both the first (5’) and last (3’) positions of C correspond 
to mutations; iii) any two consecutive pairs of mutations in C are located within 30bp distance 
from each other; iv) C is maximal with respect to the above mentioned properties, i.e., it is 
not properly contained in another sequence satisfying conditions i), ii), and iii). In order to 
specify the clusters in G, we only require the mutations of the cohort alongside their 
respective positions. This definition is meant to be an abstraction of a mutational hotspot.  

Next, we want to compute the likelihood to observe m mutations in C taking into account an 
estimated mutation rate at each base position. Thus, we require a discrete probability 
distribution that assigns a likelihood to any sample of mutated positions of C. Moreover, the 
sought distribution must allow to consider distinct mutation rates per base position. In view 
of these requirements, the probability model of choice is a Poisson Binomial distribution. 
Taking into account that multiple mutations can occur in the same base position in the cohort, 
we define 𝐶ª as the DNA sequence consisting of as many copies of C as samples are in the 
cohort. The Poisson Binomial distribution will draw mutations from 𝐶ª.  

The probability that a mutation is observed in a base position 𝑥 of 𝐶ª will be considered to 
depend on the reference tri-nucleotide at 𝑥, i.e., the base at position 𝑥 alongside its 5’/3’ 
flanking bases. In order to estimate this probability, we first consider two different mutation 
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rates per base: i) the overall mutation rate per base position in G, 𝑟 = 𝑚/𝑁, i.e., where 𝑚 is 
the number of mutations observed in G, and N is the number of base positions in G multiplied 
by the number of samples in the cohort; ii) the tri-nucleotide specific mutation rate 𝑟« =
𝑚«/𝑁«, where 𝑚« is the number of mutations observed at tri-nucleotide 𝜏, and 𝑁« is the 
abundance of 𝜏 in 𝐶ª. Then, for each base position of 𝐶ª with tri-nucleotide 𝜏 we set the 
mutation rate: 

𝑝« =
𝑁

𝑁 + 𝑁«
. 𝑟 +

𝑁«
𝑁 + 𝑁«

. 𝑟« =
𝑚 +𝑚«

𝑁 +𝑁«
.	

 

We implemented this model using the Python package poibin145. Equipped with an 
appropriate implementation of our Poisson Binomial probability model, for each cluster C we 
compute a P-value, meaning the exact probability under the Poisson Binomial model to draw 
as many or more mutations from 𝐶 ⊂ 𝐺 than the number observed in C. Furthermore, 
mutational clusters with P-value smaller than 0.05 were deemed significant. As explained 
above, clustered mutations (i.e., within a significant cluster) in a driver GE are regarded as 
more likely drivers than non-clustered mutations. The algorithm then uses this information 
to re-organise the ranking of mutations (Section 8.3.4).  

8.3.3 Ranking mutations based on FI and clusters  

Next, we checked whether ranking mutations in driver GEs based on these two features (FI 
and clusters) is an effective way to identify drivers. To this end, we compared the relative rank 
of known driver mutations resulting from ranking the mutations in all GEs randomly, using 
the CADD score alone and combining the CADD score and the clustering. (For the CADD + 
clusters rank, we first ranked known driver mutations in GEs based on their CADD scores, and 
then the mutations found in a significant cluster were moved to the top of the ranking, 
preserving their originally established order.) This analysis demonstrated that ranking the 
mutations using CADD score ranks known driver mutations higher than random ranking, and 
that the ranking based on both features produced better relative rank than CADD alone. We 
therefore decided to use the combined rank of FI + clusters in onCohortDrive.  

8.3.4. Mutational unlikeliness  

We also hypothesised that driver and passenger mutations have different probability 
distributions. While passenger point mutations are expected to occur with the probabilities 
dictated by the predominant mutational process in the tissue, the drivers are also favoured 
by positive selection, and can therefore appear with the same or lower probability. Using the 
sample- and position-specific probabilities of mutations (ncdDetect120), we computed the 
average probability of occurrence of known driver mutations observed in each PCAWG 
tumour. Then, we compared the average probability of occurrence of driver mutations 
obtained for each tumour with the average probability of occurrence of 10,000 groups of 
mutations of the same size that we sampled randomly from the same tumour. We thus 
computed an empirical p-value estimating the bias of occurrence of known driver mutations 
towards lower or higher probabilities than other mutations. We repeated the analysis using 
only known coding mutations to guarantee that the observed bias was not caused by different 
probabilities of occurrence of coding and non-coding mutations, both in individual cohorts 
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and pan-cancer. We found that known driver mutations exhibit significantly lower 
probabilities of occurrence than other mutations in most cancer types, indicating that the 
mutational unlikeliness can be used to further refine the sifting between drivers and 
passenger mutations in driver GEs.  

8.3.5. Element specific scores  

The features described until now, namely FI, clusters and mutation unlikeliness, have the 
advantage that they can be computed for all variants in the genome. Some other features are 
relevant only for particular types of elements (Supplementary Table 13). For instance, the 
creation or disruption of transcription factor binding site (TFBS) is very informative for 
variants in promoters, 5’UTRs and enhancers. We selected different element-specific scores 
to aid the ranking of mutations following their likelihood of being drivers. All these scores 
were binary and stated whether a mutation in one of the following elements fulfilled the 
corresponding feature.  

8.3.6. Other evaluated features  

We evaluated other features for the method, which were eventually discarded for their use 
in onCohortDrive (Supplementary Table 14).  

 

8.4. The onCohortDrive workflow 

This section describes the workflow used to apply onCohortDrive to the PCAWG cohort. 

8.4.1. Overview  

The overall workflow implements a decision-making tree on all mutations identified in the 
cohort (47,022,343) that integrates the identification of known tumorigenic mutations, the 
ranking approach and the rule-decision approach. First, only mutations affecting GEs in the 
Compendium of Mutational Driver Elements enter this decision-making process; all other 
mutations are automatically labelled passengers. The algorithm then makes a decision on 
whether the mutations observed in a GE will undergo the ranking-based or the rule-based 
process. Mutations in GEs bearing significant signals of positive selection in particular cohorts, 
metacohorts, or the pan-cancer cohort (discovery GEs) and an excess of mutations above 
their background rate undergo the ranking process. Mutations in GEs without computable 
excess undergo the rule-based process.  

8.4.2. Analysing mutations in driver GEs  

The Compendium of Mutational Driver GEs is integrated by a wealth of data characterising 
each GE. Discovery driver GEs are annotated with the excess of mutations above the 
background rate, which is employed to decide the number of expected driver mutations of 
each element. Prior knowledge GEs are annotated with their mode of action (i.e. Loss of 
Function, Activating or ambiguous), either known or predicted146; the tumour type where 
they have been shown to promote tumourigenesis; and the original source reporting it, or 
the method that identified it (https://www.cancergenomeinterpreter.org/genes127).  
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Of note, lymphoma mutations in GEs with a high proportion (>40%) of mutations introduced 
by the AID enzyme during the somatic hypermutation process in the germinal center are 
deemed passengers. These mutations were identified using the PCAWG AID signature 
(syn11804065). 

8.4.3. Identification of known tumorigenic mutations  

Known tumorigenic mutations (k) in GEs in the Compendium are first nominated as known-
drivers, and subsequently excluded from the rank-based and rule-based approaches to 
identify drivers. This process is not followed in the unbiased exercise to estimate the 
contribution of non-coding driver mutations (see Section 8.6) nor in the benchmark exercise 
(see section 8.5).  

8.4.4. Rank-based approach  

OnCohortDrive then deals with GEs bearing an excess of mutations above the background 
rate in cohorts of individual tumour types. Mutations in these GEs are processed in two steps.  

Step 1:  

Let N be the total number of mutations in a GE in the cohort, and n the number of mutations 
it carries in excess above the background rate across the tumours in a cohort (i.e. the 
expected number of driver mutations in the GE). Then, the number of mutations available to 
the rank-based approach is N-k, and the excess after identifying known tumorigenic 
mutations is n-k. First, the N-k mutations in the element available to the rank-based approach 
are ranked based on their CADD scores. Then, mutations fulfilling element-specific binary 
features are moved to the top of the ranking, keeping the previously established order within 
them. Next, the mutations found in a significant cluster are moved to the top of the ranking, 
again preserving their originally established order. (Of note, clusters with high proportion 
(>50%) of lymphoma mutations introduced by the AID enzyme, identified using the PCAWG 
AID signature available at syn11804065, are deemed not significant and their mutations 
ranked accordingly.) Finally, mutations not fulfilling any binary feature-specific score and not 
in clusters are re-ranked based on the product of the rank of their unlikeliness and their 
functional impact. Finally, the n-k mutations at the top of the resulting ranking are nominated 
as drivers.  

 

Step 2: 

The calculation of the excess depends on the size of the cohort. Therefore, the algorithm also 
exploits the excess found at a pan-cancer level. Let r (residual excess) be the number of 
mutations in excess in the pan-cancer cohort after the mutations in excess in all tumour type 
cohorts have been processed as explained in step 1. These r mutations are then processed, 
as explained, across all tumours in the pan-cancer cohort, excluding those in cohorts already 
processed in step 1.  

Discovery GEs identified only when pooling several cohorts together (i.e., metacohorts) are 
processed within their respective metacohort as described in step 1. In other words, their 
mutations across all the samples in the metacohort are ranked as explained in Step 1, and 
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drivers are selected from the top of this ranking using the excess computed within the 
metacohort. No residual excess is computed in this case.  

Finally, after all excess is exhausted, mutations in cohorts where the GE has not been 
identified as a driver are evaluated via the rule-based approach (see below). The rationale in 
this case is analogous to that of the use of the rules: driver mutations may still appear in 
cohorts where the GE is not identified as a driver due to a lack of statistical power for its 
detection.  

8.4.5. Rule-based approach  

Mutations in GEs with no excess above the background rate are processed with a rule-based 
approach. We reasoned that only a few mutations in prior knowledge GEs in the 
Compendium, which by definition are under the limit of detection of the cohort, are expected 
to be drivers. Furthermore, it is reasonable to assume that the likelihood of mutations in these 
GEs to be drivers should correlate with their unlikeliness or indirectly correlate with their 
probability to occur in each particular tumour (computed via ncdDetect; see description 
above). We designed rules to nominate driver mutations in these GEs taking into account the 
same features as in the rank-and-cut approach, namely i) their CADD functional impact score, 
ii) whether they occur in mutational clusters, iii) their unlikeliness, and iv) element-specific 
features.  

To do this, we first separated the mutations affecting coding genes into six groups depending 
on their probability to occur in the tumours where they are detected. The groups were made 
such that the area under the curve of the probability density function was equal for the six 
groups. Mutations in groups with increasing probability then entered the rule-based process 
to be considered as possible drivers if they occurred in genes identified as drivers with 
increasing level of confidence (Supplementary Table 15). For instance, all mutations affecting 
genes with the highest confidence to contain driver mutations in the same tumour type (Level 
of confidence 1 in Supplementary Table 15) entered the rule-based process. However, only 
the most unlikely mutations in the tumour sample (Mutation probability group 1 in 
Supplementary Table 15) in genes with lower confidence in the tumour type entered the rule-
based process (Level of confidence 6 in Supplementary Table 15). 

 

Coding mutations that entered the rule-based approach are then nominated as drivers if any 
of the following is true:  

a) The mutation causes a missense change in a significant mutational cluster;  

b) The mutation results in the truncation of a transcript of a loss-of-function driver or NOTCH1 
or NOTCH2 (whose truncating mutations cause activation of the protein and its mobilization 
to the nucleus); 

c) The mutation has a CADD score above the 95th percentile of the CADD scores of all coding 
genes. 

Mutations affecting driver non-coding GEs were separated into three groups of increasing 
probability of occurrence, following the same rationale explained above for coding mutations. 
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Then, we processed the mutations in groups of increasing probability using rules of increasing 
stringency. We considered drivers the:  

a) mutations in the group of lowest probability, with CADD score above the 95th percentile 
of CADD scores in GEs of the type,  

b) mutations in the group of intermediate probability, fulfilling a binary feature score and with 
CADD score above the 90th percentile of CADD scores in GEs of the type, and  

c) mutations in the group with highest probability that fulfil a binary feature score and with 
CADD score above the 95th percentile of CADD scores in GEs of the type.  

The thresholds of CADD score were decided on the basis of the comparison between the 
distributions of CADD scores of  known driver point mutations and other sets of point 
mutations. 

The above explanation for the separation of mutations into groups of increasing probability 
of occurrence applies for autosomal SNVs. SNVs in sex chromosomes and indels are processed 
analogously, with the difference that the mutation probability groups are established on the 
basis of the count of mutations (either total SNVs or indels) in the sample, as no ncdDetect 
probability is available for these mutations. Finally, MNVs are separated according to the total 
count of SNVs. Then, these mutations are processed via the rule-based approach following 
special rules (Section 8.5.2).  

Finally, after known, drivers-by-rank and drivers-by-rule mutations are identified, any 
mutation that is identical to a previously nominated driver mutation, or any coding mutations 
causing the same amino acid change, in a different tumour type is also nominated as a driver.  

8.4.6. Post-processing 

According to evidence provided by the PCAWG drivers discovery group, we classified as 
passengers mutation of RFTN1 that onCohortDrive deemed drivers, if their probability of 
being generated by the AID signature was greater than 0.5, and we promoted to driver-by-
rule 11 point mutations of TP53 affecting either the 5’UTR or a non-canonical splice site in the 
first exon. 

8.5. Benchmarking onCohortDrive  

Next, we assessed the capability of onCohortDrive to correctly identify known cancer 
mutations in driver genes (as drivers) and known benign mutations in cancer genes (as 
passengers). To that end, we first identified all known cancer mutations (1032) and known 
benign mutations (12) in cancer genes in tumours in the PCAWG cohort from a total of 22854 
SNVs in cancer genes of the Full Compendium. We next executed the analysis skipping the 
step of identification of known mutations. OnCohortDrive identified 3719 SNVs as drivers 
(16%). Of the 1032 known driver mutations it correctly classified 95% (982) as drivers, and all 
12 benign mutations as passengers. Note that these 1032 known tumorigenic mutations 
actually correspond to 468 unique SNVs, some of which appear recurrently in several patients 
of the cohort. We count them separately for the benchmark, because they all compete in the 
ranking for the purpose of identifying drivers. In summary, while only 16% of SNVs in cancer 
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genes are classified as drivers by onCohortDrive, the vast majority of real driver mutations 
(95%) are correctly classified as drivers. 

In addition to benchmark the full onCohortDrive, we specifically benchmarked the capacity 
of the rule-based approach to correctly classify drivers and passengers. It is important to bear 
in mind that the rules within onCohortDrive are designed to identify few driver mutations 
that may appear in elements below the statistical power of detection of the cohort, and are 
therefore made very stringent. The rules operate on GEs that are expected to be depleted of 
driver mutations, and therefore their most highly desired characteristic is specificity (i.e., the 
capability to correctly classify benign mutations as passengers). To validate the rule-based 
approach we classified all SNVs as above solely by the rules. As expected, a lower proportion 
of SNVs are classified as drivers by rules, 2412 (11%), still maintaining a high proportion of the 
known driver mutations correctly classified, 805 (78%) and all 12 benign variants classified 
correctly as passengers.  

Since benign SNVs in driver GEs were very scarce in the PCAWG cohort, we carried out two 
more benchmarks to assess the specificity of the rules. We applied the rules to all benign 
SNVs in ClinVar147 (using the version of the rules adapted to group 1 of mutations; see section 
8.5). We found that 97.1% of the 314 SNVs were correctly nominated as passengers. Finally, 
we did the same experiment for a list of common coding polymorphisms obtained from 
ExAC87 by filtering out those observed in TCGA tumours, or with allele frequencies below 1% 
or above 50%. OnCohortDrive correctly identified 98.4% of the resulting 1394 SNVs as 
passengers.  

We carried out a specific sanity check of the PCAWG catalog of driver point mutations 
produced by onCohortDrive. Namely, we compared the distribution of the number of driver 
coding point mutations identified across the samples of each cohort within PCAWG with the 
number of driver mutations estimated to be in excess over the expected (that is, the number 
of all potential driver mutations) across the same samples. We estimated the distribution of 
the number of non-silent coding mutations in the genes in our Compendium of Driver 
Elements across the samples of each cohort using the recently published dNdScv approach. 
We reasoned that the number of driver point mutations identified by onCohortDrive in each 
tumour of the cohort (resulting from adding known, driver-by-rank and driver-by-rule 
mutations identified in each gene) should be very similar to that estimated globally using the 
dNdScv approach. The comparison of both distributions indeed shows a remarkable 
agreement between the mean number of driver point mutations estimated in both ways. 
Note that the mean number of driver point mutations identified by onCohortDrive in the 
samples of each cohort is in the vast majority of cases within the confidence intervals of the 
mean number of non-silent coding point mutations in excess computed by the dNdScv. 

In summary, this benchmark demonstrated that the decision-making process implemented 
within onCohortDrive via the ranking and rules-decision approaches possesses high accuracy 
in the classification of mutations in driver GEs as drivers and passengers.  

8.6. Processing exceptional GEs or mutations  
Some exceptional GEs and types of mutations require some particularities in their analysis by 
onCohortDrive. Such particularities are described in this section.  



Pan-Cancer Analysis of Whole Genomes, Supplementary Information 70 

 

8.6.1. Mutation in intronic splice sites  

OnCohortDrive nominates as driver-by-rule mutations all intronic SNVs and indels affecting a 
splice acceptor region or a splice donor region in a loss-of-function coding gene. Only 
mutations affecting the canonical acceptor or donor sites and predicted by the LOFTEE to be 
high-confidence loss-of-function are processed. The known mode of action of cancer genes is 
respected for this analysis; for GEs with unknown mode of action, we applied the 20/20 rule 
proposed by Vogelstein148.  

8.6.2. Indels and MNVs  

Indels and MNVs are processed through ranking or rules, like SNVs. The excess of indels was 
also calculated via NBR. Similar to SNVs, indels falling in GEs with excess undergo a process of 
ranking, otherwise they follow a rule-based approach.  

The CADD score of observed indels was computed as the maximum CADD score of all 
substitutions comprised by the sequence either inserted of deleted. The consequence type of 
indels was obtained using the Ensembl Variant Effect Predictor.  

Indels in coding GEs are ranked based on their CADD score. If the gene is a loss-of-function 
driver and the indel causes a frameshift, it is promoted to the top of the ranking, respecting 
the order introduced by the CADD score among them if more than one is observed. On the 
other hand, if the gene is an activating driver, mutations causing a frame-shift mutation are 
moved to the bottom of the rank, unless the gene is NOTCH1 or NOTCH2 (see above). Indels 
in non-coding GEs are ranked based solely on their CADD scores.  

For indels processed through rules, the same probability groups and level of evidence as in 
SNVs are used (section 8.3.5). Specifically, indels in coding genes of the appropriate groups of 
evidence are nominated as driver-by-rule if:  

a) it causes a frameshift in a loss-of-function gene, or  

b) it causes an in-frame mutation with CADD greater than 25. 

 

Indels in non-coding GEs are deemed driver-by-rule if:  

a) they appear in the group with the lowest probability of occurrence and have a CADD score 
above 25,  

b) they appear in the group with intermediate probability of occurrence and have a CADD 
score above 30,  

c) they appear in the group with the highest probability of occurrence and have a CADD score 
above 35  

8.6. Unbiased calculation of the contribution of noncoding driver mutations  

To carry out an unbiased (i.e., without the over-representation of coding mutations 
introduced by the prior knowledge) calculation of the contribution of non-coding mutations 
to tumourigenesis, we applied onCohortDrive only to discovery GEs as described above with 
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one major change. The rank-and-cut approach was implemented on the mutations affecting 
these elements without first nominating known driver mutations among them. In other 
words, instead of carrying out the ranking on N-k mutations (as described in the Step 1 of 
section 8.4 above), we did it on all N mutations observed in the GE across the cohort. The 
rule-based approach in this case is not applied to any mutations once the excess is exhausted. 

8.7. Identification of driver SCNAs and SGRs in tumours of the PCAWG cohort 

This section describes the designation of driver SCNAs and SGRs in the PCAWG cohort. 

8.7.1. Creating the Compendium of driver SCNA elements  

GISTIC113 peaks found to be significant from the analysis of cohorts of 23 tumour types and 5 
metacohorts combining tumour types (Supplementary Table 16) analysed by TCGA were first 
retrieved. The strategy to define the region of the relevant peaks is based on associating 
overlapping peaks across different cancers into “metapeaks”, and if possible associating each 
metapeak with a driver gene that provides a consistent location at which to assess the DNA 
copy number. The definition of the footprints of peaks (their 95% confidence intervals 
window) within a cohort was carried out using an arm-level peel-off method, and the peaks 
were then extended to other diseases using the ‘classic’ peel-off approach. In addition, the 
classic peel-off method was applied to peaks detected across a pan-cancer analysis 
comprising some 11,000 TCGA tumours113. Peaks with more than 25 genes were subsequently 
discarded.  

Seed peak footprints were sorted, with the pan-cancer peaks ranking first, and the cancer 
specific peaks sorted following the size of their footprint (from smallest to biggest). Following 
this order, seed peaks were then tested one at a time for overlap with all other seed peak 
footprints, and overlapping peaks were greedily aggregated into meta-peaks using this 
ordering. Metapeaks were thus constructed, following the rule that each could not contain 
more than one peak from the same cancer type. On detail, groups of overlapping metapeaks 
were optimised so that peaks were assigned to the closest metapeak, and classic peel-off 
peaks were added to the metapeaks if their disease was not already represented in the 
metapeak by a seed peak.  

The metapeaks resulting from this merging process then underwent a manual curation step. 
On detail, metapeaks containing more than one somatic SCNA driver gene were split into 
separate metapeaks for each driver to make sure that the copy number at the locus of each 
driver was assessed independently. The names of metapeaks were homogenised, with 
member peaks losing their original identity, and making sure that all seed peaks were 
assigned to at least one metapeak. This manual curation process respected that merged peaks 
still had only one peak per cancer type or combined type. Seed peaks were preferred over 
extension peaks in the merging process.  

Finally, we filtered these curated metapeaks using the shift in expression observed for the 
drivers contained in each metapeak. In the TCGA cohort of tumours (Supplementary Table 
16) where a metapeak had been found significant, we separated the samples into those 
showing a copy number change coherent with the identified metapeak and those with normal 
copy number. Then, we compare the expression of the driver gene within the metapeak in 
both sets of samples. The metapeak was subsequently annotated as a driver only if a 
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significant shift in expression coherent with the type of SCNA, amplification or deletion, was 
observed. In the case of metapeaks containing no known driver gene, we compared the 
expression of all the genes within the metapeak in both sets of samples, and kept the 
metapeak in the Compendium only if at least one gene exhibited a significant expression shift.  

We added to the Compendium a known highly recurrent deletion spanning the cytoband 14 
of 13q chromosomal arm in CLL137, because no CLL cohort had been analysed by TCGA. To 
define the boundaries of this peak, we aligned the deleted segments overlapping the area in 
the tumours of the aforementioned cohort and located the region covered in more than 75% 
of the tumours.  

8.7.2. Identification of driver CNA events in PCAWG tumours  

First, for each tumour t in the PCAWG, the relative copy number of segment s (𝑟𝐶𝑁],/) was 
computed as:  

𝑟𝐶𝑁],/ =
2𝐶𝑁]./
𝑚𝐶𝑁/

− 2	

where 𝐶𝑁],/ is the absolute copy number of s in t, and 𝑚𝐶𝑁/ is the median copy number of 
tumour t. Finally, we assessed the copy number of the locus of each metapeak in tumours of 
the same malignancies where the metapeak was discovered. The copy number of a tumour 
at the locus of a peak was computed as the minimum copy number value across the peak 
locus. A relative copy number of the peak greater than 0 is considered an amplification at 
amplification peaks, whereas a value greater than 1 is deemed a high-level amplification. On 
the other hand, a relative copy number below 0 is considered a loss at deletion peaks, and 
values below -1 are nominated as high-level deletions. This assessment is carried out on 
segments of the genome that are shorter that one chromosomal arm, so that only focal 
events are taken into account.  

8.7.3. Additional driver SCNA events in PCAWG tumours 

We manually identified additional driver SCNA events in tumours of cohorts contributed by 
published ICGC studies, and not included in the analysis summarized in Extended Data Table 
19, under the rationale that these cancer types, with no GISTIC analysis available were biased 
against in the Compendium. Specifically, in the CNS-Medullo cohort, we manually included all 
amplifications of MYC, MYCN,  TERT, CCND2,  CDK6, and GFI1B, and the deletions of PTCH1, 
TSC1, and PTEN identified in the original study114. These SCNAs were found in 19 PCAWG 
medulloblastomas. Deletions of CDKN2A and PRDM1 identified in one Lymph-BNHL sample 
were also added, together with a deletion of BRCA2 in a Panc-Endocrine sample and ATM in 
a Prost-AdenoCa based on the PCAWG CNA data, but were missed in the above analysis. 

8.7.4. Identification of driver somatic genomic rearrangements in PCAWG tumours 

The driver SGRs we considered included genic fusions involving an oncogene, truncation of 
tumour suppressors, and cis-activating rearrangements (e.g., promoter-rearrangement and 
enhancer hijacking). These events were obtained from literature reports, curated databases 
(Cancer Gene Census130), and a set of high-confidence novel genomic rearrangements that 
were identified in the PCAWG cohorts (provided by PCAWG Structural Variants analysis 
working group). Using this information, each tumour within PCAWG was probed for the 
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presence of driver rearrangements. In the case of gene fusions, the gene coordinates plus a 
50-kb flanking window on either side of each member of the pair of fused genes were scanned 
for the presence of rearrangements. Furthermore, the rearrangements were annotated when 
they produced a sense in-frame fusion. 

This resulted in 331 fusion events in 319 samples. For 214 of these events (in 204 samples) 
we could not find the expression evidence (i.e., expression of fusion transcripts) due to the 
lack of expression data (RNA-seq) available for those samples. However, for the 117 events 
(in 115 samples) with expression data available, we identified 41 events (in 40 samples) that 
have fusion transcript match, based on the results provided by PCAWG transcriptomics group 
(syn10003873). For the remaining 76 fusion events (in 76 samples), the lack of fusion 
transcript match may be explained by promoter/enhancer hijacking events that resulted in 
an over-expression of the target oncogene. The majority of the fusion events that fall under 
this category are related to the fusion with IGH/IGL locus. On the other hand, we have 
included fusion events in seven samples based on the evidence from fusion transcripts, but 
were not detected based on the aforementioned SV analysis. In addition, we have included 
four fusion events in nine samples of CNS-PiloAstro samples, based on a previous study140 . 

In the case of tumour suppressor genes, the breakpoints affecting exons were considered as 
drivers. In addition, we analyzed rearrangements affecting the cis-regulatory elements of the 
coding genes in the compendium. This included rearrangements in the promoter regions 
(promoter-SV) and those causing a juxtaposition of enhancers close to a gene (enhancer-
hijacking). In the latter case, we focused on genes that CESAM149 analysis has shown to 
become over-expressed through the enhancer-hijacking process, which takes into account 
the breakpoints, SCNAs, target gene (mRNA) expression, and chromatin interaction data from 
topologically associating domains (TADs). For those genes, we performed CESAM analysis to 
identify PCAWG samples with genes that showed over-expression. 

8.8. Identification of likely tumorigenic germline variants 

We identified all truncating (stop gain, frameshift, splice site) germline point mutations and 
rare germline SV deletions affecting genes within a cancer susceptibility list150. We also 
identified all truncating germline point mutations and SV deletions affecting genes involved 
in DNA repair151 , given that a second inactivating event, either somatic (truncating or 
missense) or germline (truncating) was observed in the other allele. 

8.9. Identification of biallelic driver events 

To identify tumour suppressor two-hit events152, we defined biallelic inactivation as a gene 
locus GA/B, where alleles A and B are genetically altered, leading to a genetic Gmut/mut state. 
The biallelic inactivation assessment includes three genetic inactivation event types 
consisting of somatic or germline deletions (“Loss”), somatic or germline SVs (“Break”) and 
somatic or germline SNVs (“Mutation”). Given a heterozygous GA/B locus, we required a loss 
of the A allele of the gene, leading to a hemizygous G-/B state, and genetic inactivation of the 
remaining B allele, specifically requiring the second event to overlap the loss on the A allele, 
leading to biallelic inactivation. We considered four classes of biallelic inactivations: i) 
Loss/Mutation, nonsynonymous driver mutations of the B allele; ii) Loss/Loss, two deletion 
events that overlap an exon and the copy-number derived allele count is 0 both for A and B 
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allele; iii) Loss/Break, SVs where one or both breakpoints are situated in an exon of the B 
allele; and iv) Mutation/Mutation, a nonsynonymous germline SNV and a nonsynonymous 
driver somatic SNV of the same gene. We infer the germline mutation to occur on the A allele 
and the somatic mutation on the B allele, with the assumption that two independent driver 
mutation events are highly unlikely to occur on the same allele. All biallelic inactivation events 
involving at least one Loss event which had not been detected in the process of identification 
of driver SCNAs –either because the SCNA GE was under the statistical power of detection in 
the corresponding cohort, failed the expression filter, or because the Loss event involved an 
arm-level deletion (see section 8.7)– were included in the panorama as driver SCNA loss 
events. 
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Supplementary Notes 

 

Overview 
Previous experience suggests that ensembles of somatic variant callers can robustly provide 
results that are both more sensitive and more precise than the component callers1–3. We 
describe here the somatic variant calling ensemble pipeline for SNVs and indels, run primarily 
on the PCAWG cloud infrastructure. An initial validation phase, involving a pilot of 63 samples 
and 13 pipelines run by individuals within the PCAWG-1 working group, generated candidate 
somatic variant calls, which were subsequently selected for validation by deep sequencing. 
Those validation results were then analyzed and consensus strategies were developed, 
incorporating information from the production pipelines, annotations from the WGS data, 
genomic context, and external databases.   

Production call sets from four SNV callers (MuTect, MuSE, and the Sanger and DKFZ pipelines) 
and three indel callers (Sanger and DKFZ pipelines, and SvABA) were then generated through 
the PCAWG cloud infrastructure. The process included uniform alignment, invocation of 
callers, post-hoc filtering of calls exhibiting OxoG oxidative artifacts4, and addition of simple 
read statistics annotations. An additional caller, SMuFin5, was also run using the same 
alignments. The deep sequencing validation data were used to assess accuracies and choose 
consensus calling strategies. The consensus caller was then run on the production output of 
all tumours. Additional filtering was employed to remove artifacts that were either present in 
the samples, not seen in great numbers in the validation cases, or that the validation strategy 
was unable to recognize. Samples that were determined to be contaminated, had undergone 
presumed sample-swaps, or had clinical data inconsistent with the sequenced data were 
excluded from further consideration, producing a final result of high-confidence somatic SNV 
and indel calls across 2,778 cancer whole genomes from 2,658 donors. 

1. Pilot-63 benchmarking and validation exercise 
We selected 63 paired tumour-normal samples that were uniformly aligned to cover a range 
of cancer types (23) and sequencing projects (26). The samples were selected to represent a 
diversity of tumour types and to have available biological material for experimental 
validation. The aligned tumour and control reads for the selected samples were distributed 
to the 13 participating subgroups of the PCAWG SNV Calling Working Group, each of which 
ran their own somatic variant pipeline. In order to maximize the list of candidate somatic 
mutations, the pipelines encompassed a wide range of methods, including established and 
emerging callers using both alignment and assembly-based strategies. All calls were then 
collected centrally. The callers are summarized in Supplementary Table 17 and are described 
in more detail, along with critical run-time parameters, under Supplementary Methods S1. 
In addition to their SNV and Indel calling functions, the "Broad," "Sanger" and "EMBL/DKFZ" 
pipelines incorporate methods for calling SVs and SCNAs (see Supplementary Methods S2 
and Supplementary Table 3). 



Pan-Cancer Analysis of Whole Genomes, Supplementary Information 85 

 

These 63 samples demonstrated a wide range of mutation rates, with the total number of 
unique somatic mutation calls from all callers varying ~1,000-fold for SNVs and ~30-fold for 
indels (Supplementary Figure 14A). 

The number of callers that identify a given variant in a given tumour is called the 
“concordance” of that call.  Considering only those 46 samples that were successfully 
processed by all callers (“common samples”), the number of calls by concordance and caller 
is shown in Supplementary Figure 14B. There is clearly much stronger agreement between 
SNV calls than Indel calls; 59% of all SNV calls are present in six of the ten callers, whereas 
only 6.5% of all indel calls are made by a majority of callers, with 74% of all calls being private 
to one caller; this much lower concordance holds even for very short indels (Supplementary 
Figure 15). Callers make different tradeoffs between sensitivity and precision, which is 
valuable for an ensemble, as they provide a range of levels of evidence in support of any given 
call.  Agreement among callers tended to be higher (robust linear fit: p = 0.046 in SNVs, 0.0012 
in indels) in more highly-mutated tumours, as shown in Supplementary Figure 16. 

We observed that the level of agreement between callers also varies with the variant allele 
fraction (VAF; Supplementary Figure 17) with low and high VAF mutations tending to have 
lower concordance. Low VAF mutations are naturally more difficult to call since the evidence 
for the mutation is nearer to the limit of sequencing noise; conversely high VAF mutations 
should occur rarely as they require a corresponding copy number change so are difficult to 
distinguish from the far more numerous germline polymorphisms. 

Stratified Mutation Sampling 

Once the sets of proposed calls were collected, we sampled approximately 250,000 of the 6.4 
million unique somatic short variants for validation by targeted deep sequencing. Sampling a 
population is a deeply-studied field, with methodological detail even filling textbooks6. Here, 
we wanted precise estimates less for the individual callers and more for the differences or 
overlaps between the callers on each sample, in order to find ways of using the caller outputs 
to obtain an optimal combination of the call sets. The concordance of a call directly indicates 
the number of times that callers differed in making the call.  Thus we followed the DREAM 
somatic mutation challenge7 strategy of stratifying the sampling by case and concordance, 
and assigning as equal as possible the number of calls per case across each stratum; this 
allows for the construction of low variance, bias-free estimators of the differences in 
accuracies between callers using suitable re-weighted averaging of the validation results.  In 
our case we aimed for 30% of the call budget to be for private (concordance = 1) calls, and 
the rest evenly distributed among remaining concordance bins. 

Fifty cases (spanning the same 23 cancer types but 25 sequencing projects) that still had 
original source DNA for targeted resequencing were selected for deep-sequencing validation. 
For each matched sample pair, approximately 3000 SNVs and 2190 indels were selected for 
validation (40% and 30% of the somatic variant validation budget, respectively; another 30% 
went to structural variants, described in another publication); proportionally more calls went 
to the more complex variants as there was much less concordance for them. 
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Deep Sequencing 

Deep sequencing for validation was performed with Nimblegen Liquid-Phase Capture and 
Illumina HiSeq sequencing. Samples were split over four arrays, with probes on the array 
designed for variants selected as described above; Genomic DNA fragments captured with 
Array 1 were sequenced at the Baylor College of Medicine, and the genomic DNA fragments 
captured with Arrays 2-4 were sequenced at the Washington University of St. Louis. The first 
array designed (Array 2) experienced a large number (26.4%) of probe design failures, due to 
variants being in a low complexity or repetitive region of the genome. The remaining arrays 
were designed by selecting only variants outside of genomic regions annotated by the 
RepBase database of RepeatMasker8, thereby reducing the rate of probe failures significantly 
(down to 12.3%, 9.5%, 9.9% for arrays 1, 3, and 4 respectively), though at the cost of foregoing 
information in those regions, approximately 41% of the genome. Results were not sensitive 
to including or excluding samples on array 2; the by-sample validation rates on array 2 were 
consistent with those of the other arrays (two-sided Kolmogorov-Smirnov, p = 0.7904). 

The results of targeted capture and sequencing were processed following Nimblegen 
recommended best practices9, with minor differences described below.  Median sequencing 
depth at all candidate mutation sites was 610 in the validation tumour sample, 512 in the 
normal (Supplementary Figure 18). We developed a method to classify each mutation based 
on comparing the evidence for the variant in the validation-tumour and validation-normal 
samples (Supplementary Figure 18B). Given that the call had already been identified in the 
WGS data, the validation data were treated as supporting the call if in the tumour sample the 
alternate-supporting read count was inconsistent with noise, and the read-counts in the 
normal were more consistent with noise than the counts in the tumour (less a factor of two 
for possible LOH events). A population of calls with normal and tumour VAFs broadly 
consistent (denoted “NORMALEVIDENCE”) are seen; this suggests that the WGS call was a 
consistent mapping or sequencing artifact and so the call is rejected. Results are largely 
insensitive to the location of the cutoff between PASS and NORMALEVIDENCE calls in normal 
VAF. A very small number of calls are clearly homozygous or heterozygous germline variants. 
The population of accepted calls (“PASS”) are seen in the upper-left of each panel.  In the case 
of indels, these calls “bridge” all the way across to the NORMALEVIDENCE calls, due to the 
calls often occurring in homopolymers or other simple repeats. 

Two of the samples in the validation set were omitted due to their cases having later been 
excluded due to contamination (estimated tumour-in-normal (TiN) contamination >10%); one 
of these sample pairs corresponding to donor DO36352 (TiN of 16%) seems to have further 
underwent a sample swap during validation, with the normal sample being sequenced twice.  
This unintended technical replicate provides a test of the false-positive rate of our variant 
classification procedure, as none of the variants in the mislabeled “tumour” sample should 
occur at significantly different rates than in the normal sample. Supplementary Figure 18C 
shows the classification for this sample.  As expected, almost all calls cluster along the line of 
equality for normal and variant VAF, and the validation false positive rate is under 1% for both 
variant types (8/821 for SNVs, and 7/2083 for indels). 

Supplementary Figure 18D shows the validation rate versus concordance for both SNVs and 
Indels, and the fraction of calls at each concordance level.  In both sets, high-concordance and 
low-concordance calls are very likely to validate as true positives and false positives, 
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respectively.  However, with SNVs, most calls were at moderately high concordance, while 
indel calls were predominantly low-concordance.  

Accuracy on Validation Samples 

Performance statistics (sensitivity, precision, and F1 accuracy) can be calculated for all 
participating callers on the validation samples by appropriately weighting by the sampling 
frequencies. We omit performance characterization within RepeatMasker-masked regions 
because of lack of validation data and because callers made calls within these regions at 
varying rates. Statistics are shown in Supplementary Figure 16 with box plots illustrating the 
distribution of accuracies over samples in Supplementary Figure 16A, with a heat map 
clustered by sample and caller in Supplementary Figure 16B, and a sensitivity-recall plot 
showing overall accuracies in Supplementary Figure 16C, with SNV accuracies on the left and 
indel accuracies on the right. 

Accuracies cluster for both sets of calls, with outliers typically being those methods focussed 
on particular subtypes of calls, e.g. LOHcomplete, which specializes in loss-of-heterozygosity 
events.  All SNV callers displayed high precision, but varied in sensitivity, particularly for low-
VAF variants.  General purpose callers typically performed roughly equally well across 
samples. Indel call accuracies were however much more varied, both between callers and for 
a given caller between different samples.  

As might be expected from the lower agreement on the low mutation-count tumours, 
accuracies for individual callers and combinations thereof were generally lower for these 
quiet tumours. 

2. Production calling and variant consensus development 
Following the Pilot-63 assessment and validation exercise, five pipelines were selected for 
application to the entire PCAWG data set using the PCAWG cloud infrastructure (see below): 
the SNV+indel pipelines DKFZ, Sanger, and Broad, and the indel-only pipelines SvABA and 
SMuFIN. During the production phase of the project, some pipelines were modified to 
improve scalability or robustness, or to address other issues identified during the validation 
project (see Supplementary Methods S2). In most cases, the changes were quite small.  
Specifically, the DKFZ pipeline was modified to improve the selection of bases in overlapping 
regions of read pairs that are used for SNV calling. Additionally, the upper coverage limit 
allowed in the control on valid somatic SNV positions was changed from 150X to a dynamic 
value estimated per sample. The initial MuTect run mistakenly used an inflated estimate of 
foreign DNA contamination, which was later corrected (Supplementary Methods S2.2.6). The 
modifications to the production versions of these two pipelines resulted in changes to fewer 
than 1% of calls in the pilot samples. The Sanger and SMuFIN pipelines were unchanged 
between the validation process and the production runs. 

However, in two cases, the changes were such that the calls changed significantly, and 
validation results cannot be extrapolated with confidence to the production calls:   

For the Broad indel pipeline, the pilot/validation phase indel calls were made with MuTect2, 
while production calls were made with SvABA (see Supplementary Methods S2.2.4). 
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There were also changes to the MuSE pipeline. MuSE v0.9 was used to generate calls for the 
validation set, and only the most confident calls were considered. In MuSE v1.0, run as part 
of the production pipeline, a sample-specific error model was used in assessing calls, and 
additional filters both before and after calling were included, and all calls of all tiers of 
confidence were included (see Supplementary Methods S2.2.5). 

Consensus SNV and Indel Models 

We sought to produce a single call set per sample per variant type that would be used by the 
downstream PCAWG working groups. Using the validation data and calls from the PCAWG 
production callers, a number of consensus ensemble models were trained and examined. The 
desired properties of the ensemble models included transparency, accuracy, and robustness 
of accuracy. Specifically, they should not strongly underperform on some samples. Each caller 
already fields its own complex modelling of somatic variants, so we concentrated only on 
high-level features to adjudicate among them. The 6 features used in training the consensus 
ensemble models are the calls themselves, read counts (using bam-readcount for SNVs or 
SGA for indels) supporting and not supporting the variant, VAF, 3-mer context on each end, 
repeat context, and presence or not in several regions or variant databases (e.g., dbSNP, 1000 
Genomes, COSMIC).  

Also available to us in the consensus process were calls from an indel caller that had not 
participated in the validation pilot, SvABA10, and a significantly updated version of the MuSE 
SNV caller, with recommendations for less stringent thresholding/filtering than what was 
used in the validation pilot. These callers introduced many variants not seen during the pilot 
phase of the project. Lack of validation data for these unique calls renders them too uncertain 
for full incorporation. Consequently, we opted for a conservative strategy where the MuSE 
SNVs and SvABA indels are used to support existing calls (as an additional input feature) from 
the validated callers, but calls unique to only these pipelines are excluded from the consensus 
set.  

Simple models were preferred for both transparency of the results to the downstream 
analysis groups, and to avoid overfitting on the small number of cancer types in the validation 
samples compared to the full PCAWG population. The results of the consensus model 
approaches are shown in Supplementary Figure 19. For somatic SNVs, very simple 
combinations of the callers performed as well on average, and at least as well in the worst 
case, as more complex models, so a simple, interpretable “2+/4” approach was chosen, where 
calls seen by at least two callers were selected as consensus calls. 

This simple approach was not feasible for indel calls because of the much lower degree of 
agreement, and other approaches, such as simple decision trees, SVM, random forest, and 
stacked logistic regression, were investigated.  

All model training was performed in R.  The stacked logistic regression model used the CRAN 
glmnet package; the random forest models used randomForest packages, respectively; and 
the kernlab package was used for support-vector machine (SVM) model learning.  The 
baseline models, logistic regression and simple decision tree, used glmnet and party, 
respectively.  Package defaults for binary classification were used for the hyperparameters. 
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As described above, the models were trained on features including the callers’ calls, depths 
(normal and tumour), VAF (normal and tumour) repeat context, and presence of variant or 
region in various databases.  In the non-stacked models, all of these features were treated 
symmetrically; in stacked logistic regression, following1, weights for each caller were 
calculated as a function of the co-variates.  This provides for a more interpretable model, as 
the reasons for preferring a given caller for a particular call were explicit. All of the non-
baseline gave extremely high precision and good sensitivity; with no clear winner between 
the four, we selected the more interpretable stacked logistic regression method which is well 
motivated in the somatic mutation calling literature1. 

Once chosen - and in the case of indels, the model trained over all validation data sets - the 
models were applied to the variant call sets for all PCAWG samples. The final merged call sets 
were annotated with variant consequence for protein-coding genes and location for non-
coding (UTR, RNA, intronic, intergenic), whether the variant occurs at a known dbSNP site and 
1000 genomes data and reference context around the event. The annotated call sets were 
disseminated to the working groups for downstream analysis.  

3. Performance on Previously Validated Samples 
To assess the performance of the final consensus pipeline we ran the production version of 
each calling pipeline on three well-characterized samples external to the project. 

Medulloblastoma 

The pipelines were run on a medulloblastoma sample sequenced as a benchmark for the 
ICGC11. This sample has a curated “gold set” of calls, including many having low-VAF, based 
on a very high-depth (300x) data set aggregated from several sequencing centres. This tumour 
has a low mutation rate, with 1,263 SNVs and 347 indels, both of which are on the extreme 
low side of our validation samples.  As such, we expected accuracies to be low, both for the 
individual callers and for the ensemble methods. 

Results are shown in Supplementary Table 18. For SNVs, the accuracies are indeed on the 
low side of the observed range of values for the validation samples, but the consensus call set 
outperforms the input call sets on sensitivity, precision, and F1 scores. For indels, overall 
accuracies for the consensus call set are closer to typical values seen on the validation 
samples, but the input DKFZ caller performs better on sensitivity, at the expense of 
significantly worse precision. 

Known Cell lines 

Two well-characterized human cancer cell lines, HCC1143 and HCC1954, were also analyzed 
by the production pipelines for this project; a “gold set” of curated SNV calls in use internally 
at the Broad Institute was used to measure the accuracy of the core and consensus callers.  
In both cases, the consensus SNV calls were competitive with the best of the core callers 
(Supplementary Table 19). 
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4. Production Somatic Variant Calling on the PCAWG 
Compute Cloud 
The final process flow chart for WGS somatic variant calling is shown in Supplementary Figure 
2. It consists of 15 major processing steps whose outputs were filtered and combined to 
produce the consensus lists of somatic SNVs, indels, SCNAs and SVs used for downstream 
analysis. 

Unaligned BAM files representing tumour and normal genomes were aligned with BWA-MEM 
to produce aligned BAMs. Paired aligned BAM files representing tumour and normal genomes 
for each PCAWG donor were then passed to six variant calling pipelines: (1) the EMBL pipeline 
for SV/CNA calls; (2) the DKFZ pipeline for SNV/indel calls; (3) the Sanger pipeline for SNV, 
indel, SV and SCNA calls; (4) the Broad pipeline for SNV, indel, SV and SCNA calls; (5) SMuFIN 
for indels; and (6) MuSE for SNV calls only. SNVs and indels were annotated for functional 
impact by Oncotator1, and the sets of variants called by each pipeline were then merged into 
consensus sets using two pipelines: the SV-Merge package for SVs and SCNAs, and the SNV-
MERGE package for SNVs and indels.  

Alignments for the Broad and MuSE pipelines were preprocessed with local indel realignment 
and BQSR. Local realignment around indels in both the tumour and matched normal ensures 
alignment consistency in samples of the same individual. This serves to prevent spurious 
somatic indels and SNV calls near such sites.  BQSR adjusts the base quality scores in the 
sequencing data according to the empirical error distribution12.   

Following consensus SNV and indel calling, three filters were run to identify and remove 
suspect SNVs: (1) a strand bias filter to remove SNVs whose evidence is heavily weighted to 
one strand or another, and (2) a panel of normals (PoN) filter to identify and remove 
uncommon germline polymorphisms using a deep alignment of  2,450 PCAWG normal 
genomes, and (3) OxoG4 algorithm to flag and remove those variants likely miscalled due to 
oxidative damage artefact.  

After generation of all unmerged variants, we generated a series of “miniBAM” files using a 
novel format for representing the evidence that underlies genomic variant calls. A miniBAM 
contains the read pairs that span a called variant within a specified window, greatly reducing 
the size of the aligned BAM file while preserving the neighbourhood around each called 
variant. The parameters we chose for miniBAM generation resulted in a 200-fold reduction in 
the size of the aligned BAMs, totalling about 4 TB for all PCAWG specimens and making it 
easier to download and store for the purpose of inspecting variants and their underlying read 
evidence. 

Each of the steps shown in Supplementary Figure 2 has been packaged as an executable 
image using the Dockstore13 software containerization system. This system allows for 
complex workflows to be conveniently packaged into standalone images and executed across 
any compute environment that supports the Docker (www.docker.com) containerization 
system. Supplementary Table 3 provides shortened links to the Dockstore package that 
contains each workflow step.  See Supplementary Methods S2 for details on each of the 
algorithms and software packages used. 
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Distributed Processing 

The size of the data set (in excess of 800 TB) and the high computational demands of the 
alignment and somatic variant calling workflow described presented logistic challenges. Our 
solution was to distribute the project’s storage and computation across a series of 15 data 
centres which were either donated by PCAWG participants or leased from commercial cloud 
service providers (Supplementary Table 20). There were three broad phases of the project: 
(1) Marshalling and upload of the data into data analysis centres (3 months); (2) Alignment 
and variant calling (18 months); and (3) Quality filtering, merging, synchronization and 
distribution of the variant calls to downstream research groups (2 months).  

Phase 1: Data Marshalling and Upload. A significant challenge for the project was that at its 
inception, a large portion of the raw read sequencing data had yet to be submitted to a read 
archive and thus had no standard retrieval mechanism. In addition, the metadata standards 
for describing the raw data varied considerably from project to project. For this reason, we 
asked the participating projects to prepare and upload the 774 TB of raw whole genome 
sequencing (WGS) data and 27 TB raw RNA-seq data into a series of geographically distributed 
data repositories, each running a uniform system for registering the data set, accepting and 
validating the raw read data and standardized metadata. 

We utilized seven geographically distributed data repositories located at: (1) Barcelona 
Supercomputing Centre (BSC), (2) European Bioinformatics Institute (EMBL-EBI) in the UK, (3) 
German Cancer Research Center (DKFZ) in Germany; (4) the University of Tokyo in Japan; (5) 
Electronics and Telecommunications Research Institute (ETRI) in South Korea; (6) the Cancer 
Genome Hub (CGHub) and (7) the Bionimbus Protected Data Cloud (PDC) in the USA. 

To accept and validate sequence set uploads, each data repository ran a commercial software 
system, GNOS (Annai Systems). We chose GNOS because of the heavy testing it had previously 
received as the engine powering TCGA CGHub, and its support for validation of metadata 
according to the Sequence Read Archive (SRA) standard and file submission, strong user 
authentication and encryption, as well as its highly optimized data transfer protocol [CITE]. 
Each of the seven data centers initially allocated several hundred terabytes of storage to 
accept raw sequencing data from submitters within the region. The data centers also 
provided co-located compute resources to perform alignment and variant calling on the 
uploaded data. 

Genomic data uploaded to the GNOS repositories was accompanied with detailed and 
accurate metadata to describe the cancer type, sample type, sequencing type and other 
attributes for managing and searching the files. We required that identifiers for project, 
donor, sample follow a standardized convention such that validation and auditing tools could 
be implemented. Most of the naming conventions in PCAWG were adopted from the well-
established ICGC data dictionary (http://docs.icgc.org/dictionary/about/). 

Since most member projects at the time of upload already had sequencing reads aligned and 
annotated using their own metadata standards, a non-trivial effort was required to prepare 
the sequencing data for submission to GNOS. Each member project had to (1) prepare lane-
level unaligned reads in BAM format, (2) reheader the BAM files with metadata following the 
PCAWG conventions, (3) generate metadata XML files, and (4) upload the BAM files along 
with the metadata XML files to GNOS. To facilitate this process, we developed the PCAP-core 
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tool (https://github.com/ICGC-TCGA-PanCancer/PCAP-core) to extract the metadata from 
the BAM headers, validate the metadata, transform the metadata into the XML files 
conforming to the SRA specifications, and submitting the BAM files along with the metadata 
XML files to GNOS. 

Phase 2: Sequence Alignment and Variant Calling. We began the process of sequence 
alignment about two months after the uploading process had begun. When possible, both 
the alignment and variant calling pipelines were executed in the same regional compute 
centers to which the data sets were uploaded. As the project progressed, we utilized 
additional compute resources from AWS, Azure, iDASH, the Ontario Institute for Cancer 
Research (OICR), the Sanger Institute, and Seven Bridges. These centers computed on data 
sets located in the same region to optimize data transfer. Over the course of the project, some 
centers outpaced others and we rebalanced data sets as needed to use resources as 
efficiently as possible.   

Phase 3: Variant merging, filtering, and synchronization. Following the completion of the 
variant calling workflows, variants were passed to additional filtering and annotation 
pipelines as described earlier, and the evidence for each filtered and unfiltered variant was 
captured in a series of miniBAM files. Variants from multiple call sets were then merged as 
described as above and in Supplementary Methods S2.4. 

We then used GNOS to synchronize the aligned reads and variant call sets among a small 
number of download sites for use by PCAWG downstream analysis working groups 
(Supplementary Table 21). We also provided login credentials to members of PCAWG 
working groups for compute cloud-based access to the aligned read data across several of the 
regional data analysis centers, which avoided the overhead of downloading the data. 

Data Distribution to Downstream Analytic Groups 

While GNOS was used for the core pipelines, Synapse (https://www.synapse.org/) was used 
to provide an interface to the files generated by the working groups and other intermediate 
results created throughout the project. Unlike GNOS which is focused on archival storage, 
Synapse allowed for collective editing in the form of a wiki, provenance tracking and 
versioning of results through a web interface as well as programmatic APIs. While Synapse 
provided an interface that allowed analyses to be shared rapidly across the consortia, the 
controlled access data was stored on a secure SFTP server provided by the National Cancer 
Institute (NCI). As the working groups completed their analysis, the metadata was retained in 
Synapse while the final version of the results was transferred to the ICGC Data Portal 
(https://dcc.icgc.org) for archival. 

In addition to GNOS-based repositories, the PCAWG dataset has been mirrored to multiple 
locations: the European Genome-phenome Archive (EGA, 
https://www.ebi.ac.uk/ega/studies/EGAS00001001692), AWS Simple Storage Service (S3, 
https://dcc.icgc.org/icgc-in-the-cloud/aws), and the Cancer Genome Collaboratory 
(http://cancercollaboratory.org). To help researchers locate the PCAWG data, the ICGC Data 
Portal (https://dcc.icgc.org) provides a faceted search interface to query about donor, cancer 
type, data type or data repositories. Users can browse the collection of released PCAWG data 
and generate a manifest that facilitates downloading of the selected files. 
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The data repositories hosted at AWS S3 and the Collaboratory are powered by an open source 
object-based ICGC Storage System (https://github.com/icgc-dcc/dcc-storage) that enables 
fast, secure and multi-part downloads of files. Since AWS and the Collaboratory also have 
compute power co-located with the PCAWG data, they serve as effective cloud resources for 
researchers wishing to conduct further analyses on the PCAWG data without having to 
provision local compute resources and to download terabytes of data to their local compute 
environment. 

5. PCAWG data portals 
The PCAWG Landing Page at http://docs.icgc.org/pcawg provides links to several data 
resources for interactive online browsing, analysis and download of PCAWG data and results. 
We developed five data portals to provide routes into the PCAWG data: ICGC Data Portal; 
UCSC Xena; Chromothripsis Explorer; Expression Atlas; and PCAWG-Scout. These five 
resources are built upon the primary genomic and transcriptomic data types generated by 
the PCAWG project, including simple somatic mutations (single- and multiple- nucleotide 
variants (SNVs, MNVs)); small insertions and deletions (INDELs); large somatic structural 
variants (SVs); copy number variants; gene fusions; RNA-seq gene- and miRNA-expression; 
DNA methylation; and phenotypic annotations.  

Two types of files were generated by the PCAWG analysis: primary BAM and VCF files, and 
downstream analysis results. The ICGC Data Portal provides a uniform search interface for 
both file types (https://dcc.icgc.org). Each of the four other resources, UCSC Xena, 
Chromothripsis Explorer, Expression Atlas, and PCAWG-Scout, separately ingested the same 
primary result files and individually refined them for online visualization, exploration and 
download. 

 

The five data portals 

1. ICGC Data Portal - https://dcc.icgc.org 

The ICGC Data Portal14 serves as the main entry point for accessing PCAWG datasets with a 
single uniform web interface and a high performance data download client. This uniform 
interface gives users easy access to the myriad of PCAWG sequencing data and variant calls 
that reside in many repositories and compute clouds worldwide. The intuitive search interface 
is enabled through permanent, unique ICGC identifiers for each file and a set of harmonised 
metadata (such as data types and formats, experimental assays and computation methods). 
Streaming technology gives users high-level visualisations in real time of BAM and VCF files 
stored remotely on Amazon Web Services and the Cancer Genome Collaboratory. PCAWG 
consensus simple somatic mutations (excluding non-coding mutations from US projects due 
to policy constraints) are integrated with clinical data elements and rich functional 
annotations including affected proteins, pathways, gene ontology terms, and other factors. 
The Advanced Search and Analysis tools allow users to explore functional associations with 
phenotypic data such as molecular subtype and patient survival. 
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All raw and derived data from the PCAWG project are available for general research use. In 
accordance with the data access policies of the ICGC and TCGA projects, most molecular, 
clinical and specimen data are in an open tier which does not require access approval. To 
access potentially identifying information, such as germline alleles and underlying read data, 
researchers will need to apply to the TCGA Data Access Committee (DAC) via dbGaP 
(https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login) for access to the TCGA portion of 
the data set, and to the ICGC Data Access Compliance office (DACO; http://icgc.org/daco) for 
the remainder. Currently, TCGA defines non-coding somatic SNVs and indels identified by 
WGS as controlled tier elements, while ICGC places them in the open tier. To obtain the full 
catalogue of somatic variants, researchers will need to obtain TCGA authorization. 

 

Direct download of PCAWG data   

Aligned PCAWG read data in BAM format is also available at the European Genome Phenome 
Archive (EGA; https://www.ebi.ac.uk/ega/search/site/pcawg under accession 
EGAS00001001692). In addition, all open tier PCAWG genomics data as well as reference data 
sets used for analysis, can be downloaded from the ICGC Data Portal at 
http://docs.icgc.org/pcawg/data/. Researchers who have obtained ICGC DACO authorisation, 
and have logged into the Data Portal using their credentials, will also have access to genotype 
and haplotype calls for the ICGC-originated subset of PCAWG donors. 

Controlled tier genomic data, including SNVs and indels that originated from TCGA projects 
(in VCF format), and aligned reads (in BAM format) can be downloaded using the icgc-storage-
client software package, which implements accelerated and secure file transfer. Instructions 
for installing and using this software can be found at  http://docs.icgc.org/pcawg/data/  

 

Compute cloud-based access to PCAWG data  

Because of the large size of the PCAWG data files, which are in excess of 800TB for the aligned 
read files and 750GB for the combined genotype and somatic variant call sets, we encourage 
researchers to make use of several compute cloud systems that provide fast and convenient 
access to PCAWG raw and analysed data: 

● The Cancer Genome Collaboratory (https://www.cancercollaboratory.org/) is a 
Canadian compute cloud facility that provides academic and non-academic researchers with 
the ability to configure and launch virtual machines in a secure private workspace. The open 
tier data set and the ICGC-originated controlled tiers are resident within the Collaboratory 
where they can be transiently copied into the researcher’s workspace for inspection and 
analysis. Controlled-tier TCGA data can be transferred into a user’s workspace using a fast 
network link that connects the Collaboratory to its sister facility, the Protected Data Cloud 
(see below). This facility charges for compute and storage use at heavily subsidised rates. 

● The Bionimbus Protected Data Cloud (https://bionimbus-
pdc.opensciencedatacloud.org/) is an American compute cloud facility that provides secure 
compute and storage facilities to academic and non-academic researchers. This cloud holds 
the TCGA-originated controlled tier data set. ICGC-originated controlled tier data can be 
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copied into transient or permanent storage in the researcher’s workspace over a fast link that 
interconnects the Protected Data Cloud and the Collaboratory. Use of compute and storage 
facilities is currently free for researchers who have dbGaP authorization for access to TCGA 
data. 

● Amazon Web Services (https://aws.amazon.com/) is a commercial cloud compute 
facility. PCAWG variant calls are mirrored on the Simple Storage Service (S3), along with 
roughly 85% of the ICGC-originated portion of the controlled tier, including whole genome 
alignments. S3-resident PCAWG data can be transferred into a user’s storage area for 
inspection and analysis using S3 GET and other standard tools, while both resident and non-
resident data can be copied into Amazon Web Services using icgc-storage-client. Amazon Web 
Services charge market rates for compute and data storage. 

 

2. UCSC Xena - https://pcawg.xenahubs.net 

UCSC Xena visualises all PCAWG primary results, including copy number, gene expression, 
gene fusion, promoter usage, simple somatic mutations, large somatic structural variation, 
mutational signatures and phenotypic data. This open-access data is available through a 
public Xena hub, while consensus simple somatic mutations (including both coding and non-
coding) can be loaded into a user's local computer private Xena hub. The UCSC Xena Browser 
accesses data from multiple data hubs simultaneously, allowing users to visualise PCAWG 
data alongside their own private data while maintaining data security. Xena integrates simple 
mutations, structural variants, gene expression data and more, for the same or multiple genes 
across large numbers of samples. Kaplan-Meier plots, histograms, boxplots, scatterplots and 
transcript-specific views offer additional visualisation options and statistical analyses.  

 

The following open-access PCAWG results are hosted on UCSC Xena:  

● Consensus coding SNVs, MNVs, and small indels 

● Consensus whole-genome SNVs, MNVs, and small indels from non-US donors 

● Consensus whole genome structural variants 

● Consensus whole genome copy number 

● RNA-seq gene expression, consensus fusion calls, alternative promoter usage and 
JuncBASE alternative splicing events 

● miRNA expression 

● Coding drivers 

● Mutation Signatures 

● Tumour purity and ploidy 
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● Tumour subtype, histology information, donor clinical data 

● Specimen quality control designation (white, grey and excluded lists) 

 

3. Expression Atlas - https://www.ebi.ac.uk/gxa/experiments?experimentSet=Pan-Cancer 

The Expression Atlas contains RNAseq and expression microarray data for querying gene 
expression across tissues, cell types, developmental stages and/or experimental conditions. 
Queries can be either in a baseline context or in a differential context. PCAWG RNAseq gene 
expression data are manually curated to a high standard by Expression Atlas curators and are 
presented in a heatmap with summarised baseline expression. Two different views of the 
data are provided: summarised expression levels for each tumour type and gene expression 
at the level of individual samples.  

 

4. PCAWG-Scout - http://pcawgscout.bsc.es/ 

PCAWG-Scout provides a framework for ‘omics workflow and website templating to make on-
demand, in-depth analyses over the PCAWG data openly available to the whole research 
community. Views of protected data are available that still safeguard sensitive data. Through 
the PCAWG-Scout web interface, users can access an array of reports and visualisations that 
leverage on-demand bioinformatic computing infrastructure to produce results in real-time, 
allowing users to discover trends as well as form and test hypotheses. The web interface and 
underlying infrastructure are open-source, based on the Ruby bioinformatics toolkit (Rbbt), 
and can be installed locally, with new reports added or altered easily through the modular 
templating system. This also allows the entire analysis suite to be applied to datasets outside 
those from PCAWG. 

Gene expression data are specifically processed for each visualisation or analysis in PCAWG-
Scout.  For differential expression, the values are log2 transformed, with 'no expression' 
replaced by the smallest number found in the matrix. For differential expression and for 
expression boxplots on a single gene, only tumour samples are considered and all possible 
samples for every donor in the group are shown together. When using a colour gradient to 
represent expression of a gene in a donor, all tumour samples for that donor are averaged 
and the expression is compared with the rest of values for the other tumour samples in the 
cohort; the rank of that value in the list for all samples in the cohort is used to define the 
gradient. 

 

5. Chromothripsis Explorer - http://compbio.med.harvard.edu/chromothripsis/ 

The Chromothripsis Explorer portal enables exploration of patterns of chromothripsis in the 
PCAWG dataset. Chromothripsis Explorer enables the user to explore and visualise the 
tumours comprising the PCAWG cohort, including properties such as purity and ploidy. A key 
feature of the portal is to provide interactive circos plots for all tumours, with the plots 
including tracks for the somatic SNV, indel and structural variation events, as well as the total 



Pan-Cancer Analysis of Whole Genomes, Supplementary Information 97 

 

and minor copy number profiles for chromosomes 1-22 and X. These plots provide an easy 
and intuitive interface for visualisation of complex mutational profiles such as chromothripsis 
and kataegis, deletions of chromosome arms, loss of heterozygosity and so on. 

In addition to explore the PCAWG data case-by-case through circos plots, Chromothripsis 
Explorer also provides a tunable search-and-summarise module for generating summary plots 
of chromothripsis events by, for example, tumour type, number of breakpoints, number of 
chromosomes affected and so on. 

 

Data sources for the PCAWG portals    

Each of the PCAWG portals is based on importing, combining and displaying primary PCAWG 
datasets, each of which is referenced by a corresponding synapse ID - these are listed in the 
table below. Synapse folder ID is the identifier for the synapse landing page for each type of 
primary results. The landing page typically includes a summary written by the analysis working 
group to briefly describe the bioinformatics methods used and a list of results generated.  
Because there are often multiple versions of the same results files (such as fpkm vs fpkm-uq 
gene expression estimations, or simple mutations from all specimens or aggregated by 
donors), synapse identifiers in the remaining columns point to the actual data file ingested by 
each online resource. The data snapshot was taken as of Feb 10, 2017. RNAseq data are 
visualised by Expression Atlas, UCSC Xena and PCAWG-Scout. Each resource started with the 
same primary results generated by the analysis working group, and subsequently further 
processed, curated and refined to meet each resource’s quality-control and visualisation 
requirements. The secondarily processed data are displayed on the web.  

 Data UCSC Xena Expression 
Atlas 

PCAWG-
Scout 

Chromothripsis 
Explorer 

Consensus SNVs and indels syn7364923  syn7364923 syn7357330 
Consensus SVs syn7596712  syn7596712 syn7596712 
Consensus copy number syn8042988  syn8042988 syn8042988 
Gene expression syn5553991 syn5553983 

syn5553985 
syn5553991  

GTEx gene expression using 
PCAWG RNA-seq SOP 

 syn8105922   

RNAseq gene fusion syn7221157    
RNAseq alternative 
promoter usage 

syn10332949    

small RNA-Seq (miRNA) 
analyses 

syn5878064 
syn5878067 

   

Patient-centric driver 
catalogue 

syn11639581  syn11639581  

APOBEC mutagenesis 
analysis 

syn7437313    

Tumour subtype and 
histology information 

syn10389164 syn10389164 syn10389164 syn10389164 

Donor clinical data syn10389158  syn10389158 syn10389158 
Consensus purity and ploidy    syn8272483 
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