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Supplementary Figure 1. Characterization of antiperovskite films. a X-ray 2θ− θ scan of Sr3SnO. For a comparison,
the XRD scan of bare YSZ substrate is also shown. The Miller indices correspond to those of the film unless otherwise noted.
Data are shifted vertically for clarity. β denotes the diffraction peak related to Cu Kβ line which is not filtered perfectly. b
Magnified 2θ−θ scan around Sr3SnO (002) diffraction, where the diffraction from the film is marked with the arrow. The weak
oscillation in lower angle comes from a SrO buffer layer. Data are shifted vertically for clarity. c The RHEED image taken
along [100] direction of the YSZ substrate after the growth of 100 nm Sr3SnO film.



3

0 0.2 0.4

‐30

‐20

‐10

0

B(T)


 (e

2 /
2
h 
  
m

‐1
) N = 2.35

l = 112 nm

3D fit

a

0 0.2 0.4
‐50

‐40

‐30

‐20

‐10

0

B(T)


 (e

2 /
2
h 
  

m
‐1
) N = 3.39

l = 130 nm

3D fit

b

Supplementary Figure 2. Three-dimensional WAL analysis for quasi-2D films. Low-field MC for quasi-2D films
at a low (n = 1.8 × 1019cm−3) and b high (n = 7.2 × 1019cm−3) hole density. Experimental data are shown in open circles.
Theoretical fits based on 3D formula are shown in solid lines.
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Supplementary Table 1. The WAL fitting results based on 3D and 2D formulae for 3D films

Sample No. Tmin
a (K) np (×1019 cm−3) d (nm) N3Dfit lφ,3Dfit (nm) N2Dfit lφ,2Dfit (nm)

1 2 1.70 100 1.40 ± 0.22 65 ± 1.3 1.59 ± 0.1 47 ± 1.2
2 0.42 1.80 200 1.28 ± 0.25 321 ± 37 1.21 ± 0.14 159 ± 8.8
3 1.8 2.11 90 0.89 ± 0.11 313 ± 15 0.69 ± 0.03 98.5 ± 3.1
4 4 2.20 300 0.84 ± 0.3 364 ± 89 1.16 ± 0.4 148 ± 18
5 3 2.20 150 1.17 ± 0.19 246 ± 41 1.23 ± 0.14 110 ± 6.6
6 4.5 2.30 300 0.55 ± 0.40 283 ± 100 1.00 ± 0.7 146 ± 29
7 2 4.92 105 2.56 ± 0.37 174 ± 13 1.31 ± 0.14 118 ± 4.6
8 2 6.09 160 2.60 ± 0.6 147 ± 52 3.74 ± 1.6 84.4 ± 22
9 3 9.00 100 1.95 ± 0.26 134 ± 15 1.87 ± 0.1 72.8 ± 2.5
10 2 11.1 160 2.46 ± 0.1 162 ± 8.1 3.2 ± 0.2 87.0 ± 2.7
11 4.5 13.0 100 2.48 ± 0.45 107 ± 14 2.6 ± 0.33 64.0 ± 4.0

a the lowest temperature at which ∆σ for fitting was measured
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Supplementary Table 2. The WAL fitting results based on 3D and 2D formulae for quasi-2D films

Sample No. Tmin
a (K) np (×1019 cm−3) d (nm) N3Dfit lφ,3Dfit (nm) N2Dfit lφ,2Dfit (nm)

12 0.45 1.75 50 2.35 ± 0.1 112 ± 5 1.02 ± 0.04 71.4 ± 1.3
13 0.42 7.20 50 3.39 ± 0.25 127 ± 11 1.46 ± 0.01 76.5 ± 0.3

a the lowest temperature at which ∆σ for fitting was measured
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Supplementary Note 1. Derivation of 3D weak (anti)localization formula

In order to describe the crossover between positive and
negative magentoresistance in 3D we consider a generic
model of a disordered metal with three types of impu-
rities: potential, spin-orbit, and magnetic. This model
is completely analogous to that used by Hikami, Larkin,
and Nagaoka [1] for the 2D case. Magnetic impurities are
included for generality and will be neglected in the end
of the calculation. Following Supplementary Reference
1, we assume that impurity scattering amplitude has the
form

fαβ (n,n′) = aδαβ + ib (n× n′)σαβ + sσαβ . (1)

The random scalar parameters a, b and the vector s obey
a Gaussian distribution with zero average and

〈
a2
〉

=
1

2πντ0
,
〈
b2
〉

=
9

4πντSO
, 〈sαsβ〉 =

δαβ
2πντm

.

This defines scattering times τ0, τSO, and τm. Overall
scattering rate is given by the imaginary part of the self
energy or, equivalently, by the Fermi golden rule and
equals

1

τ
= 2πν〈fαβ (n,n′) fβγ (n′,n)〉n′ =

1

τ0
+

3

τSO
+

3

τm
.

Weak (anti)localization effect is due to interference be-
tween self-intersecting trajectories that differ by time re-
versal. Such pairs of trajectories are described by the
Cooperon propagator that involves the following impu-
rity vertex:

Γ = 〈f (n,n′)⊗ f (−n,−n′)〉n,n′

=
1

2πντ0
− σ ⊗ σ

2πντSO
+

σ ⊗ σ

2πντm
.

(2)

For brevity, we write simply 1 instead of 1⊗ 1. The av-
eraging over both n and n′ is justified provided the spin-
orbit scattering is a relatively rare event and the electron
velocity is fully randomized by potential scattering be-
tween two consecutive spin-orbit impurities.

It is convenient to introduce the following two combi-
nations:

S =
1− σ ⊗ σ

4
, T =

3 + σ ⊗ σ

4
. (3)

These operators obey S2 = S and T2 = T and project
onto the subspaces with total spin zero and one respec-
tively. These subspaces are naturally called the singlet
and triplet channels. The vertex Γ can be rewritten in
this basis as

Γ =
S

2πν

(
1

τ
− 6

τm

)
+

T
2πν

(
1

τ
− 4

τSO
− 2

τm

)
. (4)

Here the spin-orbit and magnetic rates τ−1SO and τ−1m are
regarded as small corrections to τ−1; the latter is domi-
nated by the potential scattering.

In the Cooperon ladder, the vertices Γ are connected
by the pairs of Green functions

Π =

∫
dp

(2π)
3G

R (p + q)⊗GA (−p)

= 2πντ

(
1− τDq2 − τ

τφ

)
, (5)

where we have included a phenomenological dephasing
rate τ−1φ . Summation of the ladder diagrams leads to the
following result:

C(q) = Γ (1−ΠΓ)
−1

=
S

2πντ2

(
Dq2 +

6

τm
+

1

τφ

)−1
+

T
2πντ2

(
Dq2 +

4

τSO
+

2

τm
+

1

τφ

)−1
. (6)

The small symmetry-breaking rates τ−1SO and τ−1m are kept
only in the denominators. The weak (anti)localization
correction is given by the integral of the Cooperon loop

∆σ = −2e2νDτ2

~

∫
dqTrC(q)

=
e2

π~

∫
dq

(2π)3

[(
q2 + 6l−2m + l−2φ

)−1
−3
(
q2 + 4l−2SO + 2l−2m + l−2φ

)−1]
. (7)

Here we have used the values TrS = −1 and TrT = 3
and introduced the scattering lengths li =

√
Dτi corre-

sponding to different types of impurities.
To include an external magnetic field, we replace q 7→

q+(2e/c)A. Hence the Cooperon dynamics is quantized
in the transverse direction giving the sum over effective
Landau levels∫

dq

(2π)3
1

q2 + l−2i

7→ 1

4πl2B

∑
n

∫
dqz
2π

1

q2z + l−2B (n+ 1/2) + l−2i
. (8)

In this expression, l−2i denotes one of the relevant mass
terms from Supplementary Equation 7 and the magnetic
length is lB =

√
~/4eB.

The sum and integral in Supplementary Equation 8 di-
verge in the ultraviolet limit. They should be cut at the
ballistic scale when the Cooperon denominator is compa-
rable to l−2. This can be achieved in several ways. One
possibility is to subtract a similar integral at zero mag-
netic field as was done in Supplementary Reference [2].
Alternatively, we can introduce a regulating term in the
denominator in the following way:
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∑
n

∫
dqz

q2z + l−2B (n+ 1/2) + l−2i
7→
∑
n

∫
dqz

q2z + l−2B (n+ 1/2) + l−2i + l2
[
q2z + l−2B (n+ 1/2) + l−2i

]2
= πlB

∑
n

[
1√

n+ 1/2 + l2B/l
2
i

− 1√
n+ 1/2 + l2B/l

2 + l2B/l
2
i

]
= πlB

[
ζ

(
1

2
,

1

2
+
l2B
l2i

)
− ζ

(
1

2
,

1

2
+
l2B
l2

+
l2B
l2i

)]
. (9)

Here ζ is the Hurwitz zeta function. In the argument of the second zeta function, l−2i can be neglected in favor of
l−2. Applying Supplementary Equations 8 and 9 to the weak localization correction Supplementary Equation 7, we
obtain a general expression for the magnetoconductivity

∆σ(B) =
e2

4πhlB

[
2ζ

(
1

2
,

1

2
+
l2B
l2

)
+ ζ

(
1

2
,

1

2
+ 6

l2B
l2m

+
l2B
l2φ

)
− 3ζ

(
1

2
,

1

2
+ 4

l2B
l2SO

+ 2
l2B
l2m

+
l2B
l2φ

)]
. (10)

This 3D result is fully analogous to the corresponding 2D result of Hikami, Larkin, and Nagaoka [1] up to the
replacement of digamma functions with Hurwitz functions.

For the description of experimental magnetoresistance, we assume l−1m = 0 since, qualitatively, magnetic scattering
has a similar effect to dephasing. This yields

∆σ(B) =
e2

4πhlB

[
2ζ

(
1

2
,

1

2
+
l2B
l2

)
+ ζ

(
1

2
,

1

2
+
l2B
l2φ

)
− 3ζ

(
1

2
,

1

2
+ 4

l2B
l2SO

+
l2B
l2φ

)]
. (11)

This result describes the crossover from negative to posi-
tive magnetoconductivity with increasing magnetic field.
In Eq. 1 of the main text, the number of independent
channels N has been included into Supplementary Equa-
tion 11.

The Hurwitz zeta function has the following two
asymptotic forms:

ζ

(
1

2
,

1

2
+ x2

)
≈

{
−C1 − C2x

2, x� 1,

−2x− 1/48x3, x� 1,
(12)

C1 = (1−
√

2)ζ(1/2) ≈ 0.605,

C2 = (1/2−
√

2)ζ(3/2) ≈ 2.39.
(13)

With the help of this expansion, we establish two limiting
cases of Supplementary Equation 11. The limit of negli-
gible spin-orbit scattering l−1SO = 0 corresponds to a metal
with orthogonal symmetry exhibiting weak localization,

∆σorth(B) =
e2

2πhlB

[
ζ

(
1

2
,

1

2
+
l2B
l2

)
− ζ

(
1

2
,

1

2
+
l2B
l2φ

)]
.

This has been discussed in Supplementary References 2
and 3. The limit of extremely strong spin-orbit coupling
l−1SO = ∞ corresponds to symplectic symmetry and pure
weak antilocalization. It differs only by a (negative) fac-
tor from the orthogonal case,

∆σsympl(B) = −1

2
∆σorth(B). (14)

This result (in a different form) was used to describe
quantum interference in Weyl semimetals [4].

When fitting experimental data, we consider lowest
magnetic fields where lB � l, lSO. In this case, only
the second zeta function in Supplementary Equation 11
provides magnetic field dependence:

∆σ(B) = const +
e2

4πhlB
ζ

(
1

2
,

1

2
+
l2B
l2φ

)
. (15)

Hence low-field data is fitted by the function with only
two independent parameters: number of channels N , and
dephasing length lφ. For moderate values of magnetic
field, such that l, lSO � lB � lφ, expression (15) simpli-
fies further and looses any dependence on material pa-
rameters:

∆σ(B) = const− e2C1

4πhlB
. (16)
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Supplementary Note 2. Details of the fitting procedure

Here, we present details of the fitting using Eq. 2 (low-field formula) in the main text.

1. Pick a magnetic field range for the fitting for the magnetoconductance curves, such that lB is approximately
ten times larger than l (as estimated from transport and band parameters).

2. Fit to determine N and lφ at every temperature.

3. Report N for each sample as an average over a few lowest temperatures, with some standard deviation.

4. Using the average of N determined for the lowest few temperatures, redo the fits and extract lφ versus T for
fixed N . (To determine the temperature dependence of lφ, we note that N should physically be a T -independent
quantity.)

5. Additional fits were tried up to ±30% of the original magnetic field range to obtain an error due to the range
of magnetic field used in the fitting.

In a few cases, using the average value of N caused a larger change in lφ than the error obtained from changing field
range, so this was accounted for in the error of lφ. Thus, the error in N includes considerations from temperature
averaging and range of magnetic field used, while the error in lφ includes contributions from errors in N and also the
range of magnetic field used.
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Supplementary Note 3. Analysis of quasi-2D films based on 3D WAL formula

In the main text, quasi-2D films (d=50 nm) were analyzed using the 2D HLN formula[1]. We show an analysis
based on the 3D WAL formula (Eq. 2 in the main text) in Supplementary Figure 2. The fit based on the 3D formula
gives N values significantly larger than those obtained for 3D films with comparable n, signalling that the 3D WAL
may not apply for these quasi-2D films.
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