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1) Are effects similar across monologue and dialogue? 

The analysis described in the main text used the full-trial data, with both monologue and dialogue 

analysed together.  To explore potential differences between monologue and dialogue, we repeated 

the wavelet coherence analyses of head pitch data, separated into these two trial sections.  Results 

are shown in Figure S2, A.  We find that the monologue dataset shows low frequency coherence but 

not high frequency hypo-coherence (Fig S1 A & D).  The dialogue dataset shows both effects (Fig S1, 

B and E).  This means that the results we report are not an artefact of the more unnatural 

monologue situation.  A direct test of the difference between monologue and dialogue (Fig S1, C and 

F) does not show any results passing FDR corrected significance thresholds. 

 

2) Do global differences in signal power drive the hypo-coherence effect? 

This analysis aimed to determine if global differences in signal power could drive the hypo-

coherence effect.  For example, if one participant moved much less than the other at 3Hz, then there 

would be no power to drive coherence at 3Hz.  As we have used a strict, within-dyad comparison 

between real trials and pseudo-trials, it is unlikely that power differences drive our effects, because 



data with similar power occur in both the real and pseudo trial analyses.  To double-check this, we 

calculated power spectral density (PSD) over the whole trial (without breaking the data into 

wavelets) to check for global differences in signal power between participants and trial sections.  For 

each participant and trial, we calculated the PSD using Matlab’s pwelch function.  Then we averaged 

data according to the participant’s role as Leader or Follower in that trial.  This allowed us to 

determine if there were overall differences in participants’ movement behaviour between the leader 

/ follower roles and monologue / dialogue sections (Figure S3).   

In the monologue case (Fig 

S2A&B), we show that leaders 

have more power than followers 

at low frequencies (the range 

where we identified low-

frequency mimicry). This 

corresponds to the fact that 

leaders do all the talking during 

monologue. But at higher 

frequencies, and throughout 

most of the dialogue case, as 

shown in Fig S3B&D, the leader 

and follower power levels are 

evenly matched.   

In all cases, red dots indicate 

effects which are significant at 

p<0.05 FDR corrected. 

 

3) Exploring the characteristics of low frequency mimicry (Figure 4) 

 The wavelet coherence analysis revealed interpersonal coherence at low frequencies 

associated with mimicry in our data.  To explore the time-lags involved, we cross-correlated the raw 

head-pitch data from the Leader and Follower in each dyad for a range of time lags between -4 and 4 

seconds using Matlab’s xcorr function. We did this for real trials and pseudo trials, then averaged 

over trials and dyads and used paired t-tests with FDR correction to contrast the real and pseudo 

trial data (Fig 4 A and D). 



As well as exploring time-lag, we explored the phase-difference between the Leader and 

Follower. When calculating wavelet coherence, it is possible to obtain information on both the 

coherence level and the phase difference between the two signals.  Phase can only be meaningfully 

interpreted when there is positive coherence – that is, two signals are active in the same frequency 

range. For this reason we only store phase data when coherence meets a minimum threshold; here 

we choose a mid-range threshold of 0.5. For every dyad and trial, we calculated the phase difference 

between Leader and Follower (Fig 2G), and then thresholded this image to show only data points 

with a coherence over 0.5.  For each frequency band, we then counted the number of supra-

threshold points falling into each of 24 phase bins from -180o to 180o.  This collapses the data over 

time and reveals the distribution of phases, and we can plot this data as a phase-frequency 

histogram (Fig 2H).  We then average phase-frequency histograms over all trials and all dyads for 

both real trials and pseudo trials (Fig 4B and E).   The difference between phase-frequency plots for 

real and pseudo trials (Fig 4C) reveals the frequency bands at which participants are in phase with a 

specific lag (yellow areas) and where less data is present than chance (blue areas).  Thresholds on 

this map were created with paired-sample t-tests.   

4) Modelling the phase-frequency histograms (Figure 5) 

 We aimed to test if the phase-frequency relationship seen in the lower part of Fig 4B 

(repeated in Fig 5A) is generated by a constant-phase mechanism or a constant-lag mechanism.  To 

do this, we built two simple generative models, one for each mechanism.  The constant-phase model 

had two parameters – phase lag and variability – and was modelled as a Gaussian distribution of 

phases about a fixed mean (Fig 5C).  The constant lag model also had two parameters – time lag and 

variability – and was modelled by sampling individual trials, offsetting the Leader movement by the 

time lag relative to the Follower, then calculating the wavelet coherence and phase-frequency 

histogram for that sample trial.  This process was repeated for 416 iterations (because the original 

dataset had 16x26 = 416 trials) using time-lags drawn from a Gaussian with mean & variability 

specified by the model parameters.  The results of the 416 iterations were averaged to give the final 

result (Fig 5D).  For each model, we used Matlab’s fminsearch function to find the parameter values 

which gave the best fit between the model and the data, that is, to minimise the root-mean-squared 

error (RMSE) between the generated data (Fig5C or D) and the original data (Fig 5A).  The model 

outputs shown in Fig 5 C and D represent the model using the optimal parameters.  Comparing the 

RMSE values for the two models shows that the constant-lag model has a better fit to the data (Fig 

5B).  This implies that the cognitive mechanisms generating mimicry of head nods act with a 

constant lag of around 0.588 msec. 



5) Exploring high frequency hypo-coherence in head motion   

Our wavelet analysis highlighted the 2.6-6.5Hz frequency range as an interesting band where 

one participant might engage in a fast-nodding behaviour while the other does not show coherent 

head motion.  To explore this, we developed a ‘fast nod detector’ algorithm to test which participant 

shows fast-nods and when.  We defined fast nods in this context as head-pitch movements with a 

dominant frequency within the wider range of 1.5 to 8 Hz. This range is selected (rather than our 

significant findings of 2.6 to 6.5 Hz) to account for the approximate nature of our detector, and 

covers the range of frequency bands in Fig 3D with an effect size less than zero.  To detect these 

frequencies we performed thresholding on an estimate of the dominant frequency obtained from 

the zero-crossing rate (ZC). The ZC algorithm works by counting the number of times a signal crosses 

the zero (or window mean) within a given window, and is implemented here as follows:       

1. slide a 2 second window across the pitch data,  

2. high-pass filter by removing the window mean,  

3. count the number of times the signal makes a zero crossing in one second (ZC),  

4. calculate the zero-crossing rate as an approximation of the frequency (ZC/2 approximates 

frequency in Hz),  

5. select those time windows where the approximate frequency falls within the wider range 

of ‘fast nods’ (between 1.5 and 8 Hz). 

Dominant frequency can be computed by other means, like Fast Fourier Transform (FFT), however 

the ZC method has the advantage of simplicity and ease of implementation for future real-time 

execution. (One of the planned follow-on projects from this work is to implement an interactive 

virtual agent that can detect and respond to the head nods of human interlocutors in real time.)  

 The output of the fast-nod detector for each participant is a vector of 0/1 for each 1-second 

time window in each trial marking the presence / absence of a fast nod from that participant.  

Examples are shown in Figure 6A.  Averaging this vector gives an estimate of the rate of fast-nodding 

for that participant, and a paired t-test was used to compare rates between trials where that 

participant had a Leader role and trials where they had a Follower role (Figure 6B).  In addition, a 

speech-detector which thresholded the audio data was used to mark each timepoint in the data as 

‘X speaking’, ‘Y speaking’ ‘Both speaking’ or ‘neither speaking’.  Note that audio quality was too low 

to detect who was speaking in 2 dyads, so the sample size for this analysis is n=24 dyads.  We used 

this to calculate the rate of fast nods for each participant when speaking and when not speaking, 

and then used a paired t-test to compare fast-nodding rates between Speaking and not-speaking 

phases within trials.  We can characterise the performance of the detector in terms of precision and 



recall. Precision measures the proportion of nods that occur during Following/not speaking against 

all detected nods. Recall measures the proportion of nods that occur during Following/not speaking 

against all periods marked as listening/following (Fawcett, 2003).  Results of this analysis are shown 

in Figure 6. 

 


